Advancing Antidepressive Agents: Drug Discovery and Polymer-Based Drug Delivery Systems for Improved Treatment Outcome
Abstract
:1. Introduction
2. Causes of Depression
2.1. Environmental Risk Factors
2.2. Hormonal Imbalance Factors
2.3. Genome-Wide Association Studies (GWAS)
3. Mechanisms of Depression
3.1. Monoamine Neurotransmitter Changes
3.2. Inflammation
3.3. Neuroplasticity and Critical Periods
3.4. Gut-Brain Axis Dysregulation
3.5. Oxidative Stress and Mitochondrial Dysfunction
4. Factors Influencing the Efficacy of Antidepressants
4.1. Drug Factors
4.2. Body Factors
4.3. Common Factors Between Drugs and the Body
5. Solutions for Improving Depression
Classification | Acting Point | Effect | Efficacy | Efficacy Rate | Side Effects | Representative Drugs | Refs. |
---|---|---|---|---|---|---|---|
Selective serotonin reuptake inhibitors (SSRIs) | Serotonin Transport Protein | ↑ Concentration of serotonin | 50–60% response rate in major depressive disorder (MDD) (HAM-D reduction ≥ 50%) | 50–60% (MDD) | Withdrawal syndrome, such as the flu, feeling sleepy | Fluoxetine, paroxetine, sertraline, fluvoxamine, escitalopram, and citalopram | [69,70,71] |
Serotonin-noradrenaline reuptake inhibitors (SNRIs) | Serotonin Transport Protein, Norepinephrine Transport Protein | ↑ Concentration of serotonin and noradrenaline in a balance | 55–65% response rate, may work better in severe depression | 50–65% (MDD) | Withdrawal syndrome, such as flu-like feelings, sleepiness, and granulocytosis (very rare) | Venlafaxine, desvenlafaxine, duloxetine, milnacipran, and levomilnacipran | [72,73,74] |
Serotonin Receptor Antagonists and Reuptake Inhibitors (SARIs) | Serotonin Transport Protein, 5-HT2 Receptor | ↑ Concentration of serotonin ↑ Concentration of noradrenaline ↓ Production of hydrogen peroxide | 45–55% response rate, rapid sedation | 45–55% (MDD) | Drowsiness, priapism (rare but serious) | Trazodone and nefazodone | [75,76,77] |
Norepinephrine and dopamine reuptake inhibitors (NDRIs) | Norepinephrine Transport Protein, Dopamine Transport Protein | ↑ Concentration of norepinephrine and dopamine | 50–60% response rate, may improve fatigue and cognition | 45–55% (MDD) | Seizure risk, insomnia | Bupropion | [78,79,80] |
Melatonin receptor agonists and 5-HT2C receptor antagonists | Melatonin Receptor, 5-HT2C Receptor | ↑ Concentration of serotonin ↑ Concentration of dopamine ↓ Production of hydrogen peroxide | 40–50% response rate, improves sleep architecture | 40–50% (MDD, insomnia) | Liver monitoring required. | Agomelatine | [81,82] |
NMDA receptor antagonist | NMDA Receptor | ↑ Release of glutamine, leading to the activation of subtype glutamate receptors | 70% rapid response (within 24 h) in TRD, effects last ~1 week | 60–70% (TRD) | Hypertension | Ketamine | [83,84,85,86,87,88,89] |
5.1. New Antidepressants
5.1.1. Selective Serotonin Reuptake Inhibitors (SSRIs)
5.1.2. Serotonin and Norepinephrine Reuptake Inhibitors (SNRIs)
5.1.3. Serotonin Receptor Antagonists and Reuptake Inhibitors (SARIs)
5.1.4. Norepinephrine and Dopamine Reuptake Inhibitors (NDRIs)
5.1.5. Melatonin Receptor Agonists and 5-HT2C Receptor Antagonists
5.1.6. Others
5.2. New Dosage Form of Antidepressants
5.2.1. Injection
5.2.2. Patch
5.2.3. Extended-Release/Controlled-Release Formulations
5.2.4. Nasal Spray
5.2.5. Orally Disintegrating Tablets
5.2.6. Nanoparticle-Based Formulations
Polymers | Forms | Loaded Drug | Functions | Results | Ref. |
---|---|---|---|---|---|
Polylactic acid | Coating of nanospheres | Venlafaxine | Controlled release | An obvious delay of release in intestinal fluid, with a prevention of burst in gastric fluid. | [161] |
Poly(lactic-co-glycolic acid) (PLGA) | Microparticles | Mirtazapine | Controlled release | The release rate was very close to zero order, and extended release was achieved. | [162] |
Intranasally delivered nanoparticles | Agomelatine | Enhancement of effects | The antidepressant effect was improved, obviously. | [163] | |
Chitosan | Microsphere | Mirtazapine | Modification of pharmacokinetic properties | Clear improvements in PK parameters, including AUC, half-life, and reduced clearance, were shown. | [164] |
Intranasally delivered nanoparticles | Venlafaxine | Targeting delivery | Through comparison, the concentration of venlafaxine delivered by nanoparticles was much higher in the brain, especially the effect on the increase of brain/blood ratios and drug transport efficiency, showing its high efficiency. | [165] | |
Nanoparticles (with modification of Tween 80) | Minocycline | Targeting delivery | The modified nanoparticles showed a better efficiency for target transporting and higher safety. | [166] | |
Nanoparticles (with modification of Tween 80) | Gallic acid | Enhancement of effects, targeting delivery | Decreases in activity in monoamine oxidase and malondialdehyde levels were in expectation. | [167] | |
Interpenetrating polyelectrolyte nanocomplexes (IPNC) (with pectin) | Citalopram | Controlled release (extended) | The in vitro, in vivo, and histopathological examinations all showed good drug effects and great extended properties, with the most extended gained when the complex is made of chitosan and pectin in a 3:1 ratio. | [168] | |
Intranasally delivered thermoreversible biogel (with glycerophosphate) | Doxepin | Targeting delivery | The bioavailability was clearly improved, and prolonged release was achieved as expected. | [169] | |
Combination of polyoxyethylene (25) lauryl ether and β-cyclodextrin | Nasal spray particles | GLP-2 peptide | Improvement on CNS transitivity and pharmacodynamic effect | The stability of GLP-2 pep was increased, and the CNS migration profile was good, as well as the antidepressant effect. | [170] |
polyethylene oxide and polysiloxane | hydrophilic-hydrophobic copolymer networks | Protriptyline | Controlled release | As the content of polyethylene oxide changes, the release rate of the drug can be controlled. | [171] |
Polyethylcellulose | Outer coating networks (NE30D form another coating) | Venlafaxine | Controlled release | As the coatings were added, the drug release profile was satisfactory, and stability was good. | [172] |
Semi-interpenetrating hydrogels (with anionic polyamidoamine dendrimers) | Venlafaxine | Controlled release (extended) | The release rate is largely slowed by the addition of dendrimers, while the hydrogel behavior was affected by certain content of PEG. | [173] | |
Poloxamer | Self-assembled thermosensitive hydrogel (P407, P188, and alginate) | Icariin | Thermosensitive, controlled release | The release rate had a satisfactory zero-order kinetic property, and low doses had a fast and good antidepressant effect. | [174] |
Intranasally delivered thermoresponsive in situ gel (P407, P188) | Agomelatine | Targeting delivery | The bioavailability in the brain was largely increased, and the pharmacodynamic effects of agomelatine were increased largely. | [175] | |
Berberine | Enhancement of effects | A better antidepressant effect was achieved, and a lower dose could be used. | [176] | ||
Alginate | Intranasally delivered nanogel-based thermosensitive hydrogel | Albiflorin | Enhancement of effects | Higher bioavailability was approved, as a lower dose can have better antidepressant effects, and prolonged release was achieved. | [177] |
PLGA and PC combination | Nanospheres | Duloxetine | Modification of pharmacokinetic properties | The brain concentration of duloxetine was increased three times compared with the oral solution. | [59] |
Poly(ε-caprolactone) | Nanosphere capsules (With lipid core) | Trazodone | Controlled release | A controlled release rate was achieved no matter what kind of oil core it was, and the antidepressant effect was increased obviously. | [178] |
Ethylene Vinyl Acetate | Films | Curcumin | Enhanced solubility and stability | Improved solubility and stability of curcumin in EVA films for potential pharmaceutical applications. | [179] |
Poly(vinyl alcohol) | Nanocapsules | Paclitaxel | Targeted delivery and controlled release | Targeted delivery of paclitaxel to cancer cells with controlled release properties. | [180] |
Poly(lactic acid)-PEG copolymer | Micelles | Doxorubicin | Targeted delivery and reduced toxicity | Effective targeting of cancer cells with reduced toxicity to normal tissues. | [181] |
Chitosan-Alginate composite | Microcapsules | Probiotics | Enhanced stability and gut delivery | Improved stability of probiotics and enhanced delivery to the gut. | [182] |
Poly(β-amino ester) | Nanoparticles | Vaccine antigen | Enhanced immune response | Improved immune response and antigen presentation. | [183] |
Poly(styrene-co-maleic acid) | Nanofibers | Growth factors | Biocompatible, controlled release, tissue engineering support | Promoted tissue regeneration and healing. | [184] |
Poly(ethylene oxide) | Micelles | Gene therapeutics | Enhanced gene transfection efficiency | Improved gene therapy outcomes with minimal side effects | [185] |
Poly(N-isopropylacrylamide) (PNIPAM) | Thermosensitive Hydrogels | Proteins and Peptides | Temperature-responsive release | Controlled release based on temperature changes, cell protection. | [186] |
Poly(glycolic acid) | Microspheres | Anti-inflammatory Drugs | Controlled release | Reduced inflammation and improved tissue healing. | [187] |
Polyurethane | Films | Antibiotics | Antimicrobial activity, wound healing support | Reduced infection risk and accelerated wound healing. | [188] |
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HIV | Human immunodeficiency virus |
GWEIS | Genome-wide by environment interaction studies |
SSRIs | Selective serotonin reuptake inhibitors |
SNRIs | Serotonin-noradrenaline reuptake inhibitors |
SARIs | Serotonin Receptor Antagonists and Reuptake Inhibitors |
NDRIs | Norepinephrine and dopamine reuptake inhibitors |
NMDAR | N-methyl-D-aspartate receptor |
GABAB | Gamma-aminobutyric acid B |
MDD | Major depressive disorder |
GWAS | Genome-Wide Association Studies |
BBB | Blood-brain barrier |
NK-1 | Neurokinin-1 |
PLGA | Polylactic-co-glycolic acid |
IPNC | Interpenetrating polyelectrolyte nano-complexes |
SJW | St John’s Wort |
FSH | Follicle-stimulating hormone |
TSHI | Thyroid-Stimulating Hormone Index |
GABA | Glutamate/gamma-aminobutyric acid |
FMNs | Fluorescein-loaded magnetic nanoparticles |
Tf | Transferrin |
HYP | Hypericin |
BP | Black phosphorus |
BRH | BP-RVG29@HYP |
SCFA | Short-chain fatty acid |
TCNs | Thiolated chitosan nanoparticles |
TCA | Tricyclic antidepressant |
AI | Artificial intelligence |
LCA | Life cycle assessment |
References
- Pu, D.; Luo, J.; Wang, Y.; Ju, B.; Lv, X.; Fan, P.; He, L. Prevalence of depression and anxiety in rheumatoid arthritis patients and their associations with serum vitamin D level. Clin. Rheumatol. 2018, 37, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Rakel, R.E. Depression. Prim. Care 1999, 26, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Bromet, E.; Andrade, L.H.; Hwang, I.; Sampson, N.A.; Alonso, J.; de Girolamo, G.; de Graaf, R.; Demyttenaere, K.; Hu, C.; Iwata, N.; et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med. 2011, 9, 90. [Google Scholar] [CrossRef]
- Reed, P.G. Mental health of older adults. West. J. Nurs. Res. 1989, 11, discussion 158–163. [Google Scholar] [CrossRef]
- Howard, L.M.; Molyneaux, E.; Dennis, C.-L.; Rochat, T.; Stein, A.; Milgrom, J. Perinatal mental health 1 Non-psychotic mental disorders in the perinatal period. Lancet 2014, 384, 1775–1788. [Google Scholar] [CrossRef]
- Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef]
- Tabrizi, F.; Rosen, J.; Gronvall, H.; William-Olsson, V.R.; Arner, E.; Magnusson, P.K.; Palm, C.; Larsson, H.; Viktorin, A.; Bernhardsson, J.; et al. Heritability and polygenic load for comorbid anxiety and depression. Transl. Psychiatry 2025, 15, 98. [Google Scholar] [CrossRef]
- Kanova, M.; Kohout, P. Serotonin-Its Synthesis and Roles in the Healthy and the Critically Ill. Int. J. Mol. Sci. 2021, 22, 4837. [Google Scholar] [CrossRef]
- Grossi, G.; Ahs, A.; Lundberg, U. Psychological correlates of salivary cortisol secretion among unemployed men and women. Integr. Physiol. Behav. Sci. 1998, 33, 249–263. [Google Scholar] [CrossRef]
- Preskorn, S.H.; Fast, G.A. Therapeutic drug monitoring for antidepressants: Efficacy, safety, and cost effectiveness. J. Clin. Psychiatry 1991, 52, 23–33. [Google Scholar]
- Varut, R.M.; Popescu, A.I.S.; Gaman, S.; Niculescu, C.E.; Niculescu, A.S.; Dop, D.; Stepan, M.D.; Ionovici, N.; Singer, C.E.; Popescu, C. Cyclodextrin-Based Drug Delivery Systems for Depression: Improving Antidepressant Bioavailability and Targeted Central Nervous System Delivery. Pharmaceutics 2025, 17, 355. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuka, D.; Suwa, T.; Deguchi, Y.; Fujita, Y.; Tashima, R.; Ohnami, S.; Kawashima, H.; Oishi, N.; Ogawa, K.; Yamakawa, H.; et al. Fine-tuning of dopamine receptor signaling with aripiprazole counteracts ketamine’s dissociative action, but not its antidepressant effect. Transl. Psychiatry 2025, 15, 77. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, S.; Liu, K.; Han, Y.; Xiong, F. The novel design of an intelligent anti-depression transdermal drug delivery system. Biomaterials 2023, 303, 122362. [Google Scholar] [CrossRef]
- Puryear, C.B.; Brooks, J.; Tan, L.; Smith, K.; Li, Y.; Cunningham, J.; Todtenkopf, M.S.; Dean, R.L.; Sanchez, C. Opioid receptor modulation of neural circuits in depression: What can be learned from preclinical data? Neurosci. Biobehav. Rev. 2020, 108, 658–678. [Google Scholar] [CrossRef]
- Krishnan, V.; Nestler, E.J. The molecular neurobiology of depression. Nature 2008, 455, 894–902. [Google Scholar] [CrossRef]
- Penner-Goeke, S.; Binder, E.B. Epigenetics and depression. Dialogues Clin. Neurosci. 2019, 21, 397–405. [Google Scholar] [CrossRef]
- Rajbhandari, P.; Shrestha, D. Prevalence and Its Associated Risk Factors in Tooth Wear. J. Nepal Med. Assoc. 2018, 56, 719–723. [Google Scholar]
- Lun, K.W.; Chan, C.K.; Ip, P.K.; Ma, S.Y.; Tsai, W.W.; Wong, C.S.; Wong, C.H.; Wong, T.W.; Yan, D. Depression and anxiety among university students in Hong Kong. Hong Kong Med. J. 2018, 24, 466–472. [Google Scholar] [CrossRef]
- Quinn, M.E.; Stanton, C.H.; Slavich, G.M.; Joormann, J. Executive Control, Cytokine Reactivity to Social Stress, and Depressive Symptoms: Testing the Social Signal Transduction Theory of Depression. Stress 2020, 23, 60–68. [Google Scholar] [CrossRef]
- Subramaniam, M.; Abdin, E.; Sambasivam, R.; Vaingankar, J.A.; Picco, L.; Pang, S.; Seow, E.; Chua, B.Y.; Magadi, H.; Mahendran, R.; et al. Prevalence of Depression among Older Adults-Results from the Well-being of the Singapore Elderly Study. Ann. Acad. Med. Singap. 2016, 45, 123–133. [Google Scholar] [CrossRef]
- Patten, S.B. Current perspectives on co-morbid depression and multiple sclerosis. Expert Rev. Neurother. 2020, 20, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Chung, P.W.; Kim, B.K.; Lee, M.J.; Park, J.W.; Chu, M.K.; Ahn, J.Y.; Bae, D.W.; Song, T.J.; Sohn, J.H.; et al. The impact of remission and coexisting migraine on anxiety and depression in cluster headache. J. Headache Pain 2020, 21, 58. [Google Scholar] [CrossRef] [PubMed]
- Denton, A.R.; Samaranayake, S.A.; Kirchner, K.N.; Roscoe, R.F., Jr.; Berger, S.N.; Harrod, S.B.; Mactutus, C.F.; Hashemi, P.; Booze, R.M. Selective monoaminergic and histaminergic circuit dysregulation following long-term HIV-1 protein exposure. J. Neurovirol. 2019, 25, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Winter, G.; Hart, R.A.; Charlesworth, R.P.G.; Sharpley, C.F. Gut microbiome and depression: What we know and what we need to know. Rev. Neurosci. 2018, 29, 629–643. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, L.; Yang, J.; Han, D.; Fang, D.; Qiu, X.; Yang, X.; Qiao, Z.; Ma, J.; Wang, L.; et al. BDNF Val66Met polymorphism, life stress and depression: A meta-analysis of gene-environment interaction. J. Affect. Disord. 2018, 227, 226–235. [Google Scholar] [CrossRef]
- Gold, P.W.; Chrousos, G.P. The endocrinology of melancholic and atypical depression: Relation to neurocircuitry and somatic consequences. Proc. Assoc. Am. Physicians 1999, 111, 22–34. [Google Scholar] [CrossRef]
- Bauer, M.; Heinz, A.; Whybrow, P.C. Thyroid hormones, serotonin and mood: Of synergy and significance in the adult brain. Mol. Psychiatry 2002, 7, 140–156. [Google Scholar] [CrossRef]
- Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008, 9, 46–57. [Google Scholar] [CrossRef]
- Yusuf, A.M.; Warsame, M.O.; Gedi, S.; Abdullahi, N.A.; Ahmed, D.I. Prevalence of Depression Among Women Using Hormonal Contraceptives in Mogadishu, Somalia: A Cross-Sectional Study. Open Access J. Contracept. 2024, 15, 89–98. [Google Scholar] [CrossRef]
- Weiss, S.J.; Xu, L. Postpartum symptoms of anxiety, depression and stress: Differential relationships to women’s cortisol profiles. Arch. Womens Ment. Health 2024, 27, 435–445. [Google Scholar] [CrossRef]
- Xiao, X.Q.; Fu, F.S.; Xiang, C.; Yan, H.C. Sensitivity to thyroid hormones is associated with sleep duration in the euthyroid population with depression degree lower than moderate. Sci. Rep. 2024, 14, 6583. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.Q.; Sun, S.Q.; Jiang, G.G.; Xie, G.F.; Yang, Y.Y.; Chen, S.C.; Luo, J.Y.; Lv, C.; Li, X.; Liao, J.M.; et al. Follicle-stimulating hormone induces depression-like phenotype by affecting synaptic function. Front. Mol. Neurosci. 2024, 17, 1459858. [Google Scholar] [CrossRef] [PubMed]
- Polderman, T.J.; Benyamin, B.; de Leeuw, C.A.; Sullivan, P.F.; van Bochoven, A.; Visscher, P.M.; Posthuma, D. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 2015, 47, 702–709. [Google Scholar] [CrossRef]
- Geschwind, D.H.; Flint, J. Genetics and genomics of psychiatric disease. Science 2015, 349, 1489–1494. [Google Scholar] [CrossRef]
- Buch, A.M.; Liston, C. Dissecting diagnostic heterogeneity in depression by integrating neuroimaging and genetics. Neuropsychopharmacology 2021, 46, 156–175. [Google Scholar] [CrossRef]
- Als, T.D.D.; Kurki, M.I.I.; Grove, J.; Voloudakis, G.; Therrien, K.; Tasanko, E.; Nielsen, T.T.; Naamanka, J.; Veerapen, K.; Levey, D.F.F.; et al. Depression pathophysiology, risk prediction of recurrence and comorbid psychiatric disorders using genome-wide analyses. Nat. Med. 2023, 29, 1832. [Google Scholar] [CrossRef]
- Lesch, K.P.; Bengel, D.; Heils, A.; Sabol, S.Z.; Greenberg, B.D.; Petri, S.; Benjamin, J.; Muller, C.R.; Hamer, D.H.; Murphy, D.L. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996, 274, 1527–1531. [Google Scholar] [CrossRef]
- Maul, S.; Giegling, I.; Fabbri, C.; Corponi, F.; Serretti, A.; Rujescu, D. Genetics of resilience: Implications from genome-wide association studies and candidate genes of the stress response system in posttraumatic stress disorder and depression. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2020, 183, 77–94. [Google Scholar] [CrossRef]
- Heitmann, H.; Andlauer, T.F.M.; Korn, T.; Muhlau, M.; Henningsen, P.; Hemmer, B.; Ploner, M. Fatigue, depression, and pain in multiple sclerosis: How neuroinflammation translates into dysfunctional reward processing and anhedonic symptoms. Mult. Scler. 2020, 28, 1020–1027. [Google Scholar] [CrossRef]
- Perez-Caballero, L.; Torres-Sanchez, S.; Romero-Lopez-Alberca, C.; Gonzalez-Saiz, F.; Mico, J.A.; Berrocoso, E. Monoaminergic system and depression. Cell Tissue Res. 2019, 377, 107–113. [Google Scholar] [CrossRef]
- Catena-Dell’Osso, M.; Bellantuono, C.; Consoli, G.; Baroni, S.; Rotella, F.; Marazziti, D. Inflammatory and neurodegenerative pathways in depression: A new avenue for antidepressant development? Curr. Med. Chem. 2011, 18, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Petralia, M.C.; Mazzon, E.; Fagone, P.; Basile, M.S.; Lenzo, V.; Quattropani, M.C.; Di Nuovo, S.; Bendtzen, K.; Nicoletti, F. The cytokine network in the pathogenesis of major depressive disorder. Close to translation? Autoimmun. Rev. 2020, 19, 102504. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Chen, H.; Wang, T.; Su, H.; Li, J.; He, Y.; Su, S. Electroacupuncture promotes synaptic plasticity in rats with chronic inflammatory pain-related depression by upregulating BDNF/TrkB/CREB signaling pathway. Brain Behav. 2023, 13, e3310. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, Z.; Lan, T.; Li, S.; Li, Y.; Wang, C.; Feng, Y.; Mao, X.; Yu, S. Levomilnacipran Improves Lipopolysaccharide-Induced Dysregulation of Synaptic Plasticity and Depression-Like Behaviors via Activating BDNF/TrkB Mediated PI3K/Akt/mTOR Signaling Pathway. Mol. Neurobiol. 2023, 61, 4102–4115. [Google Scholar] [CrossRef]
- Li, H.; Xiang, Y.; Zhu, Z.; Wang, W.; Jiang, Z.; Zhao, M.; Cheng, S.; Pan, F.; Liu, D.; Ho, R.C.M.; et al. Rifaximin-mediated gut microbiota regulation modulates the function of microglia and protects against CUMS-induced depression-like behaviors in adolescent rat. J. Neuroinflamm. 2021, 18, 254. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Chen, R.; Liu, X. Efficacy of Sertraline Combined with Agomelatine in the Treatment of Depression and its Influence on Cognitive Function. Indian J. Pharm. Sci. 2024, 86, 48–53. [Google Scholar] [CrossRef]
- Kolyvanov, G.B.; Zherdev, V.P.; Gribakina, O.G.; Bochkov, P.O.; Shevchenko, R.V.; Litvin, A.A.; Blynskaya, E.V.; Bueva, V.V. Comparative Preclinical Pharmacokinetics and Bioavailability of Antidepressant GSB-106 Tablet Form. Bull. Exp. Biol. Med. 2019, 167, 637–640. [Google Scholar] [CrossRef]
- Hamer, A.M.; Hartung, D.M.; Haxby, D.G.; Ketchum, K.L.; Pollack, D.A. Initial results of the use of prescription order change forms to achieve dose form optimization (consolidation and tablet splitting) of SSRI antidepressants in a state Medicaid program. J. Manag. Care Pharm. JMCP 2006, 12, 449–456. [Google Scholar] [CrossRef]
- Wagstaff, A.J.; Goa, K.L. Once-weekly fluoxetine. Drugs 2001, 61, discussion 2229–2230. [Google Scholar] [CrossRef]
- Davey, C.G.; Chanen, A.M.; Hetrick, S.E.; Cotton, S.M.; Ratheesh, A.; Amminger, G.P.; Koutsogiannis, J.; Phelan, M.; Mullen, E.; Harrison, B.J.; et al. The addition of fluoxetine to cognitive behavioural therapy for youth depression (YoDA-C): A randomised, double-blind, placebo-controlled, multicentre clinical trial. Lancet Psychiatry 2019, 6, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Danileviciute, V.; Sveikata, A.; Adomaitiene, V.; Gumbrevicius, G.; Fokas, V.; Sveikatiene, R. Efficacy, tolerability, and preference of mirtazapine orally disintegrating tablets in depressed patients: A 17-week naturalistic study in Lithuania. Medicina 2009, 45, 778–784. [Google Scholar] [CrossRef]
- Sun, X.; Zhu, F.; Zhou, J.; Chang, X.; Li, L.; Hu, H.; Wang, Z.; Xiao, W. Anti-migraine and anti-depression activities of Tianshu capsule by mediating Monoamine oxidase. Biomed. Pharmacother. 2018, 100, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, T.; Yu, L.; Huang, S.; Yang, Y.; Yu, S.; Li, J.; Cao, Y.; Wei, Z.; Li, X.; et al. Zhile Capsule Exerts Antidepressant-Like Effects through Upregulation of the BDNF Signaling Pathway and Neuroprotection. Int. J. Mol. Sci. 2019, 20, 195. [Google Scholar] [CrossRef] [PubMed]
- Nasser, A.; Gomeni, R.; Wang, Z.; Kosheleff, A.R.; Xie, L.; Adeojo, L.W.; Schwabe, S. Population Pharmacokinetics of Viloxazine Extended-Release Capsules in Pediatric Subjects With Attention Deficit/Hyperactivity Disorder. J. Clin. Pharmacol. 2021, 61, 1626–1637. [Google Scholar] [CrossRef]
- Kees, F.; Jehkul, A.; Bucher, M.; Mair, G.; Kiermaier, J.; Grobecker, H. Bioavailability of opipramol from a film-coated tablet, a sugar-coated tablet and an aqueous solution in healthy volunteers. Arzneim. Forsch. 2003, 53, 87–92. [Google Scholar] [CrossRef]
- Wyska, E. Pharmacokinetic considerations for current state-of-the-art antidepressants. Expert Opin. Drug Metab. Toxicol. 2019, 15, 831–847. [Google Scholar] [CrossRef]
- Klotz, U. Pharmacokinetics and drug metabolism in the elderly. Drug Metab. Rev. 2009, 41, 67–76. [Google Scholar] [CrossRef]
- Singh, G.; Sarwal, A.; Sharma, S.; Prasad, P.; Kuhad, A.; Ali, W. Polymer-based prolonged-release nanoformulation of duloxetine: Fabrication, characterization and neuropharmacological assessments. Drug Dev. Ind. Pharm. 2021, 47, 12–21. [Google Scholar] [CrossRef]
- Glue, P.; Russell, B.; Medlicott, N.J. Influence of formulation and route of administration on ketamine’s safety and tolerability: Systematic review. Eur. J. Clin. Pharmacol. 2021, 77, 671–676. [Google Scholar] [CrossRef]
- Milosavljevic, F.; Bukvic, N.; Pavlovic, Z.; Miljevic, C.; Pesic, V.; Molden, E.; Ingelman-Sundberg, M.; Leucht, S.; Jukic, M.M. Association of CYP2C19 and CYP2D6 Poor and Intermediate Metabolizer Status With Antidepressant and Antipsychotic Exposure: A Systematic Review and Meta-analysis. JAMA Psychiatry 2021, 78, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Abbott, N.J.; Patabendige, A.A.; Dolman, D.E.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis. 2010, 37, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Schinkel, A.H. P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv. Drug Deliv. Rev. 1999, 36, 179–194. [Google Scholar] [CrossRef]
- Oz, M.D.; Ozdemir, F.; Suzen, H.S. The Influence of Genetic Variations and Drug Interactions Based on Metabolism of Antidepressants and Anticonvulsants. Curr. Drug Metab. 2021, 22, 596–627. [Google Scholar] [CrossRef]
- Ihezie, S.A.; Mathew, I.E.; McBride, D.W.; Dienel, A.; Blackburn, S.L.; Thankamani Pandit, P.K. Epigenetics in blood-brain barrier disruption. Fluids Barriers CNS 2021, 18, 17. [Google Scholar] [CrossRef]
- Jha, M.K.; Trivedi, M.H. Personalized Antidepressant Selection and Pathway to Novel Treatments: Clinical Utility of Targeting Inflammation. Int. J. Mol. Sci. 2018, 19, 233. [Google Scholar] [CrossRef]
- Bousman, C.A.; Stevenson, J.M.; Ramsey, L.B.; Sangkuhl, K.; Hicks, J.K.; Strawn, J.R.; Singh, A.B.; Ruano, G.; Mueller, D.J.; Tsermpini, E.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A Genotypes and Serotonin Reuptake Inhibitor Antidepressants. Clin. Pharmacol. Ther. 2023, 114, 51–68. [Google Scholar] [CrossRef]
- Li, D.; Pain, O.; Chiara, F.; Wong, W.L.E.; Lo, C.W.H.; Ripke, S.; Cattaneo, A.; Souery, D.; Dernovsek, M.Z.; Henigsberg, N.; et al. Metabolic activity of CYP2C19 and CYP2D6 on antidepressant response from 13 clinical studies using genotype imputation: A meta-analysis. Transl. Psychiatry 2024, 14, 296. [Google Scholar] [CrossRef]
- Cipriani, A.; Furukawa, T.A.; Salanti, G.; Geddes, J.R.; Higgins, J.P.; Churchill, R.; Watanabe, N.; Nakagawa, A.; Omori, I.M.; McGuire, H.; et al. Comparative efficacy and acceptability of 12 new-generation antidepressants: A multiple-treatments meta-analysis. Lancet 2009, 373, 746–758. [Google Scholar] [CrossRef]
- Perez-Caballero, L.; Torres-Sanchez, S.; Bravo, L.; Mico, J.A.; Berrocoso, E. Fluoxetine: A case history of its discovery and preclinical development. Expert Opin. Drug Discov. 2014, 9, 567–578. [Google Scholar] [CrossRef]
- Lochmann, D.; Richardson, T. Selective Serotonin Reuptake Inhibitors. Handb. Exp. Pharmacol. 2019, 250, 135–144. [Google Scholar] [PubMed]
- Shelton, R.C. Serotonin and Norepinephrine Reuptake Inhibitors. Handb. Exp. Pharmacol. 2019, 250, 145–180. [Google Scholar] [PubMed]
- Bellantuono, C.; Vargas, M.; Mandarelli, G.; Nardi, B.; Martini, M.G. The safety of serotonin-noradrenaline reuptake inhibitors (SNRIs) in pregnancy and breastfeeding: A comprehensive review. Hum. Psychopharmacol. 2015, 30, 143–151. [Google Scholar] [CrossRef]
- Fava, G.A.; Benasi, G.; Lucente, M.; Offidani, E.; Cosci, F.; Guidi, J. Withdrawal Symptoms after Serotonin-Noradrenaline Reuptake Inhibitor Discontinuation: Systematic Review. Psychother. Psychosom. 2018, 87, 195–203. [Google Scholar] [CrossRef]
- Fagiolini, A.; Albert, U.; Ferrando, L.; Herman, E.; Muntean, C.; Palova, E.; Cattaneo, A.; Comandini, A.; Di Dato, G.; Di Loreto, G.; et al. A randomized, double-blind study comparing the efficacy and safety of trazodone once-a-day and venlafaxine extended-release for the treatment of patients with major depressive disorder. Int. Clin. Psychopharmacol. 2020, 35, 137–146. [Google Scholar] [CrossRef]
- Cuomo, A.; Bianchetti, A.; Cagnin, A.; De Berardis, D.; Di Fazio, I.; Incalzi, R.A.; Marra, C.; Neviani, F.; Laurenzi, P.F.; Nicoletti, F. Trazodone: A multifunctional antidepressant. Evaluation of its properties and real-world use. J. Gerontol. Geriatr. 2021, 69, 120–129. [Google Scholar] [CrossRef]
- Fagiolini, A.; Comandini, A.; Dell’Osso, M.C.; Kasper, S. Rediscovering Trazodone for the Treatment of Major Depressive Disorder. CNS Drugs 2012, 26, 1033–1049. [Google Scholar] [CrossRef]
- Gurcan, G.; Gurcan, A. Bupropion-induced leukopenia: A case report. Turk. J. Clin. Psychiatry 2021, 24, 416–419. [Google Scholar] [CrossRef]
- Kim, J.L.; Chercover, D.; Masoudi, H.; Foltz, L. Bupropion-induced pancytopenia. BMJ Case Rep. 2024, 17, e262831. [Google Scholar] [CrossRef]
- Clark, A.; Tate, B.; Urban, B.; Schroeder, R.; Gennuso, S.; Ahmadzadeh, S.; McGregor, D.; Girma, B.; Shekoohi, S.; Kaye, A.D. Bupropion Mediated Effects on Depression, Attention Deficit Hyperactivity Disorder, and Smoking Cessation. Health Psychol. Res. 2023, 11, 81043. [Google Scholar] [CrossRef]
- Dolder, C.R.; Nelson, M.; Snider, M. Agomelatine Treatment of Major Depressive Disorder. Ann. Pharmacother. 2008, 42, 1822–1831. [Google Scholar] [CrossRef] [PubMed]
- Agomelatine: New drug. Adverse effects and no proven efficacy. Prescrire Int. 2009, 18, 241–245.
- Pereira, V.S.; Hiroaki-Sato, V.A. A brief history of antidepressant drug development: From tricyclics to beyond ketamine. Acta Neuropsychiatri. 2018, 30, 307–322. [Google Scholar] [CrossRef]
- Sun, Q.; Cao, W.; Luo, J. The roles of GluN3-containing N-methyl-D-aspartate receptor in central nerve system. J. Zhejiang Univ. Med. Sci. 2021, 50, 651–658. [Google Scholar] [CrossRef]
- Zanos, P.; Moaddel, R.; Morris, P.J.; Riggs, L.M.; Highland, J.N.; Georgiou, P.; Pereira, E.F.R.; Albuquerque, E.X.; Thomas, C.J.; Zarate, C.A., Jr.; et al. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol. Rev. 2018, 70, 621–660. [Google Scholar] [CrossRef]
- Zarate, C.A., Jr.; Singh, J.B.; Carlson, P.J.; Brutsche, N.E.; Ameli, R.; Luckenbaugh, D.A.; Charney, D.S.; Manji, H.K. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 2006, 63, 856–864. [Google Scholar] [CrossRef]
- Trullas, R.; Skolnick, P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur. J. Pharmacol. 1990, 185, 1–10. [Google Scholar] [CrossRef]
- Ivan Ezquerra-Romano, I.; Lawn, W.; Krupitsky, E.; Morgan, C.J.A. Ketamine for the treatment of addiction: Evidence and potential mechanisms. Neuropharmacology 2018, 142, 72–82. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, D.; Wu, B.; Zhou, W. Ketamine abuse potential and use disorder. Brain Res. Bull. 2016, 126, 68–73. [Google Scholar] [CrossRef]
- Zhao, Y.; Shang, P.; Wang, M.; Xie, M.; Liu, J. Neuroprotective Effects of Fluoxetine Against Chronic Stress-Induced Neural Inflammation and Apoptosis: Involvement of the p38 Activity. Front. Physiol. 2020, 11, 351. [Google Scholar] [CrossRef]
- Londborg, P.D.; Smith, W.T.; Glaudin, V.; Painter, J.R. Short-term cotherapy with clonazepam and fluoxetine: Anxiety, sleep disturbance and core symptoms of depression. J. Affect. Disord. 2000, 61, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Mrazek, D.A.; Biernacka, J.M.; O’Kane, D.J.; Black, J.L.; Cunningham, J.M.; Drews, M.S.; Snyder, K.A.; Stevens, S.R.; Rush, A.J.; Weinshilboum, R.M. CYP2C19 variation and citalopram response. Pharmacogenet. Genom. 2011, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mahajna, M.; Abu Fanne, R.; Berkovitch, M.; Tannous, E.; Vinker, S.; Green, I.; Matok, I. Effect of CYP2C19 Pharmacogenetic Testing on Predicting Citalopram and Escitalopram Tolerability and Efficacy: A Retrospective, Longitudinal Cohort Study. Biomedicines 2023, 11, 3245. [Google Scholar] [CrossRef]
- Chavez-Leon, E.; Ontiveros Uribe, M.P.; Gomez, C.S. Selective serotonin reuptake inhibitors antidepressants (SSRIs). Salud Ment. 2008, 31, 307–319. [Google Scholar]
- Baradaran, A.; Ardakani, M.