Proteomic Analysis of Serum in Cardiac Transthyretin Amyloidosis: Diagnostic and Prognostic Implications for Biomarker Discovery
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Blood Sampling
2.3. Principle
2.4. Depletion (Albumin/IgG Removal)
2.5. Sample Preparation
2.6. LC-MS/MS Analysis
2.7. Data Analysis
- -
- the ATTR-CA group and the control group;
- -
- ATTR-CA patients before and after receiving at least six months of tafamidis treatment.
2.8. Principal Component Analysis (PCA)
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garcia-Pavia, P.; Rapezzi, C.; Adler, Y.; Arad, M.; Basso, C.; Brucato, A.; Burazor, I.; Caforio, A.L.P.; Damy, T.; Eriksson, U.; et al. Diagnosis and treatment of cardiac amyloidosis: A position statement of the ESC Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2021, 42, 1554–1568. [Google Scholar] [CrossRef] [PubMed]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef] [PubMed]
- Gillmore, J.D.; Maurer, M.S.; Falk, R.H.; Merlini, G.; Damy, T.; Dispenzieri, A.; Wechalekar, A.D.; Berk, J.L.; Quarta, C.C.; Grogan, M.; et al. Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation 2016, 133, 2404–2412. [Google Scholar] [CrossRef]
- Gawor-Prokopczyk, M.; Lipowska, M.; Truszkowska, G.; Ponińska, J.; Franaszczyk, M.; Ziarkiewicz, M.; Legatowicz-Koprowska, M.; Rajtar-Salwa, R.; Chmielewski, P.; Bilińska, Z.T.; et al. Rare transthyretin gene variants (p.Ala45Thr, p.Val91Ala, p.Phe53Cys, p.Ala101Val, p.Glu109Lys, and p.Phe53Leu): Diagnostic pitfalls and clinical characteristics of Polish patients with transthyretin cardiac amyloidosis. Pol. Arch. Intern. Med. 2024, 134, 16877. [Google Scholar] [CrossRef]
- Rapezzi, C.; Lorenzini, M.; Longhi, S.; Milandri, A.; Gagliardi, C.; Bartolomei, I.; Salvi, F.; Maurer, M.S. Cardiac amyloidosis: The great pretender. Heart Fail. Rev. 2015, 20, 117–124. [Google Scholar] [CrossRef]
- Grzybowski, J.; Podolec, P.; Holcman, K.; Gawor-Prokopczyk, M.; Jankowska, E.; Kostkiewicz, M.; Dąbrowska-Kugacka, A.; Lipowska, M.; Mazurkiewicz, Ł.; Rajtar-Salwa, R.; et al. Diagnosis and treatment of transthyretin amyloidosis cardiomyopathy: A position statement of the Polish Cardiac Society. Kardiol. Pol. 2023, 81, 1167–1185. [Google Scholar] [CrossRef]
- Lambert, J.P.; Ivosev, G.; Couzens, A.L.; Larsen, B.; Taipale, M.; Lin, Z.Y.; Zhong, Q.; Lindquist, S.; Vidal, M.; Aebersold, R.; et al. Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition. Nat. Methods 2013, 10, 1239–1245. [Google Scholar] [CrossRef]
- Torres Iglesias, G.; López-Molina, M.; Botella, L.; Laso-García, F.; Chamorro, B.; Fernández-Fournier, M.; Puertas, I.; Bravo, S.B.; Alonso-López, E.; Díez-Tejedor, E.; et al. Differential Protein Expression in Extracellular Vesicles Defines Treatment Responders and Non-Responders in Multiple Sclerosis. Int. J. Mol. Sci. 2024, 25, 10761. [Google Scholar] [CrossRef] [PubMed]
- Cheung, J.K.; Bian, J.; Sze, Y.H.; So, Y.K.; Chow, W.Y.; Woo, C.; Wong, M.T.; Li, K.K.; Lam, T.C. Human tear proteome dataset in response to daily wear of water gradient contact lens using SWATH-MS approach. Data Brief. 2021, 36, 107120. [Google Scholar] [CrossRef]
- Ticau, S.; Sridharan, G.V.; Tsour, S.; Cantley, W.L.; Chan, A.; Gilbert, J.A.; Erbe, D.; Aldinc, E.; Reilly, M.M.; Adams, D.; et al. Neurofilament Light Chain as a Biomarker of Hereditary Transthyretin-Mediated Amyloidosis. Neurology 2021, 96, e412–e422. [Google Scholar] [CrossRef]
