Targeting Glypican-3 in Liver Cancer: Groundbreaking Preclinical and Clinical Insights
Abstract
1. Introduction
2. The Role of Glypican-3 in Hepatocellular Carcinoma
3. Glypican-3-Targeted Imaging
3.1. Preclinical Studies
3.2. First Clinical Applications
4. Glypican-3-Targeted Therapy
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singal, A.G.; Lampertico, P.; Nahon, P. Epidemiology and Surveillance for Hepatocellular Carcinoma: New Trends. J. Hepatol. 2020, 72, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Quaglia, A. Hepatocellular Carcinoma: A Review of Diagnostic Challenges for the Pathologist. J. Hepatocell. Carcinoma 2018, 5, 99–108. [Google Scholar] [CrossRef]
- Candita, G.; Rossi, S.; Cwiklinska, K.; Fanni, S.C.; Cioni, D.; Lencioni, R.; Neri, E. Imaging Diagnosis of Hepatocellular Carcinoma: A State-of-the-Art Review. Diagnostics 2023, 13, 625. [Google Scholar] [CrossRef]
- Filmus, J.; Selleck, S.B. Glypicans: Proteoglycans with a Surprise. J. Clin. Investig. 2001, 108, 497–501. [Google Scholar] [CrossRef] [PubMed]
- De Cat, B.; David, G. Developmental Roles of the Glypicans. Semin. Cell Dev. Biol. 2001, 12, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Liu, X.; Lei, Y.; Wang, G.; Liu, M. Glypican-3: A Novel and Promising Target for the Treatment of Hepatocellular Carcinoma. Front. Oncol. 2022, 12, 824208. [Google Scholar] [CrossRef] [PubMed]
- Israel, O.; Pellet, O.; Biassoni, L.; De Palma, D.; Estrada-Lobato, E.; Gnanasegaran, G.; Kuwert, T.; La Fougère, C.; Mariani, G.; Massalha, S.; et al. Two Decades of SPECT/CT—The Coming of Age of a Technology: An Updated Review of Literature Evidence. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1990–2012. [Google Scholar] [CrossRef]
- Filippi, L.; Schillaci, O. SPECT/CT with a Hybrid Camera: A New Imaging Modality for the Functional Anatomical Mapping of Infections. Expert Rev. Med. Devices 2006, 3, 699–703. [Google Scholar] [CrossRef]
- Duclos, V.; Iep, A.; Gomez, L.; Goldfarb, L.; Besson, F.L. PET Molecular Imaging: A Holistic Review of Current Practice and Emerging Perspectives for Diagnosis, Therapeutic Evaluation and Prognosis in Clinical Oncology. Int. J. Mol. Sci. 2021, 22, 4159. [Google Scholar] [CrossRef]
- Mossenta, M.; Busato, D.; Dal Bo, M.; Macor, P.; Toffoli, G. Novel Nanotechnology Approaches to Overcome Drug Resistance in the Treatment of Hepatocellular Carcinoma: Glypican 3 as a Useful Target for Innovative Therapies. Int. J. Mol. Sci. 2022, 23, 10038. [Google Scholar] [CrossRef]
- Carrasquillo, J.A.; O’Donoghue, J.A.; Beylergil, V.; Ruan, S.; Pandit-Taskar, N.; Larson, S.M.; Smith-Jones, P.M.; Lyashchenko, S.K.; Ohishi, N.; Ohtomo, T.; et al. I-124 Codrituzumab Imaging and Biodistribution in Patients with Hepatocellular Carcinoma. EJNMMI Res. 2018, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Zhang, H.; Zheng, J.; Liu, Y. Glypican-3: A New Target for Diagnosis and Treatment of Hepatocellular Carcinoma. J. Cancer 2020, 11, 2008–2021. [Google Scholar] [CrossRef]
- Kolluri, A.; Ho, M. The Role of Glypican-3 in Regulating Wnt, YAP, and Hedgehog in Liver Cancer. Front. Oncol. 2019, 9, 708. [Google Scholar] [CrossRef]
- Montalbano, M.; Rastellini, C.; McGuire, J.T.; Prajapati, J.; Shirafkan, A.; Vento, R.; Cicalese, L. Role of Glypican-3 in the Growth, Migration and Invasion of Primary Hepatocytes Isolated from Patients with Hepatocellular Carcinoma. Cell. Oncol. Dordr. Neth. 2018, 41, 169–184. [Google Scholar] [CrossRef]
