Early Renal Dysfunction and Reduced Retinal Vascular Density Assessed by Angio-OCT in Hypertensive Patients
Abstract
:1. Introduction
2. Materials and Methods
- Age <20 years or >70 years.
- Known diabetes or fasting blood glucose > 126 mg/dL.
- Pregnancy.
- Systemic diseases or ocular pathologies such as glaucoma, uveitis, high myopia, or macular degeneration, as well as a history of ophthalmic surgery that could have affected the retinal or choroidal vascular system.
- Nephroparenchymal, renovascular, malignant, or endocrine hypertension, or obstructive sleep apnea syndrome.
- Known hematuria, nephritic diseases and hereditary kidney diseases, absence of certain diagnosis of CKD in the group belonging to eGFR > 60 mL/min/1.73 m2, or estimated glomerular filtration rate (eGFR) < 15 mL/min/1.73 m [7].
- Positive history or clinical signs of Heart failure, coronary artery disease, cerebrovascular disease and major non-cardiovascular diseases.
- Any condition preventing reliable blood pressure (BP) measurements using the oscillometric technique (e.g., atrial fibrillation, frequent ectopic beats, second- or third-degree atrioventricular blocks, or an upper arm circumference < 22 cm). Patients with an upper arm circumference > 32 cm were not excluded; instead, an appropriately sized cuff was used to obtain accurate BP measurements.
2.1. Study Design
- Routine biochemical assessments;
- 24-h ambulatory blood pressure (BP) monitoring using the oscillometric BP Lab Vasotens device, which also enabled the estimation of central (aortic) blood pressure;
- Optical coherence tomography angiography (Angio-OCT).
- 3D 7x7H
- Macular Radial 6.0
- Angio-OCT 4.5
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blum, M.; Saemann, A.; Wolf, G. The eye, the kidney and microcirculation. Nephrol. Dial. Transpl. 2011, 26, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Bodaghi, B.; Massamba, N.; Izzedine, H. The eye: A window on kidney diseases. Clin. Kidney J. 2014, 7, 337–338. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wong, C.W.; Wong, T.Y.; Cheng, C.Y.; Sabanayagam, C. Kidney and eye diseases: Common risk factors, etiological mechanisms, and pathways. Kidney Int. 2014, 85, 1290–1302. [Google Scholar] [CrossRef] [PubMed]
- Farrah, T.E.; Dhillon, B.; Keane, P.A.; Webb, D.J.; Dhaun, N. The eye, the kidney, and cardiovascular disease: Old concepts, better tools, and new horizons. Kidney Int. 2020, 98, 323–342. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Del Pinto, R.; Mulè, G.; Vadalà, M.; Carollo, C.; Cottone, S.; Agabiti Rosei, C.; De Ciuceis, C.; Rizzoni, D.; Ferri, C.; Muiesan, M.L. Arterial Hypertension and the Hidden Disease of the Eye: Diagnostic Tools and Therapeutic Strategies. Nutrients 2022, 14, 2200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wilkinson-Berka, J.L.; Agrotis, A.; Deliyanti, D. The retinal reninangiotensin system: Roles of angiotensin II and aldosterone. Peptides 2012, 36, 142–150. [Google Scholar] [CrossRef]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P. Acute Dialysis Quality Initiative Workgroup. Acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204–R212. [Google Scholar]
- Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; de Pinho, R.M.; Albini, F.L.; Boivin, J.M.; et al. European Society of Hypertension clinical practice guidelines for the management of arterial hypertension. Eur. J. Intern. Med. 2024, 126, 1–15. [Google Scholar] [CrossRef] [PubMed]
- KDIGO CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Vadalà, M.; Castellucci, M.; Guarrasi, G.; Terrasi, M.; La Blasca, T.; Mulè, G. Retinal and choroidal vasculature changes associated with chronic kidney disease. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 1687–1698. [Google Scholar] [CrossRef] [PubMed]
- Chua, J.; Chin, C.W.L.; Hong, J.; Chee, M.L.; Le, T.T.; Ting, D.S.W.; Wong, T.Y.; Schmetterer, L. Impact of hypertension on retinal capillary microvasculature using optical coherence tomographic angiography. J. Hypertens. 2019, 37, 572–580. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frost, S.; Nolde, J.M.; Chan, J.; Joyson, A.; Gregory, C.; Carnagarin, R.; Herat, L.Y.; Matthews, V.B.; Robinson, L.; Vignarajan, J.; et al. Retinal capillary rarefaction is associated with arterial and kidney damage in hypertension. Sci. Rep. 2021, 11, 1001. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Farrah, T.E.; Pugh, D.; Chapman, F.A.; Godden, E.; Balmforth, C.; Oniscu, G.C.; Webb, D.J.; Dhillon, B.; Dear, J.W.; Bailey, M.A.; et al. Choroidal and retinal thinning in chronic kidney disease independently associate with eGFR decline and are modifiable with treatment. Nat. Commun. 2023, 14, 7720. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mulè, G.; Vadalà, M.; La Blasca, T.; Gaetani, R.; Virone, G.; Guarneri, M.; Castellucci, M.; Guarrasi, G.; Terrasi, M.; Cottone, S. Association between early-stage chronic kidney disease and reduced choroidal thickness in essential hypertensive patients. Hypertens Res. 2019, 42, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Paterson, E.N.; Ravindran, M.L.; Griffiths, K.; Le Velly, C.A.; Cardwell, C.C.; McCarter, R.V.; Nicol, P.; Chhablani, J.K.; Rasheed, M.A.; Vupparaboina, K.K.; et al. Association of reduced inner retinal thicknesses with chronic kidney disease. BMC Nephrol. 2020, 21, 37. [Google Scholar] [CrossRef]
- Theuerle, J.D.; Al-Fiadh, A.H.; Wong, E.; Patel, S.K.; Ashraf, G.; Nguyen, T.; Wong, T.Y.; Ierino, F.L.; Burrell, L.M.; Farouque, O. Retinal microvascular function predicts chronic kidney disease in patients with cardiovascular risk factors. Atherosclerosis 2022, 341, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Liew, G.; Mitchell, P.; Wong, T.Y.; Wang, J.J. Retinal microvascular signs are associated with chronic kidney disease in persons with and without diabetes. Kidney Blood Press Res. 2012, 35, 589–594. [Google Scholar] [CrossRef]
- O’Neill, R.A.; Maxwell, A.P.; Kee, F.; Young, I.; McGuinness, B.; Hogg, R.E.; Gj, M. Association of retinal venular tortuosity with impaired renal function in the Northern Ireland Cohort for the Longitudinal Study of Ageing. BMC Nephrol. 2020, 21, 382. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dziedziak, J.; Zaleska-Żmijewska, A.; Szaflik, J.P.; Cudnoch-Jędrzejewska, A. Impact of Arterial Hypertension on the Eye: A Review of the Pathogenesis, Diagnostic Methods, and Treatment of Hypertensive Retinopathy. Med. Sci. Monit. 2022, 28, e935135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheung, C.Y.; Ikram, M.K.; Sabanayagam, C.; Wong, T.Y. Retinal microvasculature as a model to study the manifestations of hypertension. Hypertension 2012, 60, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Wai, K.L.; McGeechan, K.; Ikram, M.K.; Kawasaki, R.; Xie, J.; Klein, R.; Klein, B.B.; Cotch, M.F.; Wang, J.J.; et al. Retinal vascular caliber and the development of hypertension: A meta-analysis of individual participant data. J. Hypertens. 2014, 32, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Mulè, G.; Vadalà, M.; Sinatra, N.; Mancia, E.; Sorce, A.; Geraci, G.; Carollo, C.; Montalbano, K.; Castellucci, M.; Guarrasi, G.; et al. Relationship of choroidal thickness with pulsatile hemodynamics in essential hypertensive patients. J. Clin. Hypertens. 2021, 23, 1030–1038. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fischman, C.J.; Townsend, R.R.; Cohen, D.L.; Rahman, M.; Weir, M.R.; Juraschek, S.P.; South, A.M.; Appel, L.J.; Drawz, P.; Cohen, J.B.; et al. Pulse Pressure and Cardiovascular and Kidney Outcomes by Age in the Chronic Renal Insufficiency Cohort (CRIC). Am. J. Hypertens. 2025, 38, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Maeda, T.; Yokota, S.; Nishi, T.; Funakoshi, S.; Tsuji, M.; Satoh, A.; Abe, M.; Kawazoe, M.; Yoshimura, C.; Tada, K.; et al. Association between pulse pressure and progression of chronic kidney disease. Sci. Rep. 2021, 11, 23275. [Google Scholar] [CrossRef]
- Safar, M.E.; Blacher, J.; Pannier, B.; Guerin, A.P.; Marchais, S.J.; Guyonvarc’h, P.M.; London, G.M. Central pulse pressure and mortality in end-stage renal disease. Hypertension 2002, 39, 735–738. [Google Scholar] [CrossRef]
- Seshadri, S.; Shokr, H.; Gherghel, D. Retinal Microvascular Abnormalities and Systemic Arterial Stiffness Are the First Manifestation of Cardiovascular Abnormalities in Patients with Untreated Moderate to Severe Obstructive Sleep Apnoea and with Low to Intermediate Cardiovascular Risk—A Pilot Study. Biomedicines 2022, 10, 2669. [Google Scholar] [CrossRef]
- Kim, M.; Kim, R.Y.; Kim, J.Y.; Park, Y.H. Correlation of systemic arterial stiffness with changes in retinal and choroidal microvasculature in type 2 diabetes. Sci. Rep. 2019, 9, 1401. [Google Scholar] [CrossRef]
- Ott, C.; Raff, U.; Harazny, J.M.; Michelson, G.; Schmieder, R.E. Central pulse pressure is an independent determinant of vascular remodeling in the retinal circulation. Hypertension 2013, 61, 1340–1345. [Google Scholar] [CrossRef] [PubMed]
- Thorin-Trescases, N.; de Montgolfier, O.; Pinçon, A.; Raignault, A.; Caland, L.; Labbé, P.; Thorin, E. Impact of pulse pressure on cerebrovascular events leading to age-related cognitive decline. Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H1214–H1224. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, Y.; Jiang, H.; Shi, Y.; Qu, D.; Gregori, G.; Zheng, F.; Rundek, T.; Wang, J. Age-Related Alterations in the Retinal Microvasculature, Microcirculation, and Microstructure. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3804–3817. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, H.; Liu, Y.; Rosa Gameiro, G.; Gregori, G.; Dong, C.; Rundek, T.; Wang, J. Age-Related Alterations in Retinal Tissue Perfusion and Volumetric Vessel Density. Investig. Ophthalmol. Vis. Sci. 2019, 60, 685–693. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hughes, A.D.; Stanton, A.V.; Jabbar, A.S.; Chapman, N.; Martinez-Perez, M.E.; McG Thom, S.A. Effect of antihypertensive treatment on retinal microvascular changes in hypertension. J. Hypertens. 2008, 26, 1703–1707. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.V.G.; de Figueiredo, R.C.; Rios, D.R.A. Effect of Different Classes of Antihypertensive Drugs on Endothelial Function and Inflammation. Int. J. Mol. Sci. 2019, 20, 3458. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Agabiti-Rosei, C.; Bruno, R.M.; Rizzoni, D. Microcirculation and Macrocirculation in Hypertension: A Dangerous Cross-Link? Hypertension 2022, 79, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Hirooka, K.; Shiraga, F. Potential role for angiotensin-converting enzyme inhibitors in the treatment of glaucoma. Clin. Ophthalmol. 2007, 1, 217–223. [Google Scholar] [PubMed] [PubMed Central]
- Lin, Y.-H.; Huang, S.-M.; Chuang, L.-H.; Chen, L.-C. Retinal Vessel Density Changes on Optical Coherence Tomography Angiography and Predictive Factors in Normal-Tension Glaucoma Treated with Topical Beta-Blocker. Sci. Pharm. 2021, 89, 40. [Google Scholar] [CrossRef]
Total Population (n = 142) | eGFR > 60 mL/min/1.73 m2 (n = 118) | eGFR < 60 mL/min/1.73 m2 (n = 24) | p | |
---|---|---|---|---|
Age | 47.6 ± 12.8 | 44.7 ± 12.4 | 58.4 ± 8.8 | <0.001 |
Male sex% | 74% | 75% | 72% | 0.99 |
BMI (kg/m2) | 27.9 ± 4.3 | 28.1 ± 4.4 | 27.3 ± 4.3 | 0.491 |
Waist Circumference (cm) | 96.5 ± 11.6 | 96.5 ± 11.7 | 96.5 ± 11.2 | 0.99 |
Smokers | 21.7% | 21.1 | 25% | 0.078 |
GFR-CKD-EPI (mL/min) | 89.1 ± 22.7 | 96.1 ± 17.7 | 55 ± 7.9 | <0.001 |
(UAE)* (mg/24 h) | 70 (33–420) | 41.5 (31.5–370.25) | 205 (33.1–638) | 0.265 |
Glycemia (mg/dL) | 95 + 16 | 94 ± 16 | 101 ± 13 | 0.047 |
Cholesterol (mg/dL) | 194 ± 30 | 194 ± 32 | 193 ± 24 | 0.86 |
HDL (mg/dL) | 49 ± 13 | 49 ± 12 | 43 ± 15 | 0.87 |
Triglycerides (mg/dL) | 110 (78–149) | 108.4 (75.8–143) | 118 (102–178) | 0.052 |
Total Population (n = 142) | eGFR > 60 mL/min/1.73 m2 (n = 118) | eGFR ≤ 60 mL/min/1.73 m2 (n = 24) | p | |
---|---|---|---|---|
Clinical systolic BP (mmHg) | 139 ± 13 | 139 ± 13 | 136 ± 15 | 0.357 |
Clinical diastolic BP (mmHg) | 86 ± 10 | 87 ± 9 | 83 ± 10 | 0.069 |
Clinical pulse pressure (mmHg) | 52 ± 10 | 52 ± 11 | 53 ± 11 | 0.643 |
Clinical mean pressure (mmHg) | 104 ± 10 | 104 ± 9 | 101 ± 10 | 0.104 |
Clinical heart rate (bpm) | 74 ± 11 | 74 ± 11 | 76 ± 11 | 0.253 |
Mean systolic BP 24 h (mmHg) | 131 ± 13 | 131 ± 12 | 135 ± 16 | 0.098 |
Mean diastolic BP 24 h (mmHg) | 82 ± 9 | 82 ± 9 | 82 ± 10 | 0.676 |
24 h Aortic systolic pressure (mmHg) | 125 ± 13 | 124 ± 13 | 131 ± 16 | 0.02 |
24 h Aortic pulse pressure (mmHg) | 43 ± 12 | 42 ± 12 | 50 ± 11 | 0.002 |
Total Population (n = 142) | eGFR > 60 mL/min (n = 118) | eGFR < 60 mL/min (n = 24) | p | |
---|---|---|---|---|
Subjects treated pharmacologically for hypertension (%) | 97 (68) | 84 (71) | 13 (54) | 0.622 |
ACE-inhibitors | 17 (12) | 12 (10) | 5 (20) | 0.9999 |
Sartans | 17 (12) | 9 (7) | 8 (33) | 0.581 |
Diuretics | 17 (12) | 8 (6) | 9 (38) | 0.174 |
Calcium channel blockers | 17 (12) | 11 (9) | 6 (25) | 0.579 |
β-blockers | 17 (12) | 14 (11) | 3 (13) | 0.9999 |
αβ-blockers | 17 (12) | 14 (11) | 3 (13) | 0.633 |
α-blockers | 17(12) | 14 (11) | 3(13) | 0.679 |
Central antiadrenergics | 17 (12) | 15 (12) | 2 (12) | 0.760 |
Statins | 17 (12) | 11 (9) | 6 (25) | 0.263 |
Antiplatelet agents | 44 (31) | 38 (32) | 6 (25) | 0.897 |
Allopurinol | 17 (12) | 17 (14) | 0 (0) | 0.393 |
Age | 24 h Aortic SBP | Aortic PP | Creatinine | eGFR | Glycemia | ||
---|---|---|---|---|---|---|---|
Vascular density– Superficial parafoveal plexus | r = | −0.287 | −0.226 | −0.303 | −0.320 | 0.339 | −0.22 |
p = | <0.001 | 0.008 | <0.001 | <0.001 | <0.001 | 0.001 | |
Vascular density– Deep parafoveal plexus | r = | −0.292 | −0.197 | −0.262 | −0.350 | 0.382 | −0.286 |
p = | <0.001 | 0.02 | 0.002 | <0.001 | <0.001 | 0.001 | |
Vascular density– Superficial foveal plexus | r = | NS | −0.183 | NS | NS | 0.245 | NS |
p = | NS | 0.03 | NS | NS | 0.003 | NS | |
Vascular density– Deep foveal plexus | r = | NS | −0.197 | NS | NS | 0.233 | NS |
p = | NS | 0.02 | NS | NS | 0.007 | NS |
Dependent Variable: Superficial Parafoveal Retinal Vascular Density | B* | 95% C.I. for B | β^ | p | |
---|---|---|---|---|---|
Covariates | Lower | Upper | |||
Variations of one SD for glomerular filtration rate | 0.21 | 0.05 | 0.38 | 0.22 | 0.012 |
Variations of one SD for estimated aortic pulse pressure | −0.20 | −0.36 | −0.04 | −0.2 | 0.012 |
Variations of one SD for Age | −0.15 | −0.31 | 0.01 | −0.16 | 0.07 |
Constant | 37.07 | 36.92 | 37.21 | 0.000 |
Dependent Variable: Deep Parafoveal Retinal Vascular Density | B* | 95% C.I. for B | β^ | p | |
---|---|---|---|---|---|
Covariates | Lower | Upper | |||
Variations of one SD for estimated glomerular filtration rate | 0.352 | 0.169 | 0.536 | 0.303 | 0.001 |
Variations of one SD for estimated aortic pulse pressure | −0.178 | −0.36 | 0.007 | −0.149 | 0.06 |
Variations of one SD for glycemia | −0.242 | −0.42 | −0.62 | −0.206 | 0.009 |
Constant | 37.91 | 37.74 | 38.09 | 0.000 |
Dependent Variable: Superficial Foveal Retinal Vascular Density | B* | 95% C.I. for B | β^ | p | |
---|---|---|---|---|---|
Covariates | Lower | Upper | |||
Variations of one SD for estimated glomerular filtration rate | 0.302 | 0.04 | 0.56 | 0.187 | 0.024 |
Constant | 33.93 | 33.41 | 34.44 | 0.000 |
Dependent Variable: Deep Foveal Retinal Vascular Density | B* | 95%C.I. for B | β^ | p | |
---|---|---|---|---|---|
Covariates | Lower | Upper | |||
Variations of one SD for estimated glomerular filtration rate | 0.34 | 0.21 | 0.68 | 0.176 | 0.037 |
Constant | 32.12 | 31.79 | 32.45 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carollo, C.; Vadalà, M.; Sorce, A.; Cirafici, E.; Bennici, M.; Castellucci, M.; Bonfiglio, V.M.E.; Mulè, G.; Geraci, G. Early Renal Dysfunction and Reduced Retinal Vascular Density Assessed by Angio-OCT in Hypertensive Patients. Biomedicines 2025, 13, 1176. https://doi.org/10.3390/biomedicines13051176
Carollo C, Vadalà M, Sorce A, Cirafici E, Bennici M, Castellucci M, Bonfiglio VME, Mulè G, Geraci G. Early Renal Dysfunction and Reduced Retinal Vascular Density Assessed by Angio-OCT in Hypertensive Patients. Biomedicines. 2025; 13(5):1176. https://doi.org/10.3390/biomedicines13051176
Chicago/Turabian StyleCarollo, Caterina, Maria Vadalà, Alessandra Sorce, Emanuele Cirafici, Miriam Bennici, Massimo Castellucci, Vincenza Maria Elena Bonfiglio, Giuseppe Mulè, and Giulio Geraci. 2025. "Early Renal Dysfunction and Reduced Retinal Vascular Density Assessed by Angio-OCT in Hypertensive Patients" Biomedicines 13, no. 5: 1176. https://doi.org/10.3390/biomedicines13051176
APA StyleCarollo, C., Vadalà, M., Sorce, A., Cirafici, E., Bennici, M., Castellucci, M., Bonfiglio, V. M. E., Mulè, G., & Geraci, G. (2025). Early Renal Dysfunction and Reduced Retinal Vascular Density Assessed by Angio-OCT in Hypertensive Patients. Biomedicines, 13(5), 1176. https://doi.org/10.3390/biomedicines13051176