- Carroll, A.S.; Razvi, Y.; O’Donnell, L.; Veleva, E.; Heslegrave, A.; Zetterberg, H.; Vucic, S.; Kiernan, M.C.; Rossor, A.M.; Gillmore, J.D.; et al. Serum neurofilament light chain in hereditary transthyretin amyloidosis: Validation in real-life practice. Amyloid 2024, 31, 95–104. [Google Scholar] [CrossRef]
- Chan, G.G.; Koch, C.M.; Connors, L.H. Serum Proteomic Variability Associated with Clinical Phenotype in Familial Transthyretin Amyloidosis (ATTRm). J. Proteome Res. 2017, 16, 4104–4112. [Google Scholar] [CrossRef]
- Chan, G.G.; Koch, C.M.; Connors, L.H. Blood Proteomic Profiling in Inherited (ATTRm) and Acquired (ATTRwt) Forms of Transthyretin-Associated Cardiac Amyloidosis. J. Proteome Res. 2017, 16, 1659–1668. [Google Scholar] [CrossRef] [PubMed]
- Akita, K.; Maurer, M.S.; Tower-Rader, A.; Fifer, M.A.; Shimada, Y.J. Comprehensive Proteomics Profiling Identifies Circulating Biomarkers to Distinguish Hypertrophic Cardiomyopathy from Other Cardiomyopathies with Left Ventricular Hypertrophy. Circ. Heart Fail. 2024, 18, e012593. [Google Scholar] [CrossRef]
- Sliwa, K.; Petrie, M.C.; Hilfiker-Kleiner, D.; Mebazaa, A.; Jackson, A.; Johnson, M.R.; van der Meer, P.; Mbakwem, A.; Bauersachs, J. Long-term prognosis, subsequent pregnancy, contraception and overall management of peripartum cardiomyopathy: Practical guidance paper from the Heart Failure Association of the European Society of Cardiology Study Group on Peripartum Cardiomyopathy. Eur. J. Heart Fail. 2018, 20, 951–962. [Google Scholar] [CrossRef]
- Gillard, B.K.; Rosales, C.; Xu, B.; Gotto, A.M.; Pownall, H.J. Rethinking reverse cholesterol transport and dysfunctional high-density lipoproteins. J. Clin. Lipidol. 2018, 12, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Sorokin, A.V.; Hong, C.G.; Aponte, A.M.; Florida, E.M.; Tang, J.; Patel, N.; Baranova, I.N.; Li, H.; Parel, P.M.; Chen, V.; et al. Association of oxidized ApoB and oxidized ApoA-I with high-risk coronary plaque features in cardiovascular disease. JCI Insight 2023, 8, e172893. [Google Scholar] [CrossRef] [PubMed]
- Raghu, P.; Sivakumar, B. Interactions amongst plasma retinol-binding protein, transthyretin and their ligands: Implications in vitamin A homeostasis and transthyretin amyloidosis. Biochim. Biophys. Acta 2004, 1703, 1–9. [Google Scholar] [CrossRef]
- Wiesinger, A.; Boink, G.J.J.; Christoffels, V.M.; Devalla, H.D. Retinoic acid signaling in heart development: Application in the differentiation of cardiovascular lineages from human pluripotent stem cells. Stem Cell Rep. 2021, 16, 2589–2606. [Google Scholar] [CrossRef]
- Burkard, T.R.; Planyavsky, M.; Kaupe, I.; Breitwieser, F.P.; Bürckstümmer, T.; Bennett, K.L.; Superti-Furga, G.; Colinge, J. Initial characterization of the human central proteome. BMC Syst. Biol. 2011, 5, 17. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, S.; Zeng, C.; Su, Q.; Zhou, J.; Li, P.; Dai, M.; Wang, D.; Long, F. Associations of TF Gene Polymorphisms with the Risk of Ischemic Stroke. J. Mol. Neurosci. 2018, 65, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.W.; Chou, S.H.; Tung, Y.C.; Hsiao, F.C.; Ho, C.T.; Chan, Y.H.; Wu, V.C.; Chou, A.H.; Hsu, M.E.; Lin, P.J.; et al. Expression and role of lumican in acute aortic dissection: A human and mouse study. PLoS ONE 2021, 16, e0255238. [Google Scholar] [CrossRef]
- Liu, T.; Qian, W.J.; Gritsenko, M.A.; Camp, D.G.; Monroe, M.E.; Moore, R.J.; Smith, R.D. Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J. Proteome Res. 2005, 4, 2070–2080. [Google Scholar] [CrossRef] [PubMed]