- Piao, Q.; Bian, X.; Zhao, Q.; Sun, L. Unraveling Glypican-3: From Structural to Pathophysiological Roles and Mechanisms—An Integrative Perspective. Cells 2025, 14, 726. [Google Scholar] [CrossRef]
- Capurro, M.; Wanless, I.R.; Sherman, M.; Deboer, G.; Shi, W.; Miyoshi, E.; Filmus, J. Glypican-3: A Novel Serum and Histochemical Marker for Hepatocellular Carcinoma. Gastroenterology 2003, 125, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.-P.; Ariizumi, S.; Nakano, M.; Yamamoto, M. Positive Glypican-3 Expression in Early Hepatocellular Carcinoma Predicts Recurrence after Hepatectomy. J. Gastroenterol. 2014, 49, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Sawada, Y.; Sakai, M.; Yoshikawa, T.; Ofuji, K.; Nakatsura, T. A Glypican-3-Derived Peptide Vaccine against Hepatocellular Carcinoma. Oncoimmunology 2012, 1, 1448–1450. [Google Scholar] [CrossRef]
- Shi, D.; Shi, Y.; Kaseb, A.O.; Qi, X.; Zhang, Y.; Chi, J.; Lu, Q.; Gao, H.; Jiang, H.; Wang, H.; et al. Chimeric Antigen Receptor-Glypican-3 T-Cell Therapy for Advanced Hepatocellular Carcinoma: Results of Phase I Trials. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 3979–3989. [Google Scholar] [CrossRef]
- Sham, J.G.; Kievit, F.M.; Grierson, J.R.; Miyaoka, R.S.; Yeh, M.M.; Zhang, M.; Yeung, R.S.; Minoshima, S.; Park, J.O. Glypican-3-Targeted 89Zr PET Imaging of Hepatocellular Carcinoma. J. Nucl. Med. 2014, 55, 799–804. [Google Scholar] [CrossRef]
- Yang, X.; Liu, H.; Sun, C.K.; Natarajan, A.; Hu, X.; Wang, X.; Allegretta, M.; Guttmann, R.D.; Gambhir, S.S.; Chua, M.-S.; et al. Imaging of Hepatocellular Carcinoma Patient-Derived Xenografts Using 89Zr-Labeled Anti-Glypican-3 Monoclonal Antibody. Biomaterials 2014, 35, 6964–6971. [Google Scholar] [CrossRef] [PubMed]
- Sham, J.G.; Kievit, F.M.; Grierson, J.R.; Chiarelli, P.A.; Miyaoka, R.S.; Zhang, M.; Yeung, R.S.; Minoshima, S.; Park, J.O. Glypican-3-Targeting F(Ab’)2 for 89Zr PET of Hepatocellular Carcinoma. J. Nucl. Med. 2014, 55, 2032–2037. [Google Scholar] [CrossRef]
- Natarajan, A.; Zhang, H.; Ye, W.; Huttad, L.; Tan, M.; Chua, M.-S.; Gambhir, S.S.; So, S.K. A Humanized Anti-GPC3 Antibody for Immuno-Positron Emission Tomography Imaging of Orthotopic Mouse Model of Patient-Derived Hepatocellular Carcinoma Xenografts. Cancers 2021, 13, 3977. [Google Scholar] [CrossRef] [PubMed]
- Fayn, S.; King, A.P.; Gutsche, N.T.; Duan, Z.; Buffington, J.; Olkowski, C.P.; Fu, Y.; Hong, J.; Sail, D.; Baidoo, K.E.; et al. Site-Specifically Conjugated Single-Domain Antibody Successfully Identifies Glypican-3-Expressing Liver Cancer by Immuno-PET. J. Nucl. Med. 2023, 64, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, L.K.; Lehnert, A.L.; Hamlin, D.K.; Labadie, K.P.; Goodsell, K.E.; Liu, Y.; Li, Y.; Wilbur, D.S.; Miyaoka, R.; Park, J.O. Pilot Study of Humanized Glypican-3-Targeted Zirconium-89 Immuno-Positron Emission Tomography for Hepatocellular Carcinoma. EJNMMI Res. 2024, 14, 74. [Google Scholar] [CrossRef]
- Wang, Z.; Han, Y.-J.; Huang, S.; Wang, M.; Zhou, W.-L.; Li, H.-S.; Wang, Q.-S.; Wu, H.-B. Imaging the Expression of Glypican-3 in Hepatocellular Carcinoma by PET. Amino Acids 2018, 50, 309–320. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Gu, J.; Hu, K.; Huang, S.; Conti, P.S.; Wu, H.; Chen, K. Radiofluorinated GPC3-Binding Peptides for PET Imaging of Hepatocellular Carcinoma. Mol. Imaging Biol. 2020, 22, 134–143. [Google Scholar] [CrossRef]
