Angiotensin Receptor Blockade Does Not Decrease Synthetic Angiotensin II (Giapreza®) Effectiveness in Perioperative Hypotension Surrounding Kidney Transplant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Objectives
2.3. Statistical Analysis
3. Results
4. Discussion and Limitations
4.1. Discussion
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACEis | Angiotensin-converting enzyme inhibitors |
AKI | Acute kidney injury |
ARBs | Angiotensin receptor-blocking agents |
AT2S | Synthetic angiotensin II |
BBs | Beta blockers |
BMI | Body mass index |
BP | Blood pressure |
Bpm | Beats per minute |
CCBs | Calcium channel blockers |
CIT | Cold ischemic time |
CrCl | Creatinine clearance |
CT | Computed tomography |
DA | Dopamine |
DBP | Diastolic blood pressure |
DDKT | Deceased-donor kidney transplant |
DGF | Delayed graft function |
DVT | Deep vein thrombosis |
EKG | Electrocardiogram |
EMR | Electronic medical record |
EPI | Epinephrine |
ESRD | End-stage renal disease |
HR | Heart rate |
Hr | Hour |
HTN | Hypertension |
ICU | Intensive care unit |
IQR | Interquartile range |
IV | Intravenous |
K | Potassium |
KDPI | Kidney donor profile index |
KT | Kidney transplant |
LOS | Length of stay |
MAP | Mean arterial pressure |
NE | Norepinephrine |
PE | Phenylephrine |
Post-op | Postoperative |
RAAS | Renin–angiotensin–aldosterone system |
SBP | Systolic blood pressure |
Scr | Serum creatinine |
SD | Standard deviation |
SGF | Slow graft function |
References
- Bansal, N.; Artinian, N.T.; Bakris, G.; Chang, T.; Cohen, J.; Flythe, J.; Lea, J.; Vongpatanasin, W.; Chertow, G.M.; on behalf of the American Heart Association Council on the Kidney in Cardiovascular Disease; et al. Hypertension in patients treated with in-center maintenance hemodialysis: Current evidence and future opportunities: A scientific statement from the American Heart Association. Hypertension 2023, 80, e112–e122. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Himmelfarb, C.D.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive Summary: A report of the American College of Cardiology/American Heart Association task force on Clinical Practice Guidelines. Circulation 2018, 138, e426–e483. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH guidelines for the management of arterial hypertension: The task force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J. Hypertens. 2018, 36, 1953–2041. [Google Scholar] [CrossRef]
- Rovin, B.H.; Adler, S.G.; Barratt, J.; Bridoux, F.; Burdge, K.A.; Chan, T.M.; Cook, H.T.; Fervenza, F.C.; Gibson, K.L.; Glassock, R.J.; et al. Executive summary of the KDIGO 2021 guideline for the management of glomerular diseases. Kidney Int. 2021, 100, 753–779. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.; Devereaux, P.J.; Garg, A.X.; Kurz, A.; Turan, A.; Rodseth, R.N.; Cywinski, J.; Thabane, L.; Sessler, D.I. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery. Anesthesiology 2013, 119, 507–515. [Google Scholar] [CrossRef]
- Flythe, J.E.; Chang, T.I.; Gallagher, M.P.; Lindley, E.; Madero, M.; Sarafidis, P.A.; Unruh, M.L.; Wang, A.Y.-M.; Weiner, D.E.; Cheung, M.; et al. Blood pressure and volume management in dialysis: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2020, 97, 861–876. [Google Scholar] [CrossRef]
- Sandid, M.S.; Assi, M.A.; Hall, S. Intraoperative hypotension and prolonged operative time as risk factors for slow graft function in kidney transplant recipients. Clin. Transplant. 2006, 20, 762–768. [Google Scholar] [CrossRef]
- Sear, J.W. Perioperative renin-angiotensin blockade: To continue or discontinue, that is the question! Anesth. Analg. 2014, 118, 909–911. [Google Scholar] [CrossRef]
- Aulakh, N.K.; Garg, K.; Bose, A.; Aulakh, B.S.; Chahal, H.S.; Aulakh, G.S. Influence of hemodynamics and intra-operative hydration on biochemical outcome of renal transplant recipients. J. Anaesthesiol. Clin. Pharmacol. 2015, 31, 174–179. [Google Scholar] [CrossRef]
- Tiggeler, R.G.W.L.M.; Berden, H.M.M.D.; Hoitsma, A.J.M.D.; Koene, R.A.P.M.D. Prevention of acute tubular necrosis in cadaveric Kidney transplantation by the combined use of mannitol and moderate hydration. Ann. Surg. 1985, 201, 246–251. [Google Scholar] [CrossRef]
- Dawidson, I.; Berglin, E.; Brynger, H.; Reisch, J. Intravascular volumes and colloid dynamics in relation to fluid management in living related kidney donors and recipients. Crit. Care Med. 1987, 15, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.M.; Jo, J.-Y.; Baik, J.-W.; Kim, S.; Kim, C.S.; Jeong, S.-M. Risk factors and outcomes associated with a higher use of inotropes in kidney transplant recipients. Medicine 2017, 96, e5820. [Google Scholar] [CrossRef]
- Chow, J.H.; Abuelkasem, E.; Sankova, S.; Henderson, R.A.; Mazzeffi, M.A.; Tanaka, K.A. Reversal of vasodilatory shock: Current perspectives on conventional, rescue, and emerging vasoactive agents for the treatment of shock. Anesth. Analg. 2020, 130, 15–30. [Google Scholar] [CrossRef]
- Benken, J.; Lichvar, A.; Benedetti, E.; Behnam, J.; Kaur, A.; Rahman, S.; Nishioka, H.; Hubbard, C.; Benken, S.T. Perioperative vasopressors are associated with delayed graft function in kidney transplant recipients in a primarily black and hispanic cohort. Prog. Transplant. 2022, 32, 167–173. [Google Scholar] [CrossRef]
- Urias, G.; Benken, J.; Lichvar, A.; Pierce, D.; Andrews, L.; Dalton, K.; Datta, A.; Nishioka, H.; Benedetti, E.; Benken, S. Efficacy and safety of angiotensin II compared to catecholamine vasopressors as a first-line vasopressor for perioperative hypotension in kidney transplant recipients. Am. J. Transplant. 2022, 22 (Suppl. 3). Available online: https://atcmeetingabstracts.com/abstract/efficacy-and-safety-of-angiotensin-ii-compared-to-catecholamine-vasopressors-as-a-first-line-vasopressor-for-perioperative-hypotension-in-kidney-transplant-recipients/ (accessed on 25 June 2024).
- Giapreza (angiotensin II) [Prescribing Information]; La Jolla Pharmaceutical Company: San Diego, CA, USA, 2021.
- Athyros, V.G.; Mikhailidis, D.P.; Kakafika, A.I.; Tziomalos, K.; Karagiannis, A. Angiotensin II reactivation and aldosterone escape phenomena in renin–angiotensin–aldosterone system blockade: Is oral renin inhibition the solution? Expert Opin. Pharmacother. 2007, 8, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Carey, R.M.; Wang, Z.-Q.; Siragy, H.M. Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function. Hypertension 2000, 35, 155–163. [Google Scholar] [CrossRef]
- Leisman, D.E.; Handisides, D.R.; Busse, L.W.; Chappell, M.C.; Chawla, L.S.; Filbin, M.R.; Goldberg, M.B.; Ham, K.R.; Khanna, A.K.; Ostermann, M.; et al. ACE inhibitors and angiotensin receptor blockers differentially alter the response to angiotensin II treatment in vasodilatory shock. Crit. Care 2024, 28, 130. [Google Scholar] [CrossRef]
- Sun, J.; Yuan, J.; Li, B. SBP is superior to MAP to reflect tissue perfusion and hemodynamic abnormality perioperatively. Front. Physiol. 2021, 12, 705558. [Google Scholar] [CrossRef] [PubMed]
- See, E.J.; Clapham, C.; Liu, J.; Khasin, M.; Liskaser, G.; Chan, J.W.; Neto, A.S.; Pinto, R.C.; Bellomo, R. A pilot study of angiotensin ii as primary vasopressor in critically ill adults with vasodilatory hypotension: The aramis study. Shock 2023, 59, 691–696. [Google Scholar] [CrossRef]
- See, E.J.; Chaba, A.; Spano, S.; Maeda, A.; Clapham, C.M.; Burrell, L.M.; Liu, J.M.; Khasin, M.M.; Liskaser, G.M.; Eastwood, G.; et al. Renin levels and angiotensin II responsiveness in vasopressor-dependent hypotension. Crit. Care Med. 2024, 52, 1218–1227. [Google Scholar] [CrossRef] [PubMed]
- Chappell, M.C. The angiotensin-(1-7) axis: Formation and metabolism pathways. In Angiotensin-(1-7); Springer: Cham, Switzerland, 2019; pp. 1–26. [Google Scholar] [CrossRef]
- Chen, L.; Kim, S.M.; Eisner, C.; Oppermann, M.; Huang, Y.; Mizel, D.; Li, L.; Chen, M.; Lopez, M.L.S.; Weinstein, L.S.; et al. Stimulation of renin secretion by angiotensin II blockade is Gsα-dependent. J. Am. Soc. Nephrol. 2010, 21, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Unger, T. Significance of angiotensin type 1 receptor blockade: Why are angiotensin II receptor blockers different? Am. J. Cardiol. 1999, 84, 9–15. [Google Scholar] [CrossRef]
- Sandal, S.; Chen, T.; Cantarovich, M. Evaluation of transplant candidates with a history of nonadherence: An opinion piece. Can. J. Kidney Health Dis. 2021, 8, 2054358121990137. [Google Scholar] [CrossRef]
Baseline Characteristics | ARB N = 22 | Non-ARB N = 43 | p-Value |
---|---|---|---|
Age, yr (SD) | 56.6 (10.9) | 53.1 (12.3) | 0.267 |
Female, n (%) | 7 (32) | 13 (30) | 0.896 |
BMI, kg/m2 (SD) | 31.1 (5.5) | 33.1 (6.7) | 0.222 |
BMI > 35, n (%) | 7 (32) | 17 (40) | 0.542 |
Race/Ethnicity | |||
African American race, n (%) | 5 (23) | 18 (42) | 0.127 |
Hispanic ethnicity, n (%) | 7 (32) | 15 (35) | 0.805 |
Comorbid Disease States | |||
Coronary artery Disease, n (%) | 10 (45) | 18 (42) | 0.782 |
Diabetes mellitus, n (%) | 13 (59) | 23 (53) | 0.667 |
Hyperlipidemia, n (%) | 8 (36) | 17 (40) | 0.840 |
Hypertension, n (%) | 22 (100) | 43 (100) | 1 |
Kidney Transplant-Specific Characteristics | |||
DDKT, n (%) | 22 (100) | 43 (100) | 1 |
Donor age, yr (SD) | 44.3 (13.1) | 38.6 (13.1) | 0.101 |
Donor terminal Scr, mg/dL (SD) | 1.15 (0.61) | 1.10 (0.48) | 0.69 |
CIT, h (SD) | 14.0 (2.9) | 14.5 (3.5) | 0.665 |
KDPI (SD) | 57.4 (26.2) | 45.6 (23.2) | 0.069 |
Duration of KT surgery, h (SD) | 3.2 (5.4) | 5.2 (2.1) | 0.029 |
First Post-op SCr, mg/dL (SD) | 9.38 (3.39) | 8.51 (3.46) | 0.338 |
First Post-op CrCl, mL/min (SD) | 6.23 (2.6) | 7.63 (3.9) | 0.137 |
Antihypertensive Characteristics | |||
>1 anti-HTN meds, n (%) | 17 (77) | 25 (58) | 0.127 |
Number of anti-HTN meds, n (IQR) | 3.4 (3) | 1.8 (2) | 0.001 |
Antihypertensive Agents | |||
ACEi, n (%) | 0 (0) | 16 (37) | 0.017 |
Calcium channel blocker, n (%) | 16 (73) | 13 (30) | 0.001 |
Beta blocker, n (%) | 15 (68) | 30 (70) | 0.896 |
Loop diuretic, n (%) | 10 (45) | 11 (26) | 0.105 |
Alpha agonist, n (%) | 2 (9) | 3 (7) | 0.762 |
Direct vasodilators, n (%) | 7 (32) | 8 (19) | 0.232 |
Baseline Hemodynamics | ARB N = 22 | Non-ARB N = 43 | p-Value |
---|---|---|---|
SBP baseline, mmHg (SD) | 151.8 (13.7) | 152.8 (24.8) | 0.828 |
DBP baseline, mmHg (SD) | 76.0 (10.4) | 82.4 (15.4) | 0.086 |
MAP baseline, mmHg (SD) | 101.3 (9.9) | 105.9 (16.9) | 0.245 |
HR baseline, bpm (SD) | 72.5 (9.7) | 80.5 (13.5) | 0.037 |
AT2S Characteristics | |||
AT2S max dose, ng/kg/min (SD) | 30.0 (21.1) | 19.3 (12.3) | 0.056 |
AT2S duration, h (SD) | 13.4 (15.1) | 26.8 (35.1) | 0.267 |
AT2S duration intraop, h (SD) | 1.63 (1.25) | 1.93 (1.67) | 0.463 |
AT2S duration postop, h (SD) | 14.3 (20.8) | 25.6 (36.0) | 0.181 |
Hemodynamic Outcomes | |||
Time w/SBP < 120 mmHg Intraop, h (SD) | 1.37 (0.93) | 1.27 (1.1) | 0.712 |
Time w/SBP < 120 mmHg Postop, h (SD) | 1.15 (1.6) | 1.55 (2.0) | 0.417 |
Total time w/SBP < 120 mmHg, h (SD) | 2.52 (2.1) | 2.82 (2.5) | 0.632 |
# Instances of SBP < 120 mmHg Intraop (SD) | 5.5 (3.7) | 5.1 (4.4) | 0.712 |
# Instances of SBP < 120 mmHg Post-op (SD) | 4.6 (6.3) | 6.2 (8.1) | 0.417 |
Second vasopressor needed, n (%) | 7 (22) | 16 (37) | 0.667 |
Push-Dose Vasopressor Usage | ARB N = 22 | Non-ARB N = 43 | p-Value |
---|---|---|---|
≥1 push-dose vasopressor(s), n (%) | 15 (68.2) | 37 (86) | 0.880 |
≥2 push-dose vasopressors, n (%) | 6 (27) | 16 (37) | 0.423 |
≥3 push-dose vasopressors, n (%) | 2 (9) | 4 (9) | 0.978 |
Push-dose Vasopressor Type | |||
Phenylephrine, n (%) | 11 (50) | 25 (58) | 0.532 |
Norepinephrine, n (%) | 8 (36) | 21 (49) | 0.338 |
Epinephrine, n (%) | 4 (18) | 7 (16) | 0.846 |
Vasopressin, n (%) | 0 (0) | 4 (9) | 0.023 |
Push-dose Vasopressor Dosage | |||
Phenylephrine, mcg (SD) | 295 (217) | 356 (250) | 0.483 |
Norepinephrine, mcg (SD) | 34 (15) | 47 (44) | 0.435 |
Epinephrine, mcg (SD) | 30 (14) | 43 (70) | 0.732 |
Vasopressin, units (SD) | 0 | 18 (14) | <0.001 |
Sedation | |||
Propofol continuous infusion, n (%) | 6 (27.3) | 16 (37.2) | 0.423 |
Received propofol bolus, n (%) | 22 (100) | 42 (97.7) | 0.471 |
Total propofol bolus, mg (SD) | 138 (36.9) | 149 (42.3) | 0.324 |
Fluid balance | |||
Total fluid volume received, mL (SD) | 3606 (964) | 3382 (1236) | 0.461 |
Estimated blood loss, mL (SD) | 177 (322) | 153 (255) | 0.741 |
Received blood products, n (%) | 16 (72.7) | 25 (58.1) | 0.249 |
Blood product volume, mL (SD) | 663 (340) | 581 (371) | 0.479 |
Length-of-Stay Outcomes | ARB N = 22 | Non-ARB N = 43 | p-Value |
---|---|---|---|
ICU LOS, days (SD) | 4.5 (1.6) | 5.1 (1.7) | 0.230 |
Hospital LOS, days (SD) | 6.7 (2.7) | 6.6 (2.1) | 0.866 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pettit, N.; Benken, J.; Valdepeñas, B.; Gandhi, N.; Alyousef, R.; Benken, S. Angiotensin Receptor Blockade Does Not Decrease Synthetic Angiotensin II (Giapreza®) Effectiveness in Perioperative Hypotension Surrounding Kidney Transplant. Biomedicines 2025, 13, 1442. https://doi.org/10.3390/biomedicines13061442
Pettit N, Benken J, Valdepeñas B, Gandhi N, Alyousef R, Benken S. Angiotensin Receptor Blockade Does Not Decrease Synthetic Angiotensin II (Giapreza®) Effectiveness in Perioperative Hypotension Surrounding Kidney Transplant. Biomedicines. 2025; 13(6):1442. https://doi.org/10.3390/biomedicines13061442
Chicago/Turabian StylePettit, Natalie, Jamie Benken, Benito Valdepeñas, Nishita Gandhi, Rama Alyousef, and Scott Benken. 2025. "Angiotensin Receptor Blockade Does Not Decrease Synthetic Angiotensin II (Giapreza®) Effectiveness in Perioperative Hypotension Surrounding Kidney Transplant" Biomedicines 13, no. 6: 1442. https://doi.org/10.3390/biomedicines13061442
APA StylePettit, N., Benken, J., Valdepeñas, B., Gandhi, N., Alyousef, R., & Benken, S. (2025). Angiotensin Receptor Blockade Does Not Decrease Synthetic Angiotensin II (Giapreza®) Effectiveness in Perioperative Hypotension Surrounding Kidney Transplant. Biomedicines, 13(6), 1442. https://doi.org/10.3390/biomedicines13061442