- Chistiakov, D.A.; Melnichenko, A.A.; Orekhov, A.N.; Bobryshev, Y.V. Paraoxonase and atherosclerosis-related cardiovascular diseases. Biochimie 2017, 132, 19–27. [Google Scholar] [CrossRef]
- Ferrarotti, I.; Wencker, M.; Chorostowska-Wynimko, J. Rare variants in alpha 1 antitrypsin deficiency: A systematic literature review. Orphanet J. Rare Dis. 2024, 19, 82. [Google Scholar] [CrossRef]
- Matthijs, G.; Devriendt, K.; Cassiman, J.J.; Van den Berghe, H.; Marynen, P. Structure of the human alpha-2 macroglobulin gene and its promotor. Biochem. Biophys. Res. Commun. 1992, 184, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Sapey, E.; Crowley, L.E.; Edgar, R.G.; Griffiths, D.; Samanta, S.; Crisford, H.; Bolton, C.E.; Hurst, J.R.; Stockley, R.A. Cardiovascular disease in Alpha 1 antitrypsin deficiency: An observational study assessing the role of neutrophil proteinase activity and the suitability of validated screening tools. Orphanet J. Rare Dis. 2024, 19, 130. [Google Scholar] [CrossRef]
- Steffen, B.T.; Tang, W.; Lutsey, P.L.; Demmer, R.T.; Selvin, E.; Matsushita, K.; Morrison, A.C.; Guan, W.; Rooney, M.R.; Norby, F.L.; et al. Proteomic analysis of diabetes genetic risk scores identifies complement C2 and neuropilin-2 as predictors of type 2 diabetes: The Atherosclerosis Risk in Communities (ARIC) Study. Diabetologia 2023, 66, 105–115. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Y.; Peng, W.; Xu, Z. Serum VCAM-1 and ICAM-1 measurement assists for MACE risk estimation in ST-segment elevation myocardial infarction patients. J. Clin. Lab. Anal. 2022, 36, e24685. [Google Scholar] [CrossRef]
- Lazar-Poloczek, E.; Romuk, E.; Rozentryt, P.; Duda, S.; Gąsior, M.; Wojciechowska, C. Ceruloplasmin as Redox Marker Related to Heart Failure Severity. Int. J. Mol. Sci. 2021, 22, 10074. [Google Scholar] [CrossRef]
- Torres-Arancivia, C.M.; Chang, D.; Hackett, W.E.; Zaia, J.; Connors, L.H. Glycosylation of Serum Clusterin in Wild-Type Transthyretin-Associated (ATTRwt) Amyloidosis: A Study of Disease-Associated Compositional Features Using Mass Spectrometry Analyses. Biochemistry 2020, 59, 4367–4378. [Google Scholar] [CrossRef] [PubMed]
- Torres-Arancivia, C.; Chang, D.; Zaia, J.; Connors, L.H. Structural studies of serum clusterin in ATTRwt amyloidosis. Amyloid 2019, 26, 51–52. [Google Scholar] [CrossRef] [PubMed]
- Torres-Arancivia, C.; Connors, L.H. Effect of diflunisal on clusterin levels in ATTRwt amyloidosis. Amyloid 2019, 26, 49–50. [Google Scholar] [CrossRef] [PubMed]
Protein Symbol | Protein Name | t-Value | p-Value | Fold Change |
---|---|---|---|---|
Reduced levels | ||||
A0A8V8TND7 | Gelsolin | −4.24 | <0.001 | 0.320 |
A7L8C6 | Alpha-1-antitrypsin | −3.88 | <0.001 | 0.070 |
G3V595 | Serpin family A member 3 (SERPINA 3) | −2.67 | 0.01 | 0.527 |
Q53FL7 | Vascular cell adhesion molecule 1 isoform a variant | −3.54 | 0.001 | 0.244 |
Q1L857 | Ceruloplasmin | −3.51 | 0.001 | 0.250 |
A0A384NKS6 | Clusterin | −3.25 | 0.003 | 0.080 |
Elevated levels | ||||
P00734 | Prothrombin | 3.03 | 0.006 | 1.770 |
J3QKT0 | Phosphatidylcholine-sterol acyltransferase (LCAT) (138 aa) | 3.43 | 0.002 | 2.113 |
P04180 | Phosphatidylcholine-sterol acyltransferase (LCAT) (440 aa) | 3.85 | <0.001 | 2.343 |
A6XGL1 | Transthyretin (TTR) | 4.05 | <0.001 | 2.087 |
V9GYM3 | Apolipoprotein A-II | 3.63 | 0.001 | 1.787 |
A0A024R3E3 | Apolipoprotein A-I | 2.94 | 0.006 | 1.432 |
P05543 | Thyroxine-binding globulin (SERPINA 7) | 3.31 | 0.002 | 1.563 |