- Mo, C.; Sun, P.; Liang, H.; Chen, Z.; Wang, M.; Fu, L.; Huang, S.; Tang, G. Synthesis and Preclinical Evaluation of a Novel Probe [18F]AlF-NOTA-IPB-GPC3P for PET Imaging of GPC3 Positive Tumor. Bioorganic Chem. 2024, 147, 107352. [Google Scholar] [CrossRef]
- An, S.; Zhang, D.; Zhang, Y.; Wang, C.; Shi, L.; Wei, W.; Huang, G.; Liu, J. GPC3-Targeted immunoPET Imaging of Hepatocellular Carcinomas. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2682–2692. [Google Scholar] [CrossRef]
- Poot, A.J.; Lapa, C.; Weber, W.A.; Lam, M.G.E.H.; Eiber, M.; Dierks, A.; Bundschuh, R.A.; Braat, A.J.A.T. [68Ga]Ga-RAYZ-8009: A Glypican-3-Targeted Diagnostic Radiopharmaceutical for Hepatocellular Carcinoma Molecular Imaging-A First-in-Human Case Series. J. Nucl. Med. 2024, 65, 1597–1603. [Google Scholar] [CrossRef]
- Ludwig, A.D.; Labadie, K.P.; Seo, Y.D.; Hamlin, D.K.; Nguyen, H.M.; Mahadev, V.M.; Yeung, R.S.; Wilbur, D.S.; Park, J.O. Yttrium-90-Labeled Anti-Glypican 3 Radioimmunotherapy Halts Tumor Growth in an Orthotopic Xenograft Model of Hepatocellular Carcinoma. J. Oncol. 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- Labadie, K.P.; Ludwig, A.D.; Lehnert, A.L.; Hamlin, D.K.; Kenoyer, A.L.; Sullivan, K.M.; Daniel, S.K.; Mihailovic, T.N.; Sham, J.G.; Orozco, J.J.; et al. Glypican-3 Targeted Delivery of 89Zr and 90Y as a Theranostic Radionuclide Platform for Hepatocellular Carcinoma. Sci. Rep. 2021, 11, 3731. [Google Scholar] [CrossRef]
- Bell, M.M.; Gutsche, N.T.; King, A.P.; Baidoo, K.E.; Kelada, O.J.; Choyke, P.L.; Escorcia, F.E. Glypican-3-Targeted Alpha Particle Therapy for Hepatocellular Carcinoma. Molecules 2020, 26, 4. [Google Scholar] [CrossRef] [PubMed]
- Labadie, K.P.; Hamlin, D.K.; Kenoyer, A.; Daniel, S.K.; Utria, A.F.; Ludwig, A.D.; Kenerson, H.L.; Li, L.; Sham, J.G.; Chen, D.L.; et al. Glypican-3-Targeted 227Th α-Therapy Reduces Tumor Burden in an Orthotopic Xenograft Murine Model of Hepatocellular Carcinoma. J. Nucl. Med. 2022, 63, 1033–1038. [Google Scholar] [CrossRef]
- Lin, F.; Clift, R.; Ehara, T.; Yanagida, H.; Horton, S.; Noncovich, A.; Guest, M.; Kim, D.; Salvador, K.; Richardson, S.; et al. Peptide Binder to Glypican-3 as a Theranostic Agent for Hepatocellular Carcinoma. J. Nucl. Med. 2024, 65, 586–592. [Google Scholar] [CrossRef]
- Simpson, H.N.; McGuire, B.M. Screening and Detection of Hepatocellular Carcinoma. Clin. Liver Dis. 2015, 19, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhu, J.; Zhang, C.; Song, Y.; Huang, P. Contrast-Enhanced Ultrasound for the Characterization of Portal Vein Thrombosis vs. Tumor-in-Vein in HCC Patients: A Systematic Review and Meta-Analysis. Eur. Radiol. 2020, 30, 2871–2880. [Google Scholar] [CrossRef] [PubMed]
- Anis, M. Imaging of Hepatocellular Carcinoma: New Approaches to Diagnosis. Clin. Liver Dis. 2015, 19, 325–340. [Google Scholar] [CrossRef]
- Minami, Y.; Sugimoto, K.; Kuroda, H.; Kamiyama, N.; Ogawa, C.; Kudo, M. Differentiating between Hepatocellular Carcinoma and Its Mimickers Using Contrast-Enhanced Ultrasound with Perflubutane Microbubbles. Expert Rev. Med. Devices 2025, 1–10. [Google Scholar] [CrossRef]
- Nyakale, N.; Filippi, L.; Aldous, C.; Sathekge, M. Update on PET Radiopharmaceuticals for Imaging Hepatocellular Carcinoma. Cancers 2023, 15, 1975. [Google Scholar] [CrossRef]
- Sahnoun, S.; Conen, P.; Mottaghy, F.M. The Battle on Time, Money and Precision: Da[18F] Id vs. [68Ga]Liath. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2944–2946. [Google Scholar] [CrossRef] [PubMed]
- Tolmachev, V.; Orlova, A. Affibody Molecules as Targeting Vectors for PET Imaging. Cancers 2020, 12, 651. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H. Recent Advances of Affibody Molecules in Biomedical Applications. Bioorg. Med. Chem. 2024, 113, 117923. [Google Scholar] [CrossRef] [PubMed]
- Bohrmann, L.; Burghardt, T.; Haynes, C.; Saatchi, K.; Häfeli, U.O. Aptamers Used for Molecular Imaging and Theranostics—Recent Developments. Theranostics 2022, 12, 4010–4050. [Google Scholar] [CrossRef]
- Hofman, M.S.; Lawrentschuk, N.; Francis, R.J.; Tang, C.; Vela, I.; Thomas, P.; Rutherford, N.; Martin, J.M.; Frydenberg, M.; Shakher, R.; et al. Prostate-Specific Membrane Antigen PET-CT in Patients with High-Risk Prostate Cancer before Curative-Intent Surgery or Radiotherapy (proPSMA): A Prospective, Randomised, Multicentre Study. Lancet 2020, 395, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on the Management of Hepatocellular Carcinoma. J. Hepatol. 2025, 82, 315–374. [Google Scholar] [CrossRef]
- Tran-Gia, J.; Cicone, F.; Koole, M.; Giammarile, F.; Gear, J.; Deshayes, E.; Gabiña, P.M.; Cremonesi, M.; Wadsley, J.; Bernhardt, P.; et al. Rethinking Dosimetry: A European Perspective. J. Nucl. Med. 2025, 66. [Google Scholar] [CrossRef]
- Burkett, B.J.; Bartlett, D.J.; McGarrah, P.W.; Lewis, A.R.; Johnson, D.R.; Berberoğlu, K.; Pandey, M.K.; Packard, A.T.; Halfdanarson, T.R.; Hruska, C.B.; et al. A Review of Theranostics: Perspectives on Emerging Approaches and Clinical Advancements. Radiol. Imaging Cancer 2023, 5, e220157. [Google Scholar] [CrossRef]
- Sidrak, M.M.A.; De Feo, M.S.; Corica, F.; Gorica, J.; Conte, M.; Filippi, L.; Schillaci, O.; De Vincentis, G.; Frantellizzi, V. Fibroblast Activation Protein Inhibitor (FAPI)-Based Theranostics-Where We Are at and Where We Are Heading: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 3863. [Google Scholar] [CrossRef]
- Filippi, L.; Di Costanzo, G.G.; Tortora, R.; Pelle, G.; Saltarelli, A.; Marino Marsilia, G.; Cianni, R.; Schillaci, O.; Bagni, O. Prognostic Value of Neutrophil-to-Lymphocyte Ratio and Its Correlation with Fluorine-18-Fluorodeoxyglucose Metabolic Parameters in Intrahepatic Cholangiocarcinoma Submitted to 90Y-Radioembolization. Nucl. Med. Commun. 2020, 41, 78–86. [Google Scholar] [CrossRef]
- Cozmin, M.; Lungu, I.I.; Cernei, R.; Marin, G.A.; Duceac, L.D.; Calin, G.; Dabija, M.G.; Gutu, C.; Goroftei, E.R.B.; Stefanache, A.; et al. Harnessing Radionuclides: Unveiling the Promising Role of Radiopharmaceuticals in Cancer Theranostics and Palliative Care. Curr. Radiopharm. 2025, 18, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Nitipir, C.; Niculae, D.; Orlov, C.; Barbu, M.A.; Popescu, B.; Popa, A.M.; Pantea, A.M.S.; Stanciu, A.E.; Galateanu, B.; Ginghina, O.; et al. Update on Radionuclide Therapy in Oncology. Oncol. Lett. 2017, 14, 7011–7015. [Google Scholar] [CrossRef]
- Pavel, M.; Caplin, M.E.; Ruszniewski, P.; Hertelendi, M.; Krenning, E.P.; Strosberg, J.R. NETTER-1 Study Group Relationship Between Best Tumor Shrinkage and Progression-Free Survival and Overall Survival in Patients With Progressive Midgut Neuroendocrine Tumors Treated With [177Lu]Lu-DOTA-TATE: Ad Hoc Analysis of the Phase III NETTER-1 Trial. Cancer Med. 2025, 14, e70744. [Google Scholar] [CrossRef]
- King, A.P.; Lin, F.I.; Escorcia, F.E. Why Bother with Alpha Particles? Eur. J. Nucl. Med. Mol. Imaging 2021, 49, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Guerra Liberal, F.D.C.; O’Sullivan, J.M.; McMahon, S.J.; Prise, K.M. Targeted Alpha Therapy: Current Clinical Applications. Cancer Biother. Radiopharm. 2020, 35, 404–417. [Google Scholar] [CrossRef]
- Hannah, N.; Yu, C.; Nedumannil, L.; Haridy, J.; Kong, G.; Boussioutas, A.; Sood, S. Prostate-Specific Membrane Antigen (PSMA) PET/CT in the Detection and Diagnosis of Hepatocellular Carcinoma (HCC): A Systematic Review and Meta-Analysis. Cancers 2024, 16, 3865. [Google Scholar] [CrossRef] [PubMed]
- Filippi, L.; Braat, A.J.; Schillaci, O. The Era of Prostate-Specific Membrane Antigen (PSMA)-Based Theranostics for Hepatocellular Carcinoma Is Upcoming: Are We Ready for It? Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3977–3978. [Google Scholar] [CrossRef]
- Chen, L.; Cheng, S.; Zhu, D.; Bao, G.; Wang, Z.; Deng, X.; Liu, X.; Ma, X.; Zhao, J.; Zhu, L.; et al. Synthesis and Preclinical Evaluation of Dual-Specific Probe Targeting Glypican-3 and Prostate-Specific Membrane Antigen for Hepatocellular Carcinoma PET Imaging. Mol. Pharm. 2025, 22, 209–220. [Google Scholar] [CrossRef]
- Safri, F.; Nguyen, R.; Zerehpooshnesfchi, S.; George, J.; Qiao, L. Heterogeneity of Hepatocellular Carcinoma: From Mechanisms to Clinical Implications. Cancer Gene Ther. 2024, 31, 1105–1112. [Google Scholar] [CrossRef]
- Chohan, K.L.; Siegler, E.L.; Kenderian, S.S. CAR-T Cell Therapy: The Efficacy and Toxicity Balance. Curr. Hematol. Malig. Rep. 2023, 18, 9–18. [Google Scholar] [CrossRef]
- Feuerecker, B.; Kratochwil, C.; Ahmadzadehfar, H.; Morgenstern, A.; Eiber, M.; Herrmann, K.; Pomykala, K.L. Clinical Translation of Targeted α-Therapy: An Evolution or a Revolution? J. Nucl. Med. 2023, 64, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Marcu, L.; Bezak, E.; Allen, B.J. Global Comparison of Targeted Alpha vs. Targeted Beta Therapy for Cancer: In Vitro, in Vivo and Clinical Trials. Crit. Rev. Oncol. Hematol. 2018, 123, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Bok, H.; Jo, T.; Ahn, S. Analysis of Phase I Clinical Trial Design of Anti-Cancer Agents. Ther. Innov. Regul. Sci. 2025; in press. [Google Scholar] [CrossRef]
- Emmett, L. SPECT Deserves RESPECT: The Potential of SPECT/CT to Optimize Patient Outcomes with Theranostics Therapy. J. Nucl. Med. 2025, 66, 349–350. [Google Scholar] [CrossRef] [PubMed]
- Boschi, A.; Urso, L.; Uccelli, L.; Martini, P.; Filippi, L. 99mTc-Labeled FAPI Compounds for Cancer and Inflammation: From Radiochemistry to the First Clinical Applications. EJNMMI Radiopharm. Chem. 2024, 9, 36. [Google Scholar] [CrossRef]
Author | Year | Country | Radiois. | Tracer | Mol. Vector | Setting | Comment | Validation Status |
---|---|---|---|---|---|---|---|---|
Sham et al. [20] | 2014 | USA | 89Zr | 89Zr-αGPC3 | full antibody | Orthotopic HCC xenografts in Nu/J immunodeficient mice | Proof-of-concept study demonstrating the feasibility of immuno-PET targeting of GPC3 in HCC using 89Zr-labeled antibodies. The use of an orthotopic model and detailed blocking controls adds translational value to the imaging approach. | Preclinical (mouse xenograft) |
Yang et al. [21] | 2014 | USA | 89Zr | 89Zr-DFO-1G12 | full antibody | Subcutaneous and orthotopic xenografts in athymic mice | The use of both cell-line and patient-derived orthotopic models, coupled with quantitative PET biodistribution, robustly demonstrates the probe’s specificity and favorable tumor-to-liver contrast. | Preclinical (mouse xenograft) |
Sham et al. [22] | 2014 | USA | 89Zr | 89Zr-αGPC3-F(ab′)2 | Ab fragments | Athymic Nu/J mice with orthotopic xenografts | Immuno-PET with F(ab′)2 fragments allowed early high-contrast imaging due to faster clearance and lower background uptake. | Preclinical (mouse xenograft) |
Wang et al. [26] | 2018 | China | 18F | 18F-AlF-NODA-MP-6-Aoc-L5 (peptide L5) | synthetic peptide | BALB/c nude mice with subcutaneous HepG2 xenografts | 18F-labeled PET tracer for imaging GPC3 expression in HCC showed favorable tumor-to-muscle contrast and rapid imaging timeline, though high liver background remains a key limitation. | Preclinical (mouse xenograft) |
Li et al. [27] | 2020 | China | 18F | Al-18F-GP2633 | synthetic peptide | HepG2 tumor-bearing nude mice, n = 3 per group | The addition of the GGGRDN linker to the TP scaffold effectively improved hydrophilicity and tumor contrast, demonstrating a clear strategy to overcome hepatic clearance issues. | Preclinical (mouse xenograft) |
Natarajan et al. [23] | 2021 | USA | 89Zr | 89Zr-DFO-H3K3 | humanized antibody | Orthotopic NSG mouse PDX (HCC PDX622) | PET with 89Zr-Df-H3K3 allowed high tumor-to-liver ratio (3.4 ± 0.31) at 168 h p.i., achieving specific targeting with minimal background. | Preclinical (mouse xenograft) |
An et al. [29] | 2022 | China | 68Ga, 18F | 68Ga-NOTA-G2 18F-G2 68Ga-NOTA-ABDG2 (G2 fused to albumin-binding domain) | synthetic peptides | Subcutaneous Hep3B and Huh7 hepatocellular carcinoma xenografts in mice | sdAb-based immuno-PET allowed high-contrast imaging of GPC3-expressing hepatocellular carcinoma, with tumor-to-muscle ratios reaching nearly 13 for the 18F-labeled probe. The fusion to an albumin-binding domain notably improved the pharmacokinetics. | Preclinical (mouse xenograft) |
Fayn et al. [24] | 2023 | USA | 89Zr | 89Zr-ssHN3 | ssAb portion | Nude mice bearing GPC3-positive HepG2 or A431-GPC3 xenografts | Sortase-based site-specific labeling enhanced the imaging performance of single-domain antibodies in GPC3-expressing liver cancer. | Preclinical (mouse xenograft) |
Dickerson et al. [25] | 2024 | USA | 89Zr | 89Zr-αGPC3H vs. 89Zr-αGPC3M | humanized antibody | Mouse model of hepatocellular carcinoma | The study compared humanized versus murine 89Zr-αGPC3 antibodies in a mouse model, showing strong tumor targeting and favorable imaging contrast. | Preclinical (mouse model) |
Mo et al. [28] | 2024 | China | 18F | 18F-AlF-NOTA-IPB-GPC3P | synthetic peptide | BALB/c nude mice with Huh7 xenografts | GPC3-targeted PET probe with favorable pharmacokinetics, exhibiting high tumor-to-muscle and tumor-to-liver ratios. | Preclinical (mouse xenograft) |
Carrasquillo et al. [11] | 2018 | US | 124I | 124I-codrituzumab | full antibody | 14 patients with advanced HCC | 124I-codrituzumab demonstrated high tumor targeting of GPC3-expressing lesions with favorable biodistribution. Dosimetric evaluation showed acceptable organ doses and effective whole-body exposure. | Phase I imaging trial |
Poot et al. [30] | 2024 | the Netherlands and Germany | 68Ga | 68Ga-RAYZ-8009 | synthetic peptide | 24 patients (22 adults with HCC, 2 children with hepatoblastoma) | GPC3-targeted PET imaging outperformed CT/MRI in lesion visibility, particularly in indeterminate LI-RADS categories, also influencing clinical management. | First-in-human (case series) |
Author | Year | Country | Radio. | Tracer | Mol. Vector | Setting | Comment | Validation Status |
---|---|---|---|---|---|---|---|---|
Ludwig et al. [31] | 2019 | USA | 90Y | 90Y-DOTA-αGPC3 | full mAb | HepG2-Red-FLuc cells and orthotopic xenografts | The study offered promising evidence of therapeutic efficacy for 90Y-αGPC3 in HCC. Nonetheless, the absence of dosimetric evaluation tempered its immediate clinical applicability. | Preclinical (mouse xenograft) |
Labadie et al. [32] | 2021 | USA | 90Y 89Zr | 89Zr-DFO-αGPC3 (diagnostic), 90Y-DOTA-αGPC3 (therapeutic) | full mAb | HepG2 GPC3+ HCC cells and orthotopic xenograft mouse model of HCC | An integrated theranostic strategy in HCC. The authors investigated the feasibility of an approach combining high target specificity, measurable therapeutic effect and imaging-based monitoring. | Preclinical (mouse xenograft) |
Bell et al. [33] | 2021 | USA | 225Ac | 225Ac–Macropa–GC33 | full mAb | HepG2 (GPC3+ human hepatoblastoma cell line) and HepG2 subcutaneous xenografts in nude mice | Preclinical efficacy of GPC3-targeted alpha therapy for HCC, though significant hematologic toxicity underscored the need for optimization | Preclinical (mouse xenograft) |
Labadie et al. [34] | 2022 | USA | 227Th | 227Th-Bay 2287411 | full mAb | Orthotopic xenograft in athymic Nu/J mice using HepG2-Red-FLuc cells | By leveraging a GPC3-specific α-emitter conjugate in an orthotopic HCC model, this study demonstrated an effective theranostic approach—simultaneously enabling sensitive tumor imaging and highly localized, DNA-damaging α-therapy. | Preclinical (mouse xenograft) |
Lin et al. [35] | 2024 | USA | 177Lu 225Ac | 177Lu-DOTA-RAYZ-8009 225Ac-DOTA-RAYZ-8009 | synthetic peptide | HepG2 (GPC3+ HCC) and athymic nude mice with subcutaneous and orthotopic HCC xenografts | The radiolabeled peptide showed favorable pharmacokinetics and biodistribution, demonstrating the potential of RAYZ-8009 as a peptide-based alternative to antibody-based radiopharmaceuticals in HCC theranostics. | Preclinical (mouse xenograft) |
Molecules | MW | Binding Affinity | Circulation/ Half-Life | Tumor Penetration | Clearance Route | Immunogenicity Risk | Production Complexity and Cost | Advantages | Disadvantages | Representative GPC3 Examples and Status |
---|---|---|---|---|---|---|---|---|---|---|
Full-length mAb | ~150 kDa | High (nM–pM) | Long (days–weeks) | Moderate–slow | Reticulo-endothelial | Moderate (mitigated by humanization) | High (cell culture; complex purification) | Strong binding; long tumor retention; established manufacturing pipelines | Slow tumor penetration; high background retention in imaging; higher cost; potential immunogenicity if not fully humanized | Humanized anti-GPC3 immunoPET (e.g., 89Zr-labeled): phase I imaging studies in HCC patients; pilot study of 89Zr codrituzumab |
Fab/scFv fragment | ~25–50 kDa | Moderate–high (nM–sub-nM) | Short (hours) | Faster than full IgG | Renal | Lower than full IgG | Moderate (requires recombinant expression, purification) | Faster blood clearance improving imaging contrast; smaller size aids penetration | Rapid clearance can reduce tumor uptake unless modified; may require engineering for stability or half-life extension | Preclinical scFv-based imaging (mouse xenograft) |
Nanobody (sdAb) | ~12–15 kDa | Moderate–high (nM–sub-nM) | Very short (hours) | High | Renal | Low | Moderate (microbial expression) | Excellent tissue penetration; rapid imaging contrast; lower immunogenicity risk | Very rapid clearance may necessitate PEGylation or albumin-binding to extend half-life for therapy | Site-specifically conjugated sdAb immuno-PET (preclinical) |
Peptide | ~1–3 kDa | Moderate (μM–nM) | Very short to short (minutes–hours) | Very high | Renal | Low | Low (chemical synthesis) | Low cost; rapid tumor penetration and fast background clearance for imaging | Lower affinity; rapid degradation/metabolism; may require modifications for stability; short retention limits therapy use | Radiofluorinated GPC3-binding peptides for PET (preclinical); [18F]AlF-NOTA-IPB-GPC3P preclinical evaluation; peptide binder theranostic (preclinical) |
Affibody-like scaffold | ~6–7 kDa | Engineered high (nM) | Short (hours) | High | Renal | Low | Moderate (recombinant; possible chemical synthesis variants) | Small size with high engineered affinity; good penetration; rapid clearance | Stability may require engineering; limited examples in GPC3 context; rapid clearance may limit therapy unless modified | No published GPC3-specific affibody yet; potential based on affibody use in other targets. |
Aptamer | ~10–15 kDa (oligonucleotide) | Moderate–high (nM) | Short (minutes–hours) | High | Renal | Very low | Low–moderate (chemical synthesis; modifications needed) | Synthetic production; modifiable conjugation; low immunogenicity | Susceptible to nuclease degradation without modifications; limited stability in vivo; few/no GPC3-specific aptamers published | No published GPC3-targeted aptamer yet; potential based on aptamers’ use in other targets |
Radionucl. | Application | Emission Type | Energy (MeV) | Half-Life | Pros and Cons |
---|---|---|---|---|---|
89Zr | Imaging | β+ (Positron) | 0.389 (mean) | 78.4 h | Pros:
|
124I | Imaging | β+ (Positron) | 2.14 (max) | 100.8 h | Pros:
|
18F | Imaging | β+ (Positron) | 0.635 (max) | 109.8 min | Pros:
|
68Ga | Imaging | β+ (Positron) | 1.90 (max) | 67.7 min | Pros:
|
90Y | Therapy | β− (Beta minus) | 2.28 (max) | 64.1 h | Pros:
|
177Lu | Imaging Therapy | β− (Beta minus) γ photons | ~0.497 (max) 0.208 (11%), 0.113 (6.4%) | 6.65 days | Pros:
|
225Ac | Therapy | α (Alpha) | ~5.9 | 9.9 days | Pros:
|
227Th | Therapy | α (Alpha) | ~5.9 | 18.7 days | Pros:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filippi, L.; Frantellizzi, V.; Urso, L.; De Vincentis, G.; Urbano, N. Targeting Glypican-3 in Liver Cancer: Groundbreaking Preclinical and Clinical Insights. Biomedicines 2025, 13, 1570. https://doi.org/10.3390/biomedicines13071570
Filippi L, Frantellizzi V, Urso L, De Vincentis G, Urbano N. Targeting Glypican-3 in Liver Cancer: Groundbreaking Preclinical and Clinical Insights. Biomedicines. 2025; 13(7):1570. https://doi.org/10.3390/biomedicines13071570
Chicago/Turabian StyleFilippi, Luca, Viviana Frantellizzi, Luca Urso, Giuseppe De Vincentis, and Nicoletta Urbano. 2025. "Targeting Glypican-3 in Liver Cancer: Groundbreaking Preclinical and Clinical Insights" Biomedicines 13, no. 7: 1570. https://doi.org/10.3390/biomedicines13071570
APA StyleFilippi, L., Frantellizzi, V., Urso, L., De Vincentis, G., & Urbano, N. (2025). Targeting Glypican-3 in Liver Cancer: Groundbreaking Preclinical and Clinical Insights. Biomedicines, 13(7), 1570. https://doi.org/10.3390/biomedicines13071570