An Imitation-Based Treatment for Ataxic Dysarthria: A Retrospective Multiple Single-Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Rehabilitation Protocols
2.2.1. Routine SL Treatment
2.2.2. IMITAF Treatment
2.3. Available Functional and Cognitive Assessments
Measuring Ataxic Dysarthria
2.4. Behavioral Analysis
- The two groups were compared in terms of available demographic, clinical, and cognitive data as well as baseline total PVDD scores. Mann–Whitney tests were performed for nonparametric variables; a chi-square test was used to assess the group differences in proportions (e.g., gender).
- The applicability of IMITAF was evaluated for each participant’s progress on the difficulty levels achieved during IMITAF sessions by means of C-tests [48] to analyze trends in changes in performance during IMITAF treatment, examining within-participant progress throughout the treatment.
- The possible benefits of IMITAF were investigated first through general improvements, by comparing each patient’s pre- and post-treatment total PVDD scores by means of Sign Tests for repeated nonparametric data [49]. Secondly, to understand the possible effects of IMITAF as an adjunctive training regimen to routine SL training, each experimental participant was compared to the control group by means of adapted t-tests for single-case Crawford analysis (i.e., DIFFLIMS.EXE [50]). The effects of rehabilitation were evaluated as the difference between the pre- and post-evaluation measures of dysarthria. DIFFLIMS.EXE enables a comparison of the effects observed in each experimental patient to those in a control sample. This test was repeated on the total PVDD score as well as the adapted scores of PVDD subparts.
3. Results
3.1. Comparability Between Groups
3.2. Applicability of IMITAF
3.3. Benefits of IMITAF
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PVDD | Protocollo di Valutazione Disartria e Disfonia |
SL | Speech–Language |
AOT | Action Observation Therapy |
ACE-R | Addenbrooke Cognitive Examination-Revised |
ES | Equivalent Score |
GHS | Gordon Holmes Syndrome |
SCA | Spinocerebellar Ataxia |
CS | Cerebellar Syndrome |
FRDA | Friedreich Ataxia |
RH | Right |
LH | Left |
st-Vs | Supratentorial Ventricles |
Fg | Focal Gliosis |
Mb | Midbrain |
P | Pons |
Mo | Medulla Oblongata |
bl-FP | Bilateral Frontoparietal |
VH | Vermal Hypothropy |
SS | Supra-Sylvian |
FWM | Frontal White Matter |
References
- Vogel, A.P.; Graf, L.H.; Magee, M.; Sch€ Ols, L.; Rommel, N.; Synofzik, M.; Vogel, A. Home-Based Biofeedback Speech Treatment Improves Dysarthria in Repeat-Expansion SCAs. Ann. Clin. Transl. Neurol. 2022, 9, 1310–1315. [Google Scholar] [CrossRef]
- Klockgether, T. Update on Degenerative Ataxias. Curr. Opin. Neurol. 2011, 24, 339–345. [Google Scholar] [CrossRef]
- Marsden, J.F. Cerebellar Ataxia. In Handbook of Clinical Neurology; Elsevier, B.V.: Amsterdam, The Netherlands, 2018; Volume 159, pp. 261–281. [Google Scholar]
- Sanjaykanth, B.; Ananthasayanam, J.R.; Sharmeela, S.; Mohanakrishnan, A.; Ramakrishnan, K.K. Olivopontocerebellar Degeneration in a Young Adult Female: A Case Report of Early Onset and an Uncommon Course. Cureus 2024, 16, e69384. [Google Scholar] [CrossRef]
- Darley, F.L.; Aronson, A.E.; Brown, J.R. Differential Diagnostic Patterns of Dysarthria. J. Speech Hear. Res. 1969, 12, 246–269. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.; Slocomb, D. The Neural Basis of Ataxic Dysarthria. Cerebellum 2007, 6, 58–65. [Google Scholar] [CrossRef]
- Kent, R.D.; Kent, J.F.; Duffy, J.R.; Thomas, J.E.; Weismer, G.; Stuntebeck, S. Ataxic Dysarthria. J. Speech Lang. Hear. Res. 2000, 43, 1275–1289. [Google Scholar] [CrossRef] [PubMed]
- Hartelius, L.; Runmarker, B.; Andersen, O.; Nord, L. Temporal Speech Characteristics of Individuals with Multiple Sclerosis and Ataxic Dysarthria: ‘Scanning Speech’ Revisited. Folia Phoniatr. Logopaedica 2000, 52, 228–238. [Google Scholar] [CrossRef]
- Yorkston, K.M. The Degenerative Dysarthrias: A Window into Critical Clinical and Research Issues. Folia Phoniatr. Logopaedica 2007, 59, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Lowit, A.; Egan, A.; Hadjivassiliou, M. Feasibility and Acceptability of Lee Silverman Voice Treatment in Progressive Ataxias. Cerebellum 2020, 19, 701–714. [Google Scholar] [CrossRef]
- Vogel, A.P.; Folker, J.; Poole, M.L. Treatment for speech disorder in Friedreich ataxia and other hereditary ataxia syndromes. Cochrane Database Syst. Rev. 2014, 10, 2014. [Google Scholar] [CrossRef]
- Perry, S.E.; Troche, M.; Huber, J.E.; Curtis, J.; Kiefer, B.; Sevitz, J.; Dennard, Q.; Borders, J.; Browy, J.R.; Dakin, A.; et al. Behavioral Management of Respiratory/Phonatory Dysfunction for Dysarthria Associated with Neurodegenerative Disease: A Systematic Review. Am. J. Speech Lang. Pathol. 2024, 33, 1069–1097. [Google Scholar] [CrossRef]
- Sarva, H.; Shanker, V.L. Treatment Options in Degenerative Cerebellar Ataxia: A Systematic Review. Mov. Disord. Clin. Pract. 2014, 1, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Enderby, P. Disorders of Communication: Dysarthria. Handb. Clin. Neurol. 2013, 110, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.R. Motor Speech Disorders E-Book: Substrates, Differential Diagnosis, and Management; Elsevier Health Sciences: St. Louis, Missouri, USA, 2019. [Google Scholar]
- Lowit, A.; Ijitona, T.; Kuschmann, A.; Corson, S.; Soraghan, J. What Does It Take to Stress a Word? Digit. Manip. Stress. Markers Ataxic Dysarthria 2018, 53, 875–887. [Google Scholar] [CrossRef]
- Stocks, R.; Dacakis, G.; Phyland, D.; Rose, M. The Effect of Smooth Speech on the Speech Production of an Individual with Ataxic Dysarthria. Brain Inj. 2009, 23, 820–829. [Google Scholar] [CrossRef]
- Yorkston, K.M.; Beukelman, D.R. Ataxic Dysarthria: Treatment Sequences Based on Intelligibility and Considerations. J. Speech Hear. Disord. 1981, 46, 398–404. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, C.; Muir, M.; Allen, C. Non-Speech Oro-Motor Exercise Use in Acquired Dysarthria Management: Regimes and Rationales. Int. J. Lang. Commun. Disord. 2010, 45, 617–629. [Google Scholar] [CrossRef]
- Mackenzie, C.; Muir, M.; Allen, C.; Jensen, A. Non-Speech Oro-Motor Exercises in Post-Stroke Dysarthria Intervention: A Randomized Feasibility Trial. Int. J. Lang. Commun. Disord. 2014, 49, 602–617. [Google Scholar] [CrossRef]
- Ramig, L.O.; Sapir, S.; Countryman, S.; Pawlas, A.A.; O’Brien, C.; Hoehn, M.; Thompson, L.L. Intensive Voice Treatment (LSVT®) for Patients with Parkinson’s Disease: A 2 Year Follow Up. J. Neurol. Neurosurg. Psychiatry 2001, 71, 493–498. [Google Scholar] [CrossRef]
- Lowit, A.; Egan, A.; Hadjivassilliou, M. Speech Treatment for People with Hereditary Ataxia–a Feasibility Study. In Proceedings of the International Ataxia Research Conference (IARC), Washington, DC, USA, 14–16 November 2019. [Google Scholar]
- Sapir, S.; Spielman, J.; Ramig, L.O.; Hinds, S.L.; Countryman, S.; Fox, C.; Story, B. Effects of Intensive Voice Treatment (the Lee Silverman Voice Treatment [LSVT]) on Ataxic Dysarthria. Am. J. Speech Lang. Pathol. 2003, 12, 387–399. [Google Scholar] [CrossRef]
- Pilon, M.A.; Mcintosh, K.W.; Thaut, M.H. Auditory vs. Visual Speech Timing Cues as External Rate Control to Enhance Verbal Intelligibility in Mixed Spastic Ataxic Dysarthric Speakers: A Pilot Study. Brain Inj. 1998, 12, 793–803. [Google Scholar] [CrossRef]
- Vogel, A.P.; Stoll, L.H.; Oettinger, A.; Rommel, N.; Kraus, E.-M.; Timmann, D.; Scott, D.; Atay, C.; Storey, E.; Schöls, L.; et al. Speech Treatment Improves Dysarthria in Multisystemic Ataxia: A Rater-Blinded, Controlled Pilot-Study in ARSACS. J. Neurol. 2019, 266, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.; Theodoros, D.; Davidson, B. Group Therapy for Maintenance of Speech in Parkinson’s Disease Following LSVT LOUD: A Pilot Study. Speech Lang. Hear. 2018, 21, 105–116. [Google Scholar] [CrossRef]
- Balzan, P.; Tattersall, C.; Palmer, R. Non-Invasive Brain Stimulation for Treating Neurogenic Dysarthria: A Systematic Review. Ann. Phys. Rehabil. Med. 2022, 65, 101580. [Google Scholar] [CrossRef]
- Mitchell, C.; Bowen, A.; Tyson, S.; Butterfint, Z.; Conroy, P. Interventions for Dysarthria Due to Stroke and Other Adult-Acquired, Non-Progressive Brain Injury. Cochrane Database Syst. Rev. 2017, 1. [Google Scholar] [CrossRef]
- Thomas-Black, G.; Dumitrascu, A.; Garcia-Moreno, H.; Vallortigara, J.; Greenfield, J.; Hunt, B.; Walther, S.; Wells, M.; Lynch, D.R.; Montgomery, H. The Attitude of Patients with Progressive Ataxias towards Clinical Trials. Orphanet J. Rare Dis. 2022, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ertelt, D.; Small, S.; Solodkin, A.; Dettmers, C.; McNamara, A.; Binkofski, F.; Buccino, G. Action Observation Has a Positive Impact on Rehabilitation of Motor Deficits after Stroke. Neuroimage 2007, 36, T164–T173. [Google Scholar] [CrossRef]
- Lee, J.; Fowler, R.; Rodney, D.; Cherney, L.; Small, S.L. IMITATE: An Intensive Computer-Based Treatment for Aphasia Based on Action Observation and Imitation. Aphasiology 2010, 24, 449–465. [Google Scholar] [CrossRef]
- Zettin, M.; Leopizzi, M.; Galetto, V. How Does Language Change after an Intensive Treatment on Imitation? Neuropsychol. Rehabil. 2018, 29, 1332–1358. [Google Scholar] [CrossRef]
- Buccino, G.; Lui, F.; Canessa, N.; Patteri, I.; Lagravinese, G.; Benuzzi, F.; Porro, C.A.; Rizzolatti, G. Neural Circuits Involved in the Recognition of Actions Performed by Nonconspecifics: An FMRI Study. J. Cogn. Neurosci. 2004, 16, 114–126. [Google Scholar] [CrossRef]
- Pidoux, L.; Leblanc, P.; Levenes, C.; Leblois, A. A Subcortical Circuit Linking the Cerebellum to the Basal Ganglia Engaged in Vocal Learning. Elife 2018, 7, e32167. [Google Scholar] [CrossRef]
- Mengotti, P.; Corradi-Dell’Acqua, C.; Negri, G.A.L.; Ukmar, M.; Pesavento, V.; Rumiati, R.I. Selective Imitation Impairments Differentially Interact with Language Processing. Brain 2013, 136, 2602–2618. [Google Scholar] [CrossRef] [PubMed]
- Varini, M.; Zettin, M.; Gai, M.; Dimitri, D. Combination of Transcranial Direct Current Stimulation and Action Imitation Training in Post-Stroke Aphasia Rehabilitation: Implications from a Single Case Study. Med. Res. Arch. 2024, 12, 2. [Google Scholar] [CrossRef]
- Nordio, S.; Bernitsas, E.; Meneghello, F.; Palmer, K.; Stabile, M.R.; Dipietro, L.; Di Stadio, A. Expiratory and Phonation Times as Measures of Disease Severity in Patients with Multiple Sclerosis. A Case-Control Study. Mult. Scler. Relat. Disord. 2018, 23, 27–32. [Google Scholar] [CrossRef] [PubMed]
- De Biagi, F.; Frigo, A.C.; Turolla, A.; Nordio, S.; Berta, G.; Meneghello, F. Italian Validation of a Test to Assess Dysarthria in Neurologic Patients: A Cross-Sectional Pilot Study. Otolaryngology 2018, 8, 343. [Google Scholar] [CrossRef]
- Hegde, M.N. Elemental Treatment for All Disorders of Communication. J. Indian. Speech Lang. Hear. Assoc. 2024, 38, 1–12. [Google Scholar] [CrossRef]
- Sudhir, P. Applications of Cognitive Behavioral Principles in Neuropsychological Rehabilitation. In Neuropsychological Rehabilitation: Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2013; pp. 79–101. [Google Scholar]
- Dodds, T.A.; Martin, D.P.; Stolov, W.C.; Deyo, R.A. A Validation of the Functional Independence Measurement and Its Performance among Rehabilitation Inpatients. Arch. Phys. Med. Rehabil. 1993, 74, 531–536. [Google Scholar] [CrossRef]
- Galeoto, G.; Lauta, A.; Palumbo, A.; Castiglia, S.; Mollica, R.; Santilli, V.; Sacchetti, M. The Barthel Index: Italian Translation, Adaptation and Validation. Int. J. Neurol. Neurother. 2018, 2, 1–7. [Google Scholar] [CrossRef]
- Novelli, G.; Papagno, C.; Capitani, E.; Laiacona, M. Tre Test Clinici Di Ricerca e Produzione Lessicale. Taratura Su Sogetti Normali. Arch. Psicol. Neurol. Psichiatr. 1986, 47, 477–506. [Google Scholar]
- Carlesimo, G.A.; Caltagirone, C.; Gainotti, G.; Facida, L.; Gallassi, R.; Lorusso, S.; Marfia, G.; Marra, C.; Nocentini, U.; Parnett, L. The Mental Deterioration Battery: Normative Data, Diagnostic Reliability and Qualitative Analyses of Cognitive Impairment. The Group for the Standardization of the Mental Deterioration Battery. Eur. Neurol. 1996, 36, 378–384. [Google Scholar] [CrossRef]
- Monaco, M.; Costa, A.; Caltagirone, C.; Carlesimo, G.A. Forward and Backward Span for Verbal and Visuo-Spatial Data: Standardization and Normative Data from an Italian Adult Population. Neurol. Sci. 2013, 34, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, M.; Raimo, S.; Tufano, D.; Basile, G.; Grossi, D.; Santangelo, F.; Trojano, L.; Santangelo, G. The Addenbrooke’s Cognitive Examination Revised (ACE-R) and Its Sub-Scores: Normative Values in an Italian Population Sample. Neurol. Sci. 2016, 37, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, K.M.; Wauters, L.; Berstis, K.; Grasso, S.M.; Henry, M.L. Modified Script Training for Nonfluent/Agrammatic Primary Progressive Aphasia with Significant Hearing Loss: A Single-Case Experimental Design. Neuropsychol. Rehabil. 2022, 32, 306–335. [Google Scholar] [CrossRef]
- Young, L.C. On Randomness in Ordered Sequences. Ann. Math. Stat. 1941, 12, 293–300. [Google Scholar] [CrossRef]
- Mendenhall, W.; Wackerly, D.D.; Scheaffer, R.L. Nonparametric Statistics. Math. Stat. Appl. 1989, 1, 674–679. [Google Scholar]
- Crawford, J.R.; Garthwaite, P.H. Investigation of the Single Case in Neuropsychology: Confidence Limits on the Abnormality of Test Scores and Test Score Differences. Neuropsychologia 2002, 40, 1196–1208. [Google Scholar] [CrossRef]
- The Jamovi. The Jamovi Project (Version 2.5) [Computer Software]. 2024. Available online: https://www.jamovi.org (accessed on 31 December 2024).
- RStudio Team. RStudio: Integrated Development for R. RStudio; PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 31 December 2024).
- Sidtis, J.J.; Ahn, J.S.; Gomez, C.; Sidtis, D. Speech Characteristics Associated with Three Genotypes of Ataxia. J. Commun. Disord. 2011, 44, 478–492. [Google Scholar] [CrossRef]
- Chien, H.F.; Zonta, M.B.; Chen, J.; Diaferia, G.; Viana, C.F.; Teive, H.A.G.; Pedroso, J.L.; Barsottini, O.G.P. Rehabilitation in Patients with Cerebellar Ataxias. Arq. Neuropsiquiatr. 2022, 80, 306–315. [Google Scholar] [CrossRef]
- Chang, A.; Karnell, M.P. Perceived Phonatory Effort and Phonation Threshold Pressure across a Prolonged Voice Loading Task: A Study of Vocal Fatigue. J. Voice 2004, 18, 454–466. [Google Scholar] [CrossRef]
- Casper, M.A.; Raphael, L.J.; Harris, K.S.; Geibel, J.M. Speech Prosody in Cerebellar Ataxia. Int. J. Lang. Commun. Disord. 2007, 42, 407–426. [Google Scholar] [CrossRef]
- Schmahmann, J.D. Disorders of the Cerebellum: Ataxia, Dysmetria of Thought, and the Cerebellar Cognitive Affective Syndrome. J. Neuropsychiatry Clin. Neurosci. 2004, 16, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Ullman, M.T. Contributions of Memory Circuits to Language: The Declarative/Procedural Model. Cognition 2004, 92, 231–270. [Google Scholar] [CrossRef] [PubMed]
Patient | Sex | Age | Education | Years of Disease | Diagnosis | Lesion |
---|---|---|---|---|---|---|
Experimental group | ||||||
LL | M | 52 | 13 | 21 | GHS | Cerebellar hypoplasia with inferior vermis involvement. |
MD | M | 43 | 8 | 21 | SCA | Cerebellar atrophy. |
BoA | M | 50 | 13 | 0 | CS—inflammatory origin | Altered signals in Mb tegmentum and RH cerebellar hemisphere. |
Control group | ||||||
LP | M | 54 | 8 | 5 | Ataxia unspecified | Enlargement of st-Vs, IV ventricle, and sulci. Altered signals in Mb-P-Mo, IV ventricle, and LH cerebellum. Focal gliosis in bl-FP WH. |
CM | F | 29 | 13 | 4 | SCA2 | Cerebellar atrophy. |
MG | F | 51 | 8 | 8 | SCA2 | Cerebellar atrophy. |
SA | M | 68 | 5 | 19 | SCA | Cerebellar atrophy. |
BA | F | 67 | 13 | 32 | FRDA | Enlargement of cerebellar sulci. VH. |
MS | F | 73 | 13 | 3 | SCA2 | Very small post-ischemic lesions in RH SS and LH FWM. |
MA | F | 40 | 13 | 24 | SCA | Cerebellar atrophy. |
p-value | 0.038 * | 0.517 | 0.794 | 1.00 |
Patient | FIM | Barthel Index | Phonemic Fluency | Semantic Fluency | Verbal Short-Term Memory (Digit Span Forward) | Verbal Working Memory (Digit Span Backward) |
---|---|---|---|---|---|---|
Experimental group | ||||||
LL | 79 | 60 | 28.7 | 30.7 | 5.83 | 3.79 |
MD | 76 | 70 | 37.8 | 37.6 | 4.89 | 3.96 |
BoA | 87 | 65 | 20.5 | 40.5 | 4.75 | 3.71 |
Control group | ||||||
LP | 82 | 60 | 33.9 | 46.9 | 4.96 | 4.02 |
CM | 86 | 60 | 24.4 | 35.4 | 4.44 | 3.42 |
MG | 86 | 60 | Na | Na | Na | Na |
SA | 82 | 50 | 21.3 | 27.6 | 4.39 | 3.53 |
BA | 47 | 20 | Na | 35.4 | 6.02 | 1.97 |
MS | 86 | 55 | Na | Na | Na | Na |
MA | 85 | 80 | Na | Na | Na | Na |
p-value | 0.817 | 0.198 | 1.00 | 0.858 | 0.857 | 0.400 |
Treatments | |||
---|---|---|---|
Pre | Post | Δ Post–Pre | |
Control group | |||
PVD total (max = 140) | 112.5 ± 11.11 | 114.67 ± 12.58 | +2.17 |
Trained (max = 40) | 7.88 ± 3.69 | 7.92 ± 3.84 | +0.04 |
Near Untrained (max = 36) | 10.58 ± 4.62 | 11.67 ± 5.03 | +1.09 |
Far Untrained (max = 64) | 59.83 ± 4.36 | 59.67 ± 4.84 | −0.16 |
Experimental group | |||
LL | |||
PVD total (max = 140) | 107 | 120 | +13 * |
Trained (max = 40) | 33 | 39 | +6 * |
Near Untrained (max = 36) | 22 | 29 | +7 |
Far Untrained (max = 64) | 52 | 52 | 0 |
MD | |||
PVD total (max = 140) | 129 | 130 | +1 |
Trained (max = 40) | 34 | 38 | +4 * |
Near Untrained (max = 36) | 31 | 28 | −3 |
Far Untrained (max = 64) | 64 | 64 | 0 |
BoA | |||
PVD total (max = 140) | 130 | 137 | +7 |
Trained (max = 40) | 35 | 38 | +3 * |
Near Untrained (max = 36) | 32 | 36 | +4 |
Far Untrained (max = 64) | 63 | 63 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilioli, A.; Nordio, S.; Ezzes, Z.; Volpato, C.; Meneghello, F.; Zettin, M.; Semenza, C.; D’Imperio, D. An Imitation-Based Treatment for Ataxic Dysarthria: A Retrospective Multiple Single-Case Study. Biomedicines 2025, 13, 1666. https://doi.org/10.3390/biomedicines13071666
Gilioli A, Nordio S, Ezzes Z, Volpato C, Meneghello F, Zettin M, Semenza C, D’Imperio D. An Imitation-Based Treatment for Ataxic Dysarthria: A Retrospective Multiple Single-Case Study. Biomedicines. 2025; 13(7):1666. https://doi.org/10.3390/biomedicines13071666
Chicago/Turabian StyleGilioli, Anna, Sara Nordio, Zoe Ezzes, Chiara Volpato, Francesca Meneghello, Marina Zettin, Carlo Semenza, and Daniela D’Imperio. 2025. "An Imitation-Based Treatment for Ataxic Dysarthria: A Retrospective Multiple Single-Case Study" Biomedicines 13, no. 7: 1666. https://doi.org/10.3390/biomedicines13071666
APA StyleGilioli, A., Nordio, S., Ezzes, Z., Volpato, C., Meneghello, F., Zettin, M., Semenza, C., & D’Imperio, D. (2025). An Imitation-Based Treatment for Ataxic Dysarthria: A Retrospective Multiple Single-Case Study. Biomedicines, 13(7), 1666. https://doi.org/10.3390/biomedicines13071666