Protein Symbol | Protein Name | t-Value | p-Value | Fold Change |
---|---|---|---|---|
Reduced levels | ||||
P01024 | Complement C3 | −2.56 | 0.01 | 0.513 |
P09172 | Dopamine beta-hydroxylase | −2.55 | 0.001 | 0.219 |
C9JB55 | Transferrin | −2.51 | 0.01 | 0.076 |
P08571 | Monocyte differentiation antigen CD14 | −2.90 | 0.007 | 0.213 |
P01023 | Alpha-2-macroglobulin (1474 aa) | −2.49 | 0.01 | 0.212 |
P00734 | Prothrombin | −2.54 | 0.01 | 0.664 |
Elevated levels | ||||
A0A024R3E3 | Apolipoprotein A-I | 2.47 | 0.01 | 1.949 |
F5H1E8 | Alpha-2-macroglobulin (90 aa) | 2.32 | 0.02 | 2.277 |
Q1L857 | Ceruloplasmin | 2.73 | 0.01 | 7.166 |
E7ERP7 | Apolipoprotein E | 2.59 | 0.02 | 5.561 |
B4DI57 | cDNA FLJ54111, highly similar to Serotransferrin | 2.99 | 0.008 | 6.426 |
A0A0G2JRN3 | Serpin family A member 1 | 2.50 | 0.02 | 12.463 |
P0DOX7 | Immunoglobulin kappa light chain | 2.66 | 0.01 | 1.887 |
Protein Symbol | Protein Name | t-Value | p-Value | Fold Change |
---|---|---|---|---|
Reduced levels | ||||
G3V595 | Serpin family A member 3 (SERPINA 3) | −6.35 | <0.001 | 0.057 |
A6XGL1 | Transthyretin | −8.38 | <0.001 | 0.004 |
A0A024R3E3 | Apolipoprotein A-I | −3.31 | 0.002 | 0.305 |
B4DI57 | cDNA FLJ54111, highly similar to Serotransferrin | 2.64 | 0.01 | 1.729 |
Q5VY30 | Retinol-binding protein | −3.60 | <0.001 | 0.296 |
Elevated levels | ||||
A8K2N0 | cDNA FLJ77835, highly similar to Homo sapiens complement component 1, s subcomponent (C1S), transcript variant 2, mRNA | 2.70 | 0.01 | 12.281 |
Q13784 | Apolipoprotein A-IV | 2.64 | 0.01 | 2.375 |
B2R8I2 | Histidine-rich glycoprotein | 2.63 | 0.02 | 14.880 |
P01023 | Alpha-2-macroglobulin | 2.17 | 0.04 | 2.044 |
E9KL23 | Epididymis secretory sperm binding protein Li 44a (SERPINA 1) | 2.21 | 0.04 | 14.433 |
B1PWC6 | Paraoxonase 1 | 2.38 | 0.03 | 8.949 |
A0A1U9X8X9 | Complement C2 | 2.11 | 0.05 | 5.886 |
V9HW68 | Epididymis luminal protein 214 | 2.03 | 0.06 | 1.694 |
Q53FV4 | Lumican | 2.34 | 0.03 | 2.152 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waś, J.; Gawor-Prokopczyk, M.; Sioma, A.; Szewczyk, R.; Pel, A.; Krzysztoń-Russjan, J.; Niedolistek, M.; Sokołowska, D.; Grzybowski, J.; Mazurkiewicz, Ł. Proteomic Analysis of Serum in Cardiac Transthyretin Amyloidosis: Diagnostic and Prognostic Implications for Biomarker Discovery. Biomedicines 2025, 13, 1647. https://doi.org/10.3390/biomedicines13071647
Waś J, Gawor-Prokopczyk M, Sioma A, Szewczyk R, Pel A, Krzysztoń-Russjan J, Niedolistek M, Sokołowska D, Grzybowski J, Mazurkiewicz Ł. Proteomic Analysis of Serum in Cardiac Transthyretin Amyloidosis: Diagnostic and Prognostic Implications for Biomarker Discovery. Biomedicines. 2025; 13(7):1647. https://doi.org/10.3390/biomedicines13071647
Chicago/Turabian StyleWaś, Joanna, Monika Gawor-Prokopczyk, Agnieszka Sioma, Rafał Szewczyk, Aleksandra Pel, Jolanta Krzysztoń-Russjan, Magdalena Niedolistek, Dorota Sokołowska, Jacek Grzybowski, and Łukasz Mazurkiewicz. 2025. "Proteomic Analysis of Serum in Cardiac Transthyretin Amyloidosis: Diagnostic and Prognostic Implications for Biomarker Discovery" Biomedicines 13, no. 7: 1647. https://doi.org/10.3390/biomedicines13071647
APA StyleWaś, J., Gawor-Prokopczyk, M., Sioma, A., Szewczyk, R., Pel, A., Krzysztoń-Russjan, J., Niedolistek, M., Sokołowska, D., Grzybowski, J., & Mazurkiewicz, Ł. (2025). Proteomic Analysis of Serum in Cardiac Transthyretin Amyloidosis: Diagnostic and Prognostic Implications for Biomarker Discovery. Biomedicines, 13(7), 1647. https://doi.org/10.3390/biomedicines13071647