New and Emerging Biomarkers in Chronic Kidney Disease
Abstract
1. Introduction
2. Methodology
3. Biomarkers of Tubular Secretion
4. Inflammatory Biomarkers
5. Cardiovascular Biomarkers
6. Bone and Mineral Metabolism Biomarkers
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Evans, M.; Lewis, R.D.; Morgan, A.R.; Whyte, M.B.; Hanif, W.; Bain, S.C.; Davies, S.; Dashora, U.; Yousef, Z.; Patel, D.C.; et al. A Narrative Review of Chronic Kidney Disease in Clinical Practice: Current Challenges and Future Perspectives. Adv. Ther. 2022, 39, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.M.; Kovesdy, C.P. Epidemiology: Spotlight on CKD deaths–Increasing mortality worldwide. Nat. Rev. Nephrol. 2015, 11, 199–200. [Google Scholar] [CrossRef] [PubMed]
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- Yamaguchi, J.; Tanaka, T.; Nangaku, M. Recent advances in understanding of chronic kidney disease. F1000Research 2015, 4. F1000 Faculty Rev-1212. [Google Scholar] [CrossRef]
- Levey, A.S.; Inker, L.A. GFR as the “Gold Standard”: Estimated, Measured, and True. Am. J. Kidney Dis. 2016, 67, 9–12. [Google Scholar] [CrossRef]
- Liu, B.C.; Tang, T.T.; Lv, L.L.; Lan, H.Y. Renal tubule injury: A driving force toward chronic kidney disease. Kidney Int. 2018, 93, 568–579. [Google Scholar] [CrossRef]
- Bonventre, J.V. Kidney injury molecule-1 (KIM-1): A urinary biomarker and much more. Nephrol. Dial. Transplant. 2009, 24, 3265–3268. [Google Scholar] [CrossRef]
- Ichimura, T.; Bonventre, J.V.; Bailly, V.; Wei, H.; Hession, C.A.; Cate, R.L.; Sanicola, M. Kidney Injury Molecule-1 (KIM-1), a Putative Epithelial Cell Adhesion Molecule Containing a Novel Immunoglobulin Domain, Is Up-regulated in Renal Cells after Injury. J. Biol. Chem. 1998, 273, 4135–4142. [Google Scholar] [CrossRef]
- Vaidya, V.S.; Ozer, J.S.; Dieterle, F.; Collings, F.B.; Ramirez, V.; Troth, S.; Muniappa, N.; Thudium, D.; Gerhold, D.; Holder, D.J.; et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat. Biotechnol. 2010, 28, 478–485. [Google Scholar] [CrossRef]
- Schmidt, I.M.; Srivastava, A.; Sabbisetti, V.; McMahon, G.M.; He, J.; Chen, J.; Kusek, J.W.; Taliercio, J.; Ricardo, A.C.; Hsu, C.Y.; et al. Plasma Kidney Injury Molecule 1 in CKD: Findings From the Boston Kidney Biopsy Cohort and CRIC Studies. Am. J. Kidney Dis. 2022, 79, 231–243.e1. [Google Scholar] [CrossRef] [PubMed]
- Han, W.K.; Bailly, V.; Abichandani, R.; Thadhani, R.; Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int. 2002, 62, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Waikar, S.S.; Sabbisetti, V.; Ärnlöv, J.; Carlsson, A.C.; Coresh, J.; Feldman, H.I.; Foster, M.C.; Fufaa, G.D.; Helmersson-Karlqvist, J.; Hsu, C.Y.; et al. Relationship of proximal tubular injury to chronic kidney disease as assessed by urinary kidney injury molecule-1 in five cohort studies. Nephrol. Dial. Transplant. 2016, 31, 1460–1470. [Google Scholar] [CrossRef] [PubMed]
- Ruggenenti, P.; Perna, A.; Gherardi, G.; Garini, G.; Zoccali, C.; Salvadori, M.; Scolari, F.; Schena, F.P.; Remuzzi, G. Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet 1999, 354, 359–364. [Google Scholar] [CrossRef]
- Lewis, E.J.; Hunsicker, L.G.; Bain, R.P.; Rohde, R.D. The Effect of Angiotensin-Converting-Enzyme Inhibition on Diabetic Nephropathy. New Engl. J. Med. 1993, 329, 1456–1462. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Li, L.; Mann, D.; Imig, J.D.; Emmett, N.; Gibbons, G.; Jin, L.M. Glomerular Expression of Kidney Injury Molecule-1 and Podocytopenia in Diabetic Glomerulopathy. Am. J. Nephrol. 2011, 34, 268–280. [Google Scholar] [CrossRef]
- Kwon, S.H.; Park, M.Y.; Jeon, J.S.; Noh, H.; Choi, S.J.; Kim, J.K.; Hwang, G.S.; Jeon, H.J.; Han, D.C. KIM-1 expression predicts renal outcomes in IgA nephropathy. Clin. Exp. Nephrol. 2013, 17, 359–364. [Google Scholar] [CrossRef]
- Humphreys, B.D.; Xu, F.; Sabbisetti, V.; Grgic, I.; Naini, S.M.; Wang, N.; Chen, G.; Xiao, S.; Patel, D.; Henderson, J.M.; et al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J. Clin. Investig. 2013, 123, 4023–4035. [Google Scholar] [CrossRef]
- Rees, A.J.; Kain, R. Kim-1/Tim-1: From biomarker to therapeutic target? Nephrol. Dial. Transplant. 2008, 23, 3394–3396. [Google Scholar] [CrossRef][Green Version]
- Bazzi, C.; Petrini, C.; Rizza, V.; Arrigo, G.; Napodano, P.; Paparella, M.; D’Amico, G. Urinary N-acetyl-β-glucosaminidase excretion is a marker of tubular cell dysfunction and a predictor of outcome in primary glomerulonephritis. Nephrol. Dial. Transplant. 2002, 17, 1890–1896. [Google Scholar] [CrossRef]
- Patel, D.N.; Kalia, K. Efficacy of urinary N-acetyl-β-D-glucosaminidase to evaluate early renal tubular damage as a consequence of type 2 diabetes mellitus: A cross-sectional study. Int. J. Diabetes Dev. Ctries. 2015, 35, 449–457. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, M.; Cheng, C.K.; Li, Q. Tubular Injury in Diabetic kidney Disease: Molecular Mechanisms and Potential Therapeutic Perspectives. Front. Endocrinol. 2023, 14, 1238927. [Google Scholar] [CrossRef] [PubMed]
- Kern, E.F.O.; Erhard, P.; Sun, W.; Genuth, S.; Weiss, M.F. Early Urinary Markers of Diabetic Kidney Disease: A Nested Case-Control Study From the Diabetes Control and Complications Trial (DCCT). Am. J. Kidney Dis. 2010, 55, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Kadokura, T.; Saito, M.; Utsuno, A.; Kazuta, K.; Yoshida, S.; Kawasaki, S.; Toda, Y.; Ashida, A.; Tsukada, T.; Yokoyama, H.; et al. Ipragliflozin (ASP1941), a selective sodium-dependent glucose cotransporter 2 inhibitor, safely stimulates urinary glucose excretion without inducing hypoglycemia in healthy Japanese subjects. Diabetol. Int. 2011, 2, 172–182. [Google Scholar] [CrossRef]
- Ellis, E.N.; Brouhard, B.H.; Lagrone, L.; Travis, L.B. Urinary Excretion of N-Acetyl-Beta-D-Glucosaminidase in Children with Type I Diabetes Mellitus. Diabetes Care 1983, 6, 251–255. [Google Scholar] [CrossRef]
- Sheira, G.; Noreldin, N.; Tamer, A.; Saad, M. Urinary biomarker N-acetyl-β-D-glucosaminidase can predict severity of renal damage in diabetic nephropathy. J. Diabetes Metab. Disord. 2015, 14, 4. [Google Scholar] [CrossRef]
- Kim, S.R.; Lee, Y.H.; Lee, S.G.; Kang, E.S.; Cha, B.S.; Kim, J.H.; Lee, B.W. Urinary N-acetyl-β-D-glucosaminidase, an early marker of diabetic kidney disease, might reflect glucose excursion in patients with type 2 diabetes. Medicine 2016, 95, e4114. [Google Scholar] [CrossRef]
- Tan, J.; Yin, K.; Ouyang, Z.; Wang, R.; Pan, H.; Wang, Z.; Xu, C.; Li, Y.; Wang, H.; Fan, C.; et al. Real-Time Monitoring Renal Impairment Due to Drug-Induced AKI and Diabetes-Caused CKD Using an NAG-Activatable NIR-II Nanoprobe. Anal. Chem. 2021, 93, 16158–16165. [Google Scholar] [CrossRef]
- Sikri, K.L.; Foster, C.L.; MacHugh, N.; Marshall, R.D. Localization of Tamm-Horsfall glycoprotein in the human kidney using immuno-fluorescence and immuno-electron microscopical techniques. J. Anat. 1981, 132 Pt 4, 597–605. [Google Scholar]
- Hunt, J.S.; McGiven, A.R.; Groufsky, A.; Lynn, K.L.; Taylor, M.C. Affinity-purified antibodies of defined specificity for use in a solid-phase microplate radioimmunoassay of human Tamm-Horsfall glycoprotein in urine. Biochem. J. 1985, 227, 957–963. [Google Scholar] [CrossRef]
- Prasadan, K.; Bates, J.; Badgett, A.; Dell, M.; Sukhatme, V.; Yu, H.; Gittes, G.K. Nucleotide sequence and peptide motifs of mouse uromodulin (Tamm-Horsfall protein)—The most abundant protein in mammalian urine. Biochim. Biophys. Acta BBA Gene Struct. Expr. 1995, 1260, 328–332. [Google Scholar] [CrossRef]
- Mutig, K.; Kahl, T.; Saritas, T.; Godes, M.; Persson, P.; Bates, J.; Raffi, H.; Rampoldi, L.; Uchida, S.; Hille, C.; et al. Activation of the Bumetanide-sensitive Na+,K+,2Cl− Cotransporter (NKCC2) Is Facilitated by Tamm-Horsfall Protein in a Chloride-sensitive Manner. J. Biol. Chem. 2011, 286, 30200–30210. [Google Scholar] [CrossRef]
- You, R.; Chen, L.; Xu, L.; Li, H.; Shi, X.; Zheng, Y.; Zhang, Z.; Wu, Y.; Wang, Y.; Wang, M.; et al. High Level of Uromodulin Increases the Risk of Hypertension: A Mendelian Randomization Study: PO1777. J. Am. Soc. Nephrol. 2021, 32, 550. [Google Scholar] [CrossRef]
- Gudbjartsson, D.F.; Holm, H.; Indridason, O.S.; Thorleifsson, G.; Edvardsson, V.; Sulem, P.; de Vegt, F.; d’Ancona, F.C.; den Heijer, M.; Wetzels, J.F.; et al. Association of Variants at UMOD with Chronic Kidney Disease and Kidney Stones–-Role of Age and Comorbid Diseases. PLoS Genet. 2010, 6, e1001039. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Prajczer, S.; Gruber, L.N.; Bertocchi, C.; Gandini, R.; Pfaller, W.; Jennings, P.; Joannidis, M. Uromodulin Facilitates Neutrophil Migration Across Renal Epithelial Monolayers. Cell Physiol. Biochem. 2010, 26, 311–318. [Google Scholar] [CrossRef] [PubMed]
- LaFavers, K.A.; Hage, C.A.; Gaur, V.; Micanovic, R.; Hato, T.; Khan, S.; Dagher, P.C.; Wu, X.R.; El-Achkar, T.M. The kidney protects against sepsis by producing systemic uromodulin. Am. J. Physiol.-Ren. Physiol. 2022, 323, F212–F226. [Google Scholar] [CrossRef]
- Micanovic, R.; Khan, S.; Janosevic, D.; Lee, M.E.; Hato, T.; Srour, E.F.; Winfree, S.; Ghosh, J.; Tong, Y.; Rice, S.E.; et al. Tamm-Horsfall Protein Regulates Mononuclear Phagocytes in the Kidney. J. Am. Soc. Nephrol. 2018, 29, 841. [Google Scholar] [CrossRef]
- Pak, J.; Pu, Y.; Zhang, Z.T.; Hasty, D.L.; Wu, X.R. Tamm-Horsfall Protein Binds to Type 1 Fimbriated Escherichia coli and Prevents E. coli from Binding to Uroplakin Ia and Ib Receptors. J. Biol. Chem. 2001, 276, 9924–9930. [Google Scholar] [CrossRef]
- Weiss, G.L.; Stanisich, J.J.; Sauer, M.M.; Lin, C.W.; Eras, J.; Zyla, D.S.; Trück, J.; Devuyst, O.; Aebi, M.; Pilhofer, M.; et al. Architecture and function of human uromodulin filaments in urinary tract infections. Science 2020, 369, 1005–1010. [Google Scholar] [CrossRef]
- Lynn, K.L.; Marshall, R.D. Excretion of Tamm-Horsfall glycoprotein in renal disease. Clin. Nephrol. 1984, 22, 253–257. [Google Scholar]
- Prajczer, S.; Heidenreich, U.; Pfaller, W.; Kotanko, P.; Lhotta, K.; Jennings, P. Evidence for a role of uromodulin in chronic kidney disease progression. Nephrol. Dial. Transplant. 2010, 25, 1896–1903. [Google Scholar] [CrossRef] [PubMed]
- Youhanna, S.; Weber, J.; Beaujean, V.; Glaudemans, B.; Sobek, J.; Devuyst, O. Determination of uromodulin in human urine: Influence of storage and processing. Nephrol. Dial. Transplant. 2014, 29, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Olden, M.; Corre, T.; Hayward, C.; Toniolo, D.; Ulivi, S.; Gasparini, P.; Pistis, G.; Hwang, S.J.; Bergmann, S.; Campbell, H.; et al. Common Variants in UMOD Associate with Urinary Uromodulin Levels: A Meta-Analysis. J. Am. Soc. Nephrol. 2014, 25, 1869. [Google Scholar] [CrossRef]
- Köttgen, A.; Hwang, S.J.; Larson, M.G.; Van Eyk, J.E.; Fu, Q.; Benjamin, E.J.; Dehghan, A.; Glazer, N.L.; Kao, W.H.; Harris, T.B.; et al. Uromodulin Levels Associate with a Common UMOD Variant and Risk for Incident CKD. J. Am. Soc. Nephrol. 2010, 21, 337. [Google Scholar] [CrossRef]
- Melchinger, H.; Calderon-Gutierrez, F.; Obeid, W.; Xu, L.; Shaw, M.M.; Luciano, R.L.; Kuperman, M.; Moeckel, G.W.; Kashgarian, M.; Wilson, F.P.; et al. Urine Uromodulin as a Biomarker of Kidney Tubulointerstitial Fibrosis. Clin. J. Am. Soc. Nephrol. 2022, 17, 1284. [Google Scholar] [CrossRef]
- Humphreys, B.D. Mechanisms of Renal Fibrosis. Annu. Rev. Physiol. 2018, 80, 309–326. [Google Scholar] [CrossRef]
- Steubl, D.; Block, M.; Herbst, V.; Nockher, W.A.; Schlumberger, W.; Kemmner, S.; Bachmann, Q.; Angermann, S.; Wen, M.; Heemann, U.; et al. Urinary uromodulin independently predicts end-stage renal disease and rapid kidney function decline in a cohort of chronic kidney disease patients. Medicine 2019, 98, e15808. [Google Scholar] [CrossRef]
- Scherberich, J.E.; Gruber, R.; Nockher, W.A.; Christensen, E.I.; Schmitt, H.; Herbst, V.; Block, M.; Kaden, J.; Schlumberger, W. Serum uromodulin–-A marker of kidney function and renal parenchymal integrity. Nephrol. Dial. Transplant. 2018, 33, 284–295. [Google Scholar] [CrossRef]
- Risch, L.; Lhotta, K.; Meier, D.; Medina-Escobar, P.; Nydegger, U.E.; Risch, M. The serum uromodulin level is associated with kidney function. Clin. Chem. Lab. Med. CCLM 2014, 52, 1755–1761. [Google Scholar] [CrossRef]
- Usui, R.; Ogawa, T.; Takahashi, H.; Iwasaki, C.; Koike, M.; Morito, T.; Arai, K.; Sakurada, T.; Sato, T.; Otsuka, Y.; et al. Serum uromodulin is a novel renal function marker in the Japanese population. Clin. Exp. Nephrol. 2021, 25, 28–36. [Google Scholar] [CrossRef]
- Fedak, D.; Kuźniewski, M.; Fugiel, A.; Wieczorek-Surdacka, E.; Przepiórkowska-Hoyer, B.; Jasik, P.; Miarka, P.; Dumnicka, P.; Kapusta, M.; Solnica, B.; et al. Serum uromodulin concentrations correlate with glomerular filtration rate in patients with chronic kidney disease. Pol. Arch. Med. Wewn. 2016, 126, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Steubl, D.; Block, M.; Herbst, V.; Nockher, W.A.; Schlumberger, W.; Satanovskij, R.; Angermann, S.; Hasenau, A.L.; Stecher, L.; Heemann, U.; et al. Plasma Uromodulin Correlates With Kidney Function and Identifies Early Stages in Chronic Kidney Disease Patients. Medicine 2016, 95, e3011. [Google Scholar] [CrossRef] [PubMed]
- Genov, D.; Kundurdgiev, A.; Ivanova, I.; Nikolova, M.; Pencheva, V.; Hristova, M.; Vazelov, E. Role of Serum Uromodulin in the Early Diagnosis of Chronic Kidney Disease. Acta. Medica Bulg. 2021, 48, 13–16. [Google Scholar] [CrossRef]
- Lv, L.; Wang, J.; Gao, B.; Wu, L.; Wang, F.; Cui, Z.; He, K.; Zhang, L.; Chen, M.; Zhao, M.H. Serum uromodulin and progression of kidney disease in patients with chronic kidney disease. J. Transl. Med. 2018, 16, 316. [Google Scholar] [CrossRef]
- Ikeme, J.C.; Scherzer, R.; Garimella, P.S.; Hallan, S.I.; Katz, R.; Estrella, M.M.; Shlipak, M.G.; Ix, J.H. The Association of Plasma and Urine Uromodulin With Cardiovascular Disease in Persons With Hypertension and CKD. Am. J. Kidney Dis. 2024, 84, 799–802. [Google Scholar] [CrossRef]
- David, B.L.; Ivan, G.N.J.; Emilio, P.G.E.; Daniela, M.S.J.; Betsabe, C.H.; Luisa, V.V.M.; Santiago, A.V.J.; Jose, L.P.I.; Caballero-Islas, A.E.; Zuniga-Curiel, S.; et al. Low serum uromodulin levels and their association with lupus flares. PLoS ONE 2022, 17, e0276481. [Google Scholar] [CrossRef]
- Tachibana, S.; Iyoda, M.; Suzuki, T.; Kanazawa, N.; Iseri, K.; Wada, Y.; Matsumoto, K.; Shibata, T. Serum uromodulin is associated with the severity of clinicopathological findings in ANCA-associated glomerulonephritis. PLoS ONE 2019, 14, e0224690. [Google Scholar] [CrossRef]
- Vylet’al, P.; Hůlková, H.; Živná, M.; Berná, L.; Novák, P.; Elleder, M.; Kmoch, S. Abnormal expression and processing of uromodulin in Fabry disease reflects tubular cell storage alteration and is reversible by enzyme replacement therapy. J. Inherit. Metab. Dis. 2008, 31, 508–517. [Google Scholar] [CrossRef]
- Hart, T.C.; Gorry, M.C.; Hart, P.S.; Woodard, A.S.; Shihabi, Z.; Sandhu, J.; Shirts, B.; Xu, L.; Zhu, H.; Barmada, M.M.; et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J. Med. Genet. 2002, 39, 882–892. [Google Scholar] [CrossRef]
- Rampoldi, L.; Caridi, G.; Santon, D.; Boaretto, F.; Bernascone, I.; Lamorte, G.; Tardanico, R.; Dagnino, M.; Colussi, G.; Scolari, F.; et al. Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics. Hum. Mol. Genet. 2003, 12, 3369–3384. [Google Scholar] [CrossRef]
- Kuro-o, M.; Matsumura, Y.; Aizawa, H.; Kawaguchi, H.; Suga, T.; Utsugi, T.; Ohyama, Y.; Kurabayashi, M.; Kaname, T.; Kume, E.; et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997, 390, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Arking, D.E.; Becker, D.M.; Yanek, L.R.; Fallin, D.; Judge, D.P.; Moy, T.F.; Becker, L.C.; Dietz, H.C. KLOTHO Allele Status and the Risk of Early-Onset Occult Coronary Artery Disease. Am. J. Hum. Genet. 2003, 72, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Arking, D.E.; Atzmon, G.; Arking, A.; Barzilai, N.; Dietz, H.C. Association Between a Functional Variant of the KLOTHO Gene and High-Density Lipoprotein Cholesterol, Blood Pressure, Stroke, and Longevity. Circ. Res. 2005, 96, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, S.; Imel, E.A.; Kreiter, M.L.; Yu, X.; Mackenzie, D.S.; Sorenson, A.H.; Goetz, R.; Mohammadi, M.; White, K.E.; Econs, M.J. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J. Clin. Investig. 2007, 117, 2684–2691. [Google Scholar] [CrossRef]
- Arroyo, E.; Leber, C.A.; Burney, H.N.; Narayanan, G.; Moorthi, R.; Avin, K.G.; Moe, S.M. Relationship between klotho and physical function in healthy aging. Sci. Rep. 2023, 13, 21158. [Google Scholar] [CrossRef]
- Kuro-o, M. The Klotho proteins in health and disease. Nat. Rev. Nephrol. 2019, 15, 27–44. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Z. Current understanding of klotho. Ageing Res. Rev. 2009, 8, 43–51. [Google Scholar] [CrossRef]
- Kurosu, H.; Ogawa, Y.; Miyoshi, M.; Yamamoto, M.; Nandi, A.; Rosenblatt, K.P.; Baum, M.G.; Schiavi, S.; Hu, M.C.; Moe, O.W.; et al. Regulation of Fibroblast Growth Factor-23 Signaling by Klotho. J. Biol. Chem. 2006, 281, 6120–6123. [Google Scholar] [CrossRef]
- Hu, M.C.; Shi, M.; Zhang, J.; Addo, T.; Cho, H.J.; Barker, S.L.; Ravikumar, P.; Gillings, N.; Bian, A.; Sidhu, S.S.; et al. Renal Production, Uptake, and Handling of Circulating αKlotho. J. Am. Soc. Nephrol. 2016, 27, 79–90. [Google Scholar] [CrossRef]
- Shimamura, Y.; Hamada, K.; Inoue, K.; Ogata, K.; Ishihara, M.; Kagawa, T.; Inoue, M.; Fujimoto, S.; Ikebe, M.; Yuasa, K.; et al. Serum levels of soluble secreted α-Klotho are decreased in the early stages of chronic kidney disease, making it a probable novel biomarker for early diagnosis. Clin. Exp. Nephrol. 2012, 16, 722–729. [Google Scholar] [CrossRef]
- Rotondi, S.; Pasquali, M.; Tartaglione, L.; Muci, M.L.; Mandanici, G.; Leonangeli, C.; Sales, S.; Farcomeni, A.; Mazzaferro, S. Soluble α-Klotho Serum Levels in Chronic Kidney Disease. Int. J. Endocrinol. 2015, 2015, 872193. [Google Scholar] [CrossRef] [PubMed]
- Barker, S.L.; Pastor, J.; Carranza, D.; Quiñones, H.; Griffith, C.; Goetz, R.; Mohammadi, M.; Ye, J.; Zhang, J.; Hu, M.C.; et al. The demonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol. Dial. Transplant. 2015, 30, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Seiler, S.; Wen, M.; Roth, H.J.; Fehrenz, M.; Flügge, F.; Herath, E.; Weihrauch, A.; Fliser, D.; Heine, G.H. Plasma Klotho is not related to kidney function and does not predict adverse outcome in patients with chronic kidney disease. Kidney Int. 2013, 83, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.C.; Shi, M.; Zhang, J.; Quiñones, H.; Griffith, C.; Kuro-o, M.; Moe, O.W. Klotho Deficiency Causes Vascular Calcification in Chronic Kidney Disease. J. Am. Soc. Nephrol. 2011, 22, 124. [Google Scholar] [CrossRef]
- Oishi, H.; Doi, S.; Nakashima, A.; Ike, T.; Maeoka, Y.; Sasaki, K.; Doi, T.; Arihiro, K.; Masaki, T. Klotho overexpression protects against renal aging along with suppression of transforming growth factor-β1 signaling pathways. Am. J. Physiol.-Ren. Physiol. 2021, 321, F799–F811. [Google Scholar] [CrossRef]
- Li, S.S.; Sheng, M.J.; Sun, Z.Y.; Liang, Y.; Yu, L.X.; Liu, Q.F. Upstream and downstream regulators of Klotho expression in chronic kidney disease. Metabolism 2023, 142, 155530. [Google Scholar] [CrossRef]
- Ibrahim, A.M.S.; Ghorab, A.A.; Ibrahim, M.; Ibrahim, A.M.S. Dickkopf 3 as a novel biomarker of the kidney injury. Afr. J. Biol. Sci. 2024, 6, 660–670. [Google Scholar]
- Dincel, A.S.; Jørgensen, N.R.; on behalf of the IOF-IFCC Joint Committee on Bone Metabolism (C-BM). New emerging biomarkers for bone disease: Sclerostin and Dickkopf-1 (DKK1). Calcif. Tissue Int. 2022, 112, 243–257. [Google Scholar] [CrossRef]
- Zewinger, S.; Rauen, T.; Rudnicki, M.; Federico, G.; Wagner, M.; Triem, S.; Schmidt, T.; Schunk, S.J.; Fliser, D.; Heine, G.H.; et al. Dickkopf-3 (DKK3) in urine identifies patients with short-term risk of eGFR loss. J. Am. Soc. Nephrol. 2018, 29, 2722–2733. [Google Scholar] [CrossRef]
- Torigoe, K.; Muta, K.; Tsuji, K.; Yamashita, A.; Torigoe, M.; Abe, S.; Tanaka, M.; Nishimura, S.; Nakagawa, T.; Ueda, M. Association of urinary Dickkopf-3 with residual renal function decline in patients undergoing peritoneal dialysis. Medicina 2021, 57, 631. [Google Scholar] [CrossRef]
- Dziamałek-Macioszczyk, P.; Winiarska, A.; Pawłowska, A.; Wojtacha, P.; Stompór, T. Patterns of Dickkopf-3 serum and urine levels at different stages of chronic kidney disease. J. Clin. Med. 2023, 12, 4705. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, A.K.C.; Pieper, D.; Dihazi, H.; Dihazi, G.H.; Lüders, S.; Koziolek, M.J.; Müller, G.A.; Sörensen-Zender, I.; Haller, H. Urinary Dickkopf-3 (DKK3) is associated with greater eGFR loss in patients with resistant hypertension. J. Clin. Med. 2023, 12, 1034. [Google Scholar] [CrossRef] [PubMed]
- Schunk, S.J.; Beisswenger, C.; Ritzmann, F.; Herr, C.; Wagner, M.; Triem, S.; Hütter, G.; Schmit, D.; Zewinger, S.; Sarakpi, T.; et al. Measurement of urinary Dickkopf-3 uncovered silent progressive kidney injury in patients with chronic obstructive pulmonary disease. Kidney Int. 2021, 100, 1081–1091. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, W.; Xie, S.; Xu, Y.; Lin, Z. Joint association of the inflammatory marker and cardiovascular-kidney-metabolic syndrome stages with all-cause and cardiovascular disease mortality: A national prospective study. BMC Public. Health 2025, 25, 10. [Google Scholar] [CrossRef] [PubMed]
- Danaei, G.; Lu, Y.; Singh, G.M.; Carnahan, E.; Stevens, G.A.; Cowan, M.J.; Farzadfar, F.; Lin, J.K.; Finucane, M.M.; Azizi, F.; et al. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment. Lancet Diabetes Endocrinol. 2014, 2, 634–647. [Google Scholar]
- Li, N.; Li, Y.; Cui, L.; Shu, R.; Song, H.; Wang, J.; Chen, Y.; Di, X.; Li, J.; Wang, L.; et al. Association between different stages of cardiovascular-kidney-metabolic syndrome and the risk of all-cause mortality. Atherosclerosis 2024, 397, 118585. [Google Scholar] [CrossRef]
- Gu, L.; Xia, Z.; Qing, B.; Wang, W.; Chen, H.; Wang, J.; Chen, Y.; Gai, Z.; Hu, R.; Yuan, Y. Systemic Inflammatory Response Index (SIRI) is associated with all-cause mortality and cardiovascular mortality in population with chronic kidney disease: Evidence from NHANES (2001–2018). Front. Immunol. 2024, 15, 1338025. [Google Scholar] [CrossRef]
- Bonaccio, M.; Di Castelnuovo, A.; Pounis, G.; De Curtis, A.; Costanzo, S.; Persichillo, M.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; et al. A score of low-grade inflammation and risk of mortality: Prospective findings from the Moli-sani study. Haematologica 2016, 101, 1434–1441. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, Z.; Zhou, K.; Jiang, S. The Predictive Role of Systemic Inflammation Response Index (SIRI) in the Prognosis of Stroke Patients. Clin. Interv. Aging 2021, 16, 1997–2007. [Google Scholar] [CrossRef]
- Wang, P.; Guo, X.; Zhou, Y.; Li, Z.; Yu, S.; Sun, Y.; Hou, Y. Monocyte-to-high-density lipoprotein ratio and systemic inflammation response index are associated with the risk of metabolic disorders and cardiovascular diseases in general rural population. Front. Endocrinol. 2022, 13, 944991. [Google Scholar] [CrossRef]
- Han, Y.; Lin, N. Systemic Inflammatory Response Index and the Short-Term Functional Outcome of Patients with Acute Ischemic Stroke: A Meta-analysis. Neurol. Ther. 2024, 13, 1431–1451. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.; Zhao, X.; Gao, Z.; Huang, H.; Huang, D.; Zhou, Y.; Chen, G.; Zhang, L.; Zhang, Z.; Jin, Z.; et al. Association of Systemic Inflammation Level on Admission with Total and Cardiovascular-Specific Death in Heart Failure with Preserved Ejection Fraction: A Large Multi-Center Retrospective Longitudinal Study. J. Inflamm. Res. 2024, 17, 5533–5542. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Sangha, S.S.; Yadav, S.; Sharma, P.; Shah, H.; Bhowmik, D. A Clinical Study to Evaluate the Anti-inflammatory Effect of Lactoferrin + Disodium Guanosine Monophosphate Therapy in the Patients with Chronic Kidney Disease. J. Assoc. Physicians India 2025, 73, 18–22. [Google Scholar]
- Yeo, E.S.; Hwang, J.Y.; Park, J.E.; Choi, Y.J.; Huh, K.B.; Kim, W.Y. Tumor Necrosis Factor (TNF-α) and C-reactive Protein (CRP) are Positively Associated with the Risk of Chronic Kidney Disease in Patients with Type 2 Diabetes. Yonsei Med. J. 2010, 51, 519. [Google Scholar] [CrossRef]
- Menon, V.; Greene, T.; Wang, X.; Pereira, A.A.; Marcovina, S.M.; Beck, G.J.; Kusek, J.W.; Collins, A.J.; Levey, A.S.; Sarnak, M.J. C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease. Kidney Int. 2005, 68, 766–772. [Google Scholar] [CrossRef]
- Jalal, D.; Chonchol, M.; Etgen, T.; Sander, D. C-reactive protein as a predictor of cardiovascular events in elderly patients with chronic kidney disease. J. Nephrol. 2012, 25, 719–725. [Google Scholar] [CrossRef]
- Gao, J.; Wang, A.; Li, X.; Li, J.; Zhao, H.; Zhang, J.; Chen, S.; Su, Z.; Zhang, Y.; Wu, S. The Cumulative Exposure to High-Sensitivity C-Reactive Protein Predicts the Risk of Chronic Kidney Diseases. Kidney Blood Press. Res. 2020, 45, 84–94. [Google Scholar] [CrossRef]
- Menon, V.; Wang, X.; Greene, T.; Beck, G.J.; Kusek, J.W.; Marcovina, S.M.; Levey, A.S.; Sarnak, M.J. Relationship between C-reactive protein, albumin, and cardiovascular disease in patients with chronic kidney disease. Am. J. Kidney Dis. 2003, 42, 44–52. [Google Scholar] [CrossRef]
- Panichi, V.; Migliori, M.; De Pietro, S.; Taccola, D.; Bianchi, A.M.; Giovannini, L.; Norpoth, M.; Metelli, M.R.; Cristofani, R.; Bertelli, A.A.; et al. C-Reactive Protein and Interleukin-6 Levels Are Related to Renal Function in Predialytic Chronic Renal Failure. Nephron 2002, 91, 594–600. [Google Scholar] [CrossRef]
- Lee, J.E.; Choi, S.Y.; Huh, W.; Kim, Y.G.; Kim, D.J.; Oh, H.Y. Metabolic Syndrome, C-Reactive Protein, and Chronic Kidney Disease in Nondiabetic, Nonhypertensive Adults. Am. J. Hypertens. 2007, 20, 1189–1194. [Google Scholar]
- Prodhan, M.J.A.; Al Mahmud, M.; Saha, S.K.; Salauddin, S.M.; Ali, M. Association of Inflammatory Marker C-Reactive Protein and Interleukin-6 with Stages 3-5 of Chronic Kidney Disease. Saudi J. Med. 2024, 9, 344–353. [Google Scholar] [CrossRef]
- Ridker, P.M.; MacFadyen, J.G.; Glynn, R.J.; Koenig, W.; Libby, P.; Everett, B.M.; Lefkowitz, M.; Thuren, T.; Cornel, J.H. Inhibition of Interleukin-1β by Canakinumab and Cardiovascular Outcomes in Patients With Chronic Kidney Disease. J. Am. Coll. Cardiol. 2018, 71, 2405–2414. [Google Scholar] [CrossRef] [PubMed]
- Kurella Tamura, M.; Tam, K.; Vittinghoff, E.; Raj, D.; Sozio, S.M.; Rosas, S.E.; Makos, G.; Lora, C.; He, J.; Go, A.S.; et al. Inflammatory Markers and Risk for Cognitive Decline in Chronic Kidney Disease: The CRIC Study. Kidney Int. Rep. 2017, 2, 192–200. [Google Scholar] [CrossRef]
- Vázquez-Huerta, D.I.; Alvarez-Rodríguez, B.A.; Topete-Reyes, J.F.; Muñoz-Valle, J.F.; Fuentes-Ramírez, F.; Salazar-López, M.A.; Valle, Y.; Mendoza-Carrera, F.; Moran-Moguel, M.C.; Peña-Rodríguez, M.; et al. Tumor necrosis factor alpha -238 G/A and -308 G/A polymorphisms and soluble TNF-α levels in chronic kidney disease: Correlation with clinical variables. Ren. Fail. 2014, 7, 2111–2119. [Google Scholar]
- Ernandez, T.; Mayadas, T. Immunoregulatory role of TNFα in inflammatory kidney diseases. Kidney Int. 2009, 76, 262–276. [Google Scholar] [CrossRef]
- Li, G.; Wu, W.; Zhang, X.; Huang, Y.; Wen, Y.; Li, X.; Gao, R. Serum levels of tumor necrosis factor alpha in patients with IgA nephropathy are closely associated with disease severity. BMC Nephrol. 2018, 19, 326. [Google Scholar] [CrossRef]
- Murakoshi, M.; Gohda, T.; Suzuki, Y. Circulating Tumor Necrosis Factor Receptors: A Potential Biomarker for the Progression of Diabetic Kidney Disease. Int. J. Mol. Sci. 2020, 21, 1957. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Liu, C.; He, P.; Dong, A.; Dong, S.; Zhang, M. Causal effects of systemic inflammatory regulators on chronic kidney diseases and renal function: A bidirectional Mendelian randomization study. Front. Immunol. 2023, 14, 1229636. [Google Scholar] [CrossRef]
- Therrien, F.J.; Agharazii, M.; Lebel, M.; Larivière, R. Neutralization of Tumor Necrosis Factor-Alpha Reduces Renal Fibrosis and Hypertension in Rats with Renal Failure. Am. J. Nephrol. 2012, 36, 151–161. [Google Scholar] [CrossRef]
- Egli-Spichtig, D.; Imenez Silva, P.H.; Glaudemans, B.; Gehring, N.; Bettoni, C.; Zhang, M.Y.H.; Pastor-Arroyo, E.M.; Schönenberger, D.; Rajski, M.; Hoogewijs, D.; et al. Tumor necrosis factor stimulates fibroblast growth factor 23 levels in chronic kidney disease and non-renal inflammation. Kidney Int. 2019, 96, 890–905. [Google Scholar] [CrossRef]
- Zhang, J.; Patel, M.B.; Griffiths, R.; Mao, A.; Song, Y.S.; Karlovich, N.S.; Sparks, M.A.; Jin, H.; Wu, M.; Lin, E.E.; et al. Tumor Necrosis Factor-α Produced in the Kidney Contributes to Angiotensin II–dependent Hypertension. Hypertension 2014, 64, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Ramseyer, V.D.; Garvin, J.L. Tumor necrosis factor-α: Regulation of renal function and blood pressure. Am. J. Physiol.-Ren. Physiol. 2013, 304, F1231–F1242. [Google Scholar] [CrossRef] [PubMed]
- Agharazii, M.; St-Louis, R.; Gautier-Bastien, A.; Ung, R.V.; Mokas, S.; Larivière, R.; Richard, D.E. Inflammatory Cytokines and Reactive Oxygen Species as Mediators of Chronic Kidney Disease-Related Vascular Calcification. Am. J. Hypertens. 2015, 28, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Amdur, R.L.; Feldman, H.I.; Dominic, E.A.; Anderson, A.H.; Beddhu, S.; Rahman, M.; Wolf, M.; Reilly, M.; Ojo, A.; Townsend, R.R.; et al. Use of Measures of Inflammation and Kidney Function for Prediction of Atherosclerotic Vascular Disease Events and Death in Patients With CKD: Findings From the CRIC Study. Am. J. Kidney Dis. 2019, 73, 344–353. [Google Scholar] [CrossRef]
- Banaszkiewicz, M. Fibrinogen and interleukin-6 as meaningful biomarkers of cardiovascular-related death in chronic kidney disease patients treated with renal replacement therapy under 60 years of age. Przegl. Lek. 2017, 74, 621–626. [Google Scholar]
- Akchurin, O.; Patino, E.; Dalal, V.; Meza, K.; Bhatia, D.; Brovender, S.; Zhu, Y.S.; Cunningham-Rundles, S.; Perelstein, E.; Kumar, J.; et al. Interleukin-6 Contributes to the Development of Anemia in Juvenile CKD. Kidney Int. Rep. 2019, 4, 470–483. [Google Scholar] [CrossRef]
- Durlacher-Betzer, K.; Hassan, A.; Levi, R.; Axelrod, J.; Silver, J.; Naveh-Many, T. Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease. Kidney Int. 2018, 94, 315–325. [Google Scholar] [CrossRef]
- Chen, W.; Yuan, H.; Cao, W.; Wang, T.; Chen, W.; Yu, H.; Fu, Y.; Jiang, B.; Zhou, H.; Guo, H.; et al. Blocking interleukin-6 trans-signaling protects against renal fibrosis by suppressing STAT3 activation. Theranostics 2019, 9, 3980–3991. [Google Scholar] [CrossRef]
- Li, X.; Qureshi, A.R.; Suliman, M.E.; Heimburger, O.; Barany, P.; Stenvinkel, P.; Lindholm, B. Interleukin-6-to-Albumin Ratio as a Superior Predictor of Mortality in End-Stage Kidney Disease Patients. Am. J. Nephrol. 2023, 54, 268–274. [Google Scholar] [CrossRef]
- Amdur, R.L.; Mukherjee, M.; Go, A.; Barrows, I.R.; Ramezani, A.; Shoji, J.; Reilly, M.P.; Gnanaraj, J.; Deo, R.; Rahman, M.; et al. Interleukin-6 Is a Risk Factor for Atrial Fibrillation in Chronic Kidney Disease: Findings from the CRIC Study. Aguilera AI, redaktor. PLoS ONE 2016, 11, e0148189. [Google Scholar] [CrossRef]
- Anders, H.J.; Suarez-Alvarez, B.; Grigorescu, M.; Foresto-Neto, O.; Steiger, S.; Desai, J.; Marschner, J.A.; Honarpisheh, M.; Shi, C.; Jordan, J.; et al. The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1–mediated tissue injury. Kidney Int. 2018, 93, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. Interleukin-1 Beta as a Target for Atherosclerosis Therapy. J. Am. Coll. Cardiol. 2017, 70, 2278–2289. [Google Scholar] [CrossRef] [PubMed]
- Steen, E.H.; Wang, X.; Balaji, S.; Butte, M.J.; Bollyky, P.L.; Keswani, S.G. The Role of the Anti-Inflammatory Cytokine Interleukin-10 in Tissue Fibrosis. Adv. Wound Care 2020, 9, 184–198. [Google Scholar] [CrossRef] [PubMed]
- Neumann, C.; Scheffold, A.; Rutz, S. Functions and regulation of T cell-derived interleukin-10. Semin. Immunol. 2019, 44, 101344. [Google Scholar] [CrossRef]
- Gao, C.; Peng, F.; Xie, X.; Peng, L. The Relationship Between Blood Interleukin-10 and Cardiovascular Mortality and All-Cause Mortality After Kidney Transplantation. Risk Manag. Healthc Policy 2021, 14, 1481–1489. [Google Scholar] [CrossRef]
- Yu, J.; Lin, T.; Huang, N.; Xia, X.; Li, J.; Qiu, Y.; Yang, X.; Mao, H.; Huang, F. Plasma fibrinogen and mortality in patients undergoing peritoneal dialysis: A prospective cohort study. BMC Nephrol. 2020, 21, 349. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, C.; Lu, Y.; Jiang, Q.; Yin, R.; Zhu, P.; Zhou, M.; Liu, Z. Urinary Fibrinogen as a Predictor of Progression of CKD. Clin. J. Am. Soc. Nephrol. 2017, 12, 1922–1929. [Google Scholar] [CrossRef]
- Mao, J.Y.; Sun, J.T.; Yang, K.; Shen, W.F.; Lu, L.; Zhang, R.Y.; Tong, X. Serum amyloid A enrichment impairs the anti-inflammatory ability of HDL from diabetic nephropathy patients. J. Diabetes Complicat. 2017, 31, 1538–1543. [Google Scholar] [CrossRef]
- Saulnier, P.J.; Dieter, B.P.; Tanamas, S.K.; McPherson, S.M.; Wheelock, K.M.; Knowler, W.C.; Lemley, K.V.; Mauer, M.; Yee, B.; Nelson, R.G.; et al. Association of Serum Amyloid A with Kidney Outcomes and All-Cause Mortality in American Indians with Type 2 Diabetes. Am. J. Nephrol. 2017, 46, 276–284. [Google Scholar] [CrossRef]
- Gao, A.; Gupta, S.; Shi, H.; Liu, Y.; Schroder, A.L.; Witting, P.K.; Kwan, T.; Trevillyan, J.M.; Celermajer, D.; Heather, A.K. Pro-Inflammatory Serum Amyloid a Stimulates Renal Dysfunction and Enhances Atherosclerosis in Apo E-Deficient Mice. Int. J. Mol. Sci. 2021, 22, 12582. [Google Scholar] [CrossRef]
- Anderberg, R.J.; Meek, R.L.; Hudkins, K.L.; Cooney, S.K.; Alpers, C.E.; Leboeuf, R.C.; Tuttle, K.R. Serum amyloid A and inflammation in diabetic kidney disease and podocytes. Lab. Investig. 2015, 95, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Xavier, S.; Vasko, R.; Matsumoto, K.; Zullo, J.A.; Chen, R.; Maizel, J.; Chander, P.N.; Goligorsky, M.S. Curtailing Endothelial TGF-β Signaling Is Sufficient to Reduce Endothelial-Mesenchymal Transition and Fibrosis in CKD. J. Am. Soc. Nephrol. 2015, 26, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Mehta, T.; Buzkova, P.; Kizer, J.R.; Djousse, L.; Chonchol, M.; Mukamal, K.J.; Shlipak, M.; Ix, J.H.; Jalal, D. Higher plasma transforming growth factor (TGF)-β is associated with kidney disease in older community dwelling adults. BMC Nephrol. 2017, 18, 98. [Google Scholar] [CrossRef]
- Østergaard, J.A.; Jansson Sigfrids, F.; Forsblom, C.; Dahlström, E.H.; Thorn, L.M.; Harjutsalo, V.; Bjerre, M.; Hansen, T.K.; Flyvbjerg, A.; Groop, P.H.; et al. The pattern-recognition molecule H-ficolin in relation to diabetic kidney disease, mortality, and cardiovascular events in type 1 diabetes. Sci. Rep. 2021, 11, 8919. [Google Scholar] [CrossRef]
- Smedbråten, Y.V.; Sagedal, S.; Mjøen, G.; Hartmann, A.; Fagerland, M.W.; Rollag, H.; Mollnes, T.E.; Thiel, S. High Ficolin-3 Level at the Time of Transplantation Is an Independent Risk Factor for Graft Loss in Kidney Transplant Recipients. Transplantation 2015, 99, 791–796. [Google Scholar] [CrossRef]
- Dabrowska-Zamojcin, E.; Czerewaty, M.; Malinowski, D.; Tarnowski, M.; Słuczanowska-Głabowska, S.; Domanski, L.; Safranow, K.; Pawlik, A. Ficolin-2 Gene rs7851696 Polymorphism is Associated with Delayed Graft Function and Acute Rejection in Kidney Allograft Recipients. Arch. Immunol. Ther. Exp. 2018, 66, 65–72. [Google Scholar] [CrossRef]
- Granata, S.; Masola, V.; Zoratti, E.; Scupoli, M.T.; Baruzzi, A.; Messa, M.; Sallustio, F.; Gesualdo, L.; Lupo, A.; Zaza, G. NLRP3 Inflammasome Activation in Dialyzed Chronic Kidney Disease Patients. PLoS ONE 2015, 10, e0122272. [Google Scholar] [CrossRef]
- Li, S.; Lin, Q.; Shao, X.; Mou, S.; Gu, L.; Wang, L.; Zhang, Z.; Shen, J.; Zhou, Y.; Qi, C.; et al. NLRP3 inflammasome inhibition attenuates cisplatin-induced renal fibrosis by decreasing oxidative stress and inflammation. Exp. Cell Res. 2019, 383, 111488. [Google Scholar] [CrossRef]
- Gohda, T.; Murakoshi, M.; Shibata, T.; Suzuki, Y.; Takemura, H.; Tsuchiya, K. Circulating TNF receptor levels are associated with estimated glomerular filtration rate even in healthy individuals with normal kidney function. Sci. Rep. 2024, 14, 7245. [Google Scholar] [CrossRef]
- Oh, Y.J.; An, J.N.; Kim, C.T.; Yang, S.H.; Lee, H.; Kim, D.K.; Joo, K.W.; Paik, J.H.; Kang, S.W.; Park, J.T.; et al. Circulating tumor necrosis factor α receptors predict the outcomes of human IgA nephropathy: A prospective cohort study. PLoS ONE 2015, 10, e0132826. [Google Scholar] [CrossRef]
- Chen, T.K.; Coca, S.G.; Estrella, M.M.; Appel, L.J.; Coresh, J.; Philbrook, H.T.; Obeid, W.; Fried, L.F.; Heerspink, H.J.L.; Ix, J.H.; et al. Longitudinal TNFR1 and TNFR2 and kidney outcomes: Results from AASK and VA NEPHRON-D. J. Am. Soc. Nephrol. 2022, 33, 996–1010. [Google Scholar] [CrossRef] [PubMed]
- Bourgonje, A.R.; Bourgonje, M.F.; la Bastide-van Gemert, S.; Nilsen, T.; Hidden, C.; Gansevoort, R.T.; Mulder, D.J.; Hillebrands, J.-L.; Bakker, S.J.L.; Dullaart, R.P.F.; et al. A prospective study of the association between plasma calprotectin levels and new-onset chronic kidney disease in the general population. Kidney Int. Rep. 2024, 9, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Amaya-Garrido, A.; Brunet, M.; Buffin-Meyer, B.; Piedrafita, A.; Grzesiak, L.; Agbegbo, E.; Del Bello, A.; Ferrandiz, I.; Ardeleanu, S.; Bermudez-Lopez, M.; et al. Calprotectin is a contributor to and potential therapeutic target for vascular calcification in chronic kidney disease. Sci. Transl. Med. 2023, 15, eabn5939. [Google Scholar] [CrossRef]
- Løfblad, L.; Hov, G.G.; Åsberg, A.; Videm, V. Calprotectin and CRP as biomarkers of cardiovascular disease risk in patients with chronic kidney disease: A follow-up study at 5 and 10 years. Scand. J. Clin. Lab. Investig. 2023, 83, 258–263. [Google Scholar] [CrossRef]
- Elangovan, D.; Sowmya, S. Association of NLR, MLR, PLR, SII, and SIRI with the stages of chronic kidney disease: A cross-sectional study. Int. J. Med. Biochem. 2024, 7, 186–194. [Google Scholar] [CrossRef]
- Petrović, M.; Rabrenović, V.; Rančić, N. The significance of determining biomarkers of inflammation in chronic kidney failure. Vojnosanit. Pregl. 2024, 81, 498–504. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, L.; Guo, Q.; Liao, Y.; Lin, X.; Li, H.; Zhang, M.; Chen, J.; Huang, Z.; Zhao, L.; et al. The systemic inflammatory response index is associated with chronic kidney disease in patients with hypertension: Data from the National Health and Nutrition Examination Survey 1999–2018. Ren. Fail. 2024, 46, 2396459. [Google Scholar] [CrossRef]
- Wei, L.; Mao, S.; Liu, X.; Zhu, C.; Zhang, Y.; Wang, H.; Chen, L.; Zhao, Q.; Li, J.; Xu, T.; et al. Association of systemic inflammation response index with all-cause mortality as well as cardiovascular mortality in patients with chronic kidney disease. Front. Cardiovasc. Med. 2024, 11, 1363949. [Google Scholar] [CrossRef]
- Kim, J.; Song, S.H.; Oh, T.R.; Suh, S.H.; Choi, H.S.; Kim, C.S.; Ma, S.K.; Kim, S.W.; Bae, E.H.; Lee, J.H. Prognostic role of the neutrophil-to-lymphocyte ratio in patients with chronic kidney disease. Korean J. Intern. Med. 2023, 38, 725–733. [Google Scholar] [CrossRef]
- Solak, Y.; Yilmaz, M.I.; Sonmez, A.; Saglam, M.; Cakir, E.; Unal, H.U.; Gok, M.; Caglar, K.; Oguz, Y.; Yenicesu, M.; et al. Neutrophil to lymphocyte ratio independently predicts cardiovascular events in patients with chronic kidney disease. Clin. Exp. Nephrol. 2013, 17, 532–540. [Google Scholar] [CrossRef]
- Neuen, B.L.; Leather, N.; Greenwood, A.M.; Gunnarsson, R.; Cho, Y.; Mantha, M.L.; Smith, T.J.; Lee, K.H.; Brown, M.J.; Patel, R.S.; et al. Neutrophil–lymphocyte ratio predicts cardiovascular and all-cause mortality in hemodialysis patients. Ren. Fail. 2016, 38, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Kumada, Y.; Kawai, N.; Ishida, N.; Nakamura, Y.; Ito, R.; Sato, M.; Fujimoto, K.; Yamamoto, T.; Suzuki, H.; et al. Prognostic value of C-reactive protein/albumin ratio for amputation and/or mortality after lower extremity revascularization in haemodialysis patients with peripheral artery disease. Eur. Heart J. 2024, 45 (Suppl. 1), ehae666.3249. [Google Scholar] [CrossRef]
- Bilgin, S.; Kurtkulagi, O.; Atak Tel, B.M.; Duman, T.T.; Kahveci, G.; Khalid, A.; Aktas, G.; Yilmaz, A.; Demir, S.; Ozkan, S. Does C-reactive protein to serum albumin ratio correlate with diabetic nephropathy in patients with type 2 diabetes mellitus? The CARE TIME study. Prim. Care Diabetes 2021, 15, 1071–1074. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, P.; Yang, L.; Zhao, N.; Ou, W.; Zhang, X.; Wang, Y.; Chen, S.; Wu, J.; Li, M.; et al. Association between the high-sensitivity C-reactive protein/albumin ratio and new-onset chronic kidney disease in Chinese individuals. Nephron 2024, 148, 160–170. [Google Scholar] [CrossRef]
- Huang, Q.; Lu, X.; Liang, Y.; Zhu, W.; Chen, J.; Yang, Y. Nonlinear relationship between the C-reactive protein to albumin ratio and chronic kidney disease: A cross-sectional analysis using the NHANES database. bioRxiv 2025. [Google Scholar] [CrossRef]
- Saeed, D.; Reza, T.; Shahzad, M.W.; Karim Mandokhail, A.; Bakht, D.; Qizilbash, F.H.; Ahmed, N.; Khan, S.; Ali, M.; Hussain, R. Navigating the crossroads: Understanding the link between chronic kidney disease and cardiovascular health. Cureus 2023, 15, e51362. [Google Scholar] [CrossRef]
- Salaun, E.; Drory, S.; Coté, M.-A.; Tremblay, V.; Bédard, E.; Steinberg, C.; Paré, D.; O’Connor, K.; Cieza, T.; Coté, N.; et al. Role of antitroponin antibodies and macrotroponin in the clinical interpretation of cardiac troponin. J. Am. Heart Assoc. 2024, 13, e035128. [Google Scholar] [CrossRef]
- Geladari, E.V.; Vallianou, N.G.; Evangelopoulos, A.; Koufopoulos, P.; Panagopoulos, F.; Margellou, E.; Katsiki, N.; Dalamaga, M.; Tsigalou, C.; Karamouzis, M.; et al. Cardiac troponin levels in patients with chronic kidney disease: “Markers of high risk or just noise”? Diagnostics 2024, 14, 2316. [Google Scholar] [CrossRef]
- Braghieri, L.; Badwan, O.Z.; Skoza, W.; Fares, M.; Menon, V. Evaluating troponin elevation in patients with chronic kidney disease and suspected acute coronary syndrome. Cleve Clin. J. Med. 2023, 90, 483–489. [Google Scholar] [CrossRef]
- Wang, K.; Zelnick, L.R.; Anderson, A.; Cohen, J.; Dobre, M.; Deo, R.; Christenson, R.; Shlipak, M.; Feldman, H.; Go, A.; et al. Cardiac biomarkers and risk of mortality in CKD (the CRIC Study). Kidney Int. Rep. 2020, 5, 2002–2012. [Google Scholar] [CrossRef]
- Bansal, N.; Zelnick, L.; Shlipak, M.G.; Anderson, A.; Christenson, R.; Deo, R.; Feldman, H.; Lash, J.P.; Go, A.S.; Robinson-Cohen, C.; et al. Cardiac and stress biomarkers and chronic kidney disease progression: The CRIC Study. Clin. Chem. 2019, 65, 1448–1457. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N.; Hyre Anderson, A.; Yang, W.; Christenson, R.H.; deFilippi, C.R.; Deo, R.; Feldman, H.I.; Go, A.S.; Shlipak, M.G.; Lash, J.P. High-sensitivity troponin T and N-terminal pro-B-type natriuretic peptide (NT-proBNP) and risk of incident heart failure in patients with CKD: The Chronic Renal Insufficiency Cohort (CRIC) Study. J. Am. Soc. Nephrol. 2015, 26, 946–956. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chen, J.; Su, L.; Lukwaro, A.F.; Zhou, S.; Zheng, S.; Wang, Y.; Fan, X.; Tang, C.; Yang, J.; et al. N-terminal pro-B-type natriuretic peptide, eGFR, and progression of kidney disease in chronic kidney disease patients without heart failure. Clin. Kidney J. 2024, 17, sfae298. [Google Scholar] [CrossRef] [PubMed]
- Neuen, B.L.; Vaduganathan, M.; Claggett, B.L.; Beldhuis, I.; Myhre, P.; Desai, A.S.; Solomon, S.D.; Zile, M.R.; Packer, M.; McMurray, J.J.V. Natriuretic peptides, kidney function, and clinical outcomes in heart failure with preserved ejection fraction. Heart Fail. 2025, 13, 28–39. [Google Scholar] [CrossRef]
- Ho, J.E.; Liu, C.; Lyass, A.; Courchesne, P.; Pencina, M.J.; Vasan, R.S.; Larson, M.G.; Levy, D.; Ghorbani, A.; Benjamin, E.J. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J. Am. Coll. Cardiol. 2012, 60, 1249–1256. [Google Scholar] [CrossRef]
- McEvoy, J.W.; Chen, Y.; Halushka, M.K.; Christenson, E.; Ballantyne, C.M.; Blumenthal, R.S.; Coresh, J.; Selvin, E.; Nambi, V. Galectin-3 and risk of heart failure and death in Blacks and Whites. J. Am. Heart Assoc. 2016, 5, e003079. [Google Scholar] [CrossRef]
- Echouffo-Tcheugui, J.B.; Zhang, S.; Florido, R.; Pankow, J.S.; Michos, E.D.; Goldberg, R.B.; Selvin, E.; Folsom, A.R.; Ballantyne, C.M.; Coresh, J. Galectin-3, metabolic risk, and incident heart failure: The ARIC Study. J. Am. Heart Assoc. 2024, 13, e031607. [Google Scholar] [CrossRef]
- Chen, S.C.; Kuo, P.L. The role of Galectin-3 in the kidneys. Int. J. Mol. Sci. 2016, 17, 565. [Google Scholar] [CrossRef]
- Kim, A.J.; Ro, H.; Kim, H.; Chang, J.H.; Lee, H.H.; Chung, W.; Park, J.T.; Yoo, T.H.; Kang, S.W.; Han, S.H. Soluble ST2 and Galectin-3 as predictors of chronic kidney disease progression and outcomes. Am. J. Nephrol. 2021, 52, 119–130. [Google Scholar] [CrossRef]
- Alam, M.L.; Katz, R.; Bellovich, K.A.; Bhat, Z.Y.; Brosius, F.C.; De Boer, I.H.; Rosamond, W.D.; Sarnak, M.J.; Zelnick, L.R.; Robinson-Cohen, C. Soluble ST2 and Galectin-3 and progression of CKD. Kidney Int. Rep. 2019, 4, 103–111. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, L.; Eliaz, A.; Hu, C.; Qiang, X.; Ke, L.; Liu, W.; Zhang, M.; Zhao, Y.; Li, X. The potential roles of Galectin-3 in AKI and CKD. Front. Physiol. 2023, 14, 1090724. [Google Scholar] [CrossRef] [PubMed]
- Januzzi, J.L. ST2 as a cardiovascular risk biomarker: From the bench to the bedside. J. Cardiovasc. Transl. Res. 2013, 6, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, E.O.; Shimpo, M.; De Keulenaer, G.W.; MacGillivray, C.; Tominaga, S.I.; Solomon, S.D.; Rouleau, J.L.; Lee, R.T.; Huang, C. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation 2002, 106, 2961–2966. [Google Scholar] [CrossRef]
- Tuegel, C.; Katz, R.; Alam, M.; Bhat, Z.; Bellovich, K.; De Boer, I.; Kestenbaum, B.; Sarnak, M.J.; Shlipak, M.G.; Ix, J.H. GDF-15, Galectin 3, Soluble ST2, and risk of mortality and cardiovascular events in CKD. Am. J. Kidney Dis. 2018, 72, 519–528. [Google Scholar] [CrossRef]
- Mirna, M.; Topf, A.; Wernly, B.; Rezar, R.; Paar, V.; Jung, C.; Lichtenauer, M.; Hoppe, U.C.; Edlinger-Stanger, A.; Weber, T. Novel biomarkers in patients with chronic kidney disease: An analysis of patients enrolled in the GCKD-Study. J. Clin. Med. 2020, 9, 886. [Google Scholar] [CrossRef]
- Chen, Y.J.; Chou, C.Y.; Er, T.K. Correlations of sST2 and Gal-3 with cardiothoracic ratio in patients with chronic kidney disease. Biomedicines 2024, 12, 791. [Google Scholar] [CrossRef]
- Nyárády, B.B.; Kiss, L.Z.; Bagyura, Z.; Merkely, B.; Dósa, E.; Láng, O.; Tóth, K.; Molnár, A.; Takács, J.; Szabó, A. Growth and differentiation factor-15: A link between inflammaging and cardiovascular disease. Biomed. Pharmacother. 2024, 174, 116475. [Google Scholar] [CrossRef]
- Lasaad, S.; Crambert, G. GDF15, an emerging player in renal physiology and pathophysiology. Int. J. Mol. Sci. 2024, 25, 5956. [Google Scholar] [CrossRef]
- Nair, V.; Robinson-Cohen, C.; Smith, M.R.; Bellovich, K.A.; Bhat, Z.Y.; Bobadilla, M.; Brosius, F.C.; de Boer, I.H.; Ix, J.H.; Kestenbaum, B.; et al. Growth differentiation factor–15 and risk of CKD progression. J. Am. Soc. Nephrol. 2017, 28, 2233–2240. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, T.; Sun, S.; Peng, Y.; Huang, X.; Wang, S.; Zhang, X.; Zhou, H.; Li, Q.; Wu, J.; et al. Role and mechanism of growth differentiation factor 15 in chronic kidney disease. J. Inflamm. Res. 2024, 17, 2861–2871. [Google Scholar] [CrossRef]
- Rasmussen, L.J.H.; Petersen, J.E.V.; Eugen-Olsen, J. Soluble urokinase plasminogen activator receptor (suPAR) as a biomarker of systemic chronic inflammation. Front. Immunol. 2021, 12, 780641. [Google Scholar] [CrossRef] [PubMed]
- Hayek, S.S.; Ko, Y.A.; Awad, M.; Ahmed, H.; Gray, B.; Hosny, K.M.; Reiser, J.; Quyyumi, A.A.; Brown, J.M.; Collins, B.; et al. Cardiovascular disease biomarkers and suPAR in predicting decline in renal function: A prospective cohort study. Kidney Int. Rep. 2017, 2, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Meijers, B.; Poesen, R.; Claes, K.; Dietrich, R.; Bammens, B.; Sprangers, B.; Naesens, M.; Verbeke, K.; Vanholder, R.; Evenepoel, P.; et al. Soluble urokinase receptor is a biomarker of cardiovascular disease in chronic kidney disease. Kidney Int. 2015, 87, 210–216. [Google Scholar] [CrossRef]
- Raphael, K.L. Metabolic acidosis in CKD: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 74, 263–275. [Google Scholar] [CrossRef]
- Bello, A.K.; Alrukhaimi, M.; Ashuntantang, G.E.; Basnet, S.; Rotter, R.C.; Douthat, W.G.; Dos Santos, J.P.; Kazancioglu, R.; Levin, A.; Okpechi, I.G.; et al. Complications of chronic kidney disease: Current state, knowledge gaps, and strategy for action. Kidney Int. Suppl. 2017, 7, 122–129. [Google Scholar] [CrossRef]
- Ammirati, A.L. Chronic kidney disease. Rev. Assoc. Médica Bras. 2020, 66 (Suppl. 1), s03–s09. [Google Scholar] [CrossRef]
- Koda, R.; Kazama, J.J.; Matsuo, K.; Kawamura, K.; Yamamoto, S.; Wakasugi, M.; Iseki, K.; Fujimoto, S.; Tsubakihara, Y.; Nangaku, M.; et al. Intact parathyroid hormone and whole parathyroid hormone assay results disagree in hemodialysis patients under cinacalcet hydrochloride therapy. Clin. Exp. Nephrol. 2015, 19, 710–717. [Google Scholar] [CrossRef][Green Version]
- Kritmetapak, K.; Pongchaiyakul, C. Parathyroid hormone measurement in chronic kidney disease: From basics to clinical implications. Int. J. Nephrol. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Brandenburg, V.; Ketteler, M. Vitamin D and secondary hyperparathyroidism in chronic kidney disease: A critical appraisal of the past, present, and the future. Nutrients 2022, 14, 3009. [Google Scholar] [CrossRef]
- Vogt, I.; Haffner, D.; Leifheit-Nestler, M. FGF23 and phosphate–cardiovascular toxins in CKD. Toxins 2019, 11, 647. [Google Scholar] [CrossRef]
- Okamoto, K.; Fujii, H.; Goto, S.; Kono, K.; Watanabe, K.; Nishi, S. Changes in the whole/intact parathyroid hormone ratio and their clinical implications in patients with chronic kidney disease. J. Nephrol. 2020, 33, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cao, H. Unlocking the mysteries of n-oxPTH: Implications for CKD patients. Front. Endocrinol. 2025, 15, 1455783. [Google Scholar] [CrossRef] [PubMed]
- Seiler-Mussler, S.; Limbach, A.S.; Emrich, I.E.; Pickering, J.W.; Roth, H.J.; Fliser, D.; Martus, P.; Krane, V.; Eckardt, K.U.; Titze, S.; et al. Association of nonoxidized parathyroid hormone with cardiovascular and kidney disease outcomes in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2018, 13, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Bonewald, L.F.; Wacker, M.J. FGF23 production by osteocytes. Pediatr. Nephrol. 2013, 28, 563–568. [Google Scholar] [CrossRef]
- Rausch, S.; Föller, M. The regulation of FGF23 under physiological and pathophysiological conditions. Pflüg Arch. Eur. J. Physiol. 2022, 474, 281–292. [Google Scholar] [CrossRef]
- Ho, B.B.; Bergwitz, C. FGF23 signalling and physiology. J. Mol. Endocrinol. 2021, 66, R23–R32. [Google Scholar] [CrossRef]
- Heijboer, A.C.; Cavalier, E. The measurement and interpretation of fibroblast growth factor 23 (FGF23) concentrations. Calcif. Tissue Int. 2022, 112, 258–270. [Google Scholar] [CrossRef]
- Erben, R.G. Physiological actions of fibroblast growth factor-23. Front. Endocrinol. 2018, 9, 267. [Google Scholar] [CrossRef]
- Van Der Vaart, A.; Yeung, S.M.H.; Van Dijk, P.R.; Bakker, S.J.L.; De Borst, M.H. Phosphate and fibroblast growth factor 23 in diabetes. Clin. Sci. 2021, 135, 1669–1687. [Google Scholar] [CrossRef]
- Mihai, S.; Codrici, E.; Popescu, I.D.; Enciu, A.M.; Rusu, E.; Zilisteanu, D.; Tanase, C.; Mihaila, M.; Cucu, N.; Preda, M.; et al. Inflammation-related patterns in the clinical staging and severity assessment of chronic kidney disease. Dis. Markers 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Stubbs, J.R.; He, N.; Idiculla, A.; Gillihan, R.; Liu, S.; David, V.; Hong, Y.; Quarles, L.D. Longitudinal evaluation of FGF23 changes and mineral metabolism abnormalities in a mouse model of chronic kidney disease. J. Bone Miner. Res. 2011, 27, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Simic, P. Bone and bone derived factors in kidney disease. Front. Physiol. 2024, 15, 1356069. [Google Scholar] [CrossRef] [PubMed]
- De Jong, M.A.; Eisenga, M.F.; Van Ballegooijen, A.J.; Beulens, J.W.J.; Vervloet, M.G.; Navis, G.; Bakker, S.J.L.; Gansevoort, R.T.; Van Vliet-Ostaptchouk, J.V.; De Borst, M.H.; et al. Fibroblast growth factor 23 and new-onset chronic kidney disease in the general population: The Prevention of Renal and Vascular Endstage Disease (PREVEND) study. Nephrol. Dial. Transplant. 2021, 36, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Lima, F.; Monier-Faugere, M.C.; Mawad, H.; David, V.; Malluche, H.H. FGF-23 and sclerostin in serum and bone of CKD patients. Clin. Nephrol. 2023, 99, 209–218. [Google Scholar] [CrossRef]
- Dreyer, T.J.; Keen, J.A.; Wells, L.M.; Roberts, S.J. Novel insights on the effect of sclerostin on bone and other organs. J. Endocrinol. 2023, 257, e220209. [Google Scholar] [CrossRef]
- Romejko, K.; Rymarz, A.; Szamotulska, K.; Bartoszewicz, Z.; Niemczyk, S. Relationships between sclerostin, leptin and metabolic parameters in non-dialysis chronic kidney disease males. J. Pers. Med. 2022, 13, 31. [Google Scholar] [CrossRef]
- Ji, Y.Q.; Guan, L.N.; Yu, S.X.; Yin, P.Y.; Shen, X.Q.; Sun, Z.W.; Wu, H.Y.; Chen, J.L.; Li, D.X.; Zhang, Y.; et al. Serum sclerostin as a potential novel biomarker for heart valve calcification in patients with chronic kidney disease. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 8822–8829. [Google Scholar]
- Lee, J.; Cho, D.H.; Min, H.J.; Son, Y.B.; Kim, T.B.; Oh, S.W.; Han, S.H.; Yoo, T.H.; Kim, Y.S.; Choi, K.H.; et al. Higher sclerostin is associated with pulmonary hypertension in pre-dialysis end-stage kidney disease patients: A cross-sectional prospective observational cohort study. BMC Pulm. Med. 2024, 24, 78. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Chang, C.C.; Hsieh, C.C.; Huang, Y.T.; Shih, Y.H.; Chang, H.C.; Tsai, Y.L.; Lin, Y.J.; Wu, M.C.; Chiang, T.I.; et al. Dickkopf-1 acts as a profibrotic mediator in progressive chronic kidney disease. Int. J. Mol. Sci. 2023, 24, 7679. [Google Scholar] [CrossRef]
- Neto, R.; Pereira, L.; Magalhães, J.; Quelhas-Santos, J.; Martins, S.; Carvalho, C.; Ribeiro, S.; Frazão, J.M.; Macário, F. Sclerostin and DKK1 circulating levels associate with low bone turnover in patients with chronic kidney disease stages 3 and 4. Clin. Kidney J. 2021, 14, 2401–2408. [Google Scholar] [CrossRef]
- Fang, Y.; Ginsberg, C.; Seifert, M.; Agapova, O.; Sugatani, T.; Register, T.C.; Freedman, B.I.; Monier-Faugere, M.-C.; Malluche, H.; Hruska, K.A. CKD-induced Wingless/Integration1 inhibitors and phosphorus cause the CKD–mineral and bone disorder. J. Am. Soc. Nephrol. 2014, 25, 1760. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Sontakke, T.; Acharya, S.; Kumar, S. A comprehensive review of biomarkers for chronic kidney disease in older individuals: Current perspectives and future directions. Cureus 2024, 16, e70262. [Google Scholar] [CrossRef] [PubMed]
- Maringhini, S.; Zoccali, C. Chronic kidney disease progression—A challenge. Biomedicines 2024, 12, 2203. [Google Scholar] [CrossRef] [PubMed]
- Mizdrak, M.; Kumrić, M.; Kurir, T.T.; Božić, J. Emerging biomarkers for early detection of chronic kidney disease. J. Pers. Med. 2022, 12, 548. [Google Scholar] [CrossRef]
- Lopez-Giacoman, S.; Madero, M. Biomarkers in chronic kidney disease, from kidney function to kidney damage. World J. Nephrol. 2015, 4, 57–73. [Google Scholar] [CrossRef]
Biomarker | Origin/Source | Mechanism/Function | Clinical Relevance |
---|---|---|---|
KIM-1 (Kidney Injury Molecule-1) | Proximal tubule epithelial cells | Marker of proximal tubule injury | Elevated in AKI and CKD; correlates with ACR, associated with inflammation and fibrosis |
NAG (N-acetyl-â-D-glucosaminidase) | Lysosomes of proximal tubule cells | Enzyme indicating tubular injury | Early marker of diabetic nephropathy (before albuminuria); reflects renal impairment and glycemic control |
Uromodulin (Tamm–Horsfall Protein) | Thick ascending limb of Henle’s loop and distal convoluted tubule | Involved in ion transport, immunity, and prevention of kidney stones | Urinary and serum levels predict CKD onset and progression; reflects tubular damage and nephron mass |
Klotho | Proximal and distal renal tubules; other tissues | Anti-aging and renoprotective molecule | Positive correlation with eGFR; deficiency promotes CKD progression |
Dickkopf-3 (DKK-3) | Tubular epithelial cells in kidneys (expressed in response to injury) | Urinary stress glycoprotein marker; reflects ongoing renal tubular stress and injury | Elevated urinary DKK-3 linked to eGFR decline and CKD progression; associated with proteinuria and poor renal outcomes; predictor of CKD progression in COPD and resistant hypertension |
Biomarker | Origin/Source | Mechanism/Function | Clinical Relevance |
---|---|---|---|
Ficolins | Liver, immune cells | Pattern recognition molecules; activate lectin pathway of the complement system | Elevated levels are associated with diabetic kidney disease progression and diabetes-related mortality; affect post-transplant graft outcomes |
NLRP3 inflammasome | Immune system (intracellular complex) | Activates IL-1B and IL-18; stimulated by ROS and mitochondrial damage | Promotes inflammation, fibrosis, and CKD progression; considered a therapeutic target in hyperoxaluria, nephrocalcinosis, and renal fibrosis |
TNFR1 and TNFR2 (tumor necrosis factor receptor 1 and 2) | Circulating receptors of TNF-alpha | Mediate inflammatory signaling; correlate with renal function | Early CKD biomarkers; predict progression in IgA nephropathy and DKD; prognostic in hypertension-related CKD |
Calprotectin | Myeloid cells (especially neutrophils) | Acute-phase protein; released during neutrophil degranulation | Associated with new-onset CKD, vascular calcification, and increased cardiovascular and all-cause mortality in CKD patients |
SIRI (systemic inflammation response index) | Derived from blood cell counts | Systemic inflammation index (Neutrophil × Monocyte/Lymphocyte) | Elevated in hypertensive patients at risk of CKD; predicts cardiovascular and all-cause mortality—especially useful in early CKD stages (I–III) |
NLR (neutrophil-to-lymphocyte ratio) | Derived from blood cell counts | Marker of immune imbalance (Neutrophil/Lymphocyte) | High NLR correlates with advanced CKD, proteinuria, and decreased eGFR; predictive of cardiovascular risk and mortality in CKD and dialysis patients |
CAR (CRP/albumin ratio) | Serum protein levels | Reflects systemic inflammation and nutritional status (PEW marker) | Reliable, accessible PEW and risk stratification marker |
Biomarker | Origin/Source | Mechanism/Function | Clinical Relevance |
---|---|---|---|
Galectin-3 | Macrophages, epithelial cells, fibroblasts | â-galactoside-binding lectin; mediates inflammation, fibrosis, cardiac remodeling | Elevated in CKD and heart failure. Predicts renal fibrosis, rapid renal function decline, and CV mortality. Correlates with serum creatinine and proteinuria. Potential early biomarker of both renal and cardiac complications. |
sST2 (soluble suppression of tumorigenicity-2) | Cardiomyocytes, endothelial cells | Soluble form of ST2 receptor; binds IL-33, modulating inflammatory responses to cardiac stress | Predicts CKD progression and cardiovascular mortality. Especially valuable in dialysis patients. |
GDF-15 (Growth differentiation factor-15) | Cardiomyocytes, kidneys, immune cells | Stress-induced cytokine involved in inflammation and oxidative stress | Associated with heart failure, atherosclerosis, and CKD progression. Predicts adverse renal and cardiovascular outcomes. |
suPAR (soluble urokinase-type plasminogen activator receptor) | Immune system (monocytes, neutrophils), endothelium | Activates integrins, disrupting podocyte structure and filtration barrier | High levels linked with systemic inflammation, kidney function decline, and cardiovascular events. Predictive of mortality and CV risk in CKD. |
Biomarker | Origin / Source | Mechanism / Function | Clinical Relevance |
---|---|---|---|
Parathyroid Hormone (PTH) | Parathyroid glands | Regulates calcium homeostasis | Established marker of SHPT and bone mineral disorder (CKD-MBD). A predictor of CKD progression, cardiovascular events, and mortality. |
Fibroblast Growth Factor 23 (FGF-23) | Osteocytes and mature osteoblasts | Regulates phosphate metabolism. Suppresses 1-á-hydroxylase activity, reducing calcitriol production. Acts on parathyroid glands to suppress PTH. | Elevated early in CKD, before changes in phosphate, calcium, or PTH. Predicts CKD progression, all-cause mortality, and CV events. |
Sclerostin | Osteocytes (mainly in cortical bone) | Reduces osteoblast activity and bone formation rate. Affects calcium–phosphate homeostasis. | Negatively correlated with eGFR. Promising marker for CKD-MBD and disease progression. Linked with hyperglycemia and pulmonary hypertension in CKD patients. |
Dickkopf-1 (DKK-1) | Various tissues including bone; secreted protein | Regulates bone metabolism and embryonic development. Proposed involvement in “cross-talk” between tissues. | Emerging marker for CKD-related bone disorders and CKD-MBD. Levels correlate with disease severity and lower levels reported in advanced CKD. Associated with low bone turnover. Predictive of progression to ESKD. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dopierała, M.; Nitz, N.; Król, O.; Wasicka-Przewoźna, K.; Schwermer, K.; Pawlaczyk, K. New and Emerging Biomarkers in Chronic Kidney Disease. Biomedicines 2025, 13, 1423. https://doi.org/10.3390/biomedicines13061423
Dopierała M, Nitz N, Król O, Wasicka-Przewoźna K, Schwermer K, Pawlaczyk K. New and Emerging Biomarkers in Chronic Kidney Disease. Biomedicines. 2025; 13(6):1423. https://doi.org/10.3390/biomedicines13061423
Chicago/Turabian StyleDopierała, Mikołaj, Nadja Nitz, Oliwia Król, Karolina Wasicka-Przewoźna, Krzysztof Schwermer, and Krzysztof Pawlaczyk. 2025. "New and Emerging Biomarkers in Chronic Kidney Disease" Biomedicines 13, no. 6: 1423. https://doi.org/10.3390/biomedicines13061423
APA StyleDopierała, M., Nitz, N., Król, O., Wasicka-Przewoźna, K., Schwermer, K., & Pawlaczyk, K. (2025). New and Emerging Biomarkers in Chronic Kidney Disease. Biomedicines, 13(6), 1423. https://doi.org/10.3390/biomedicines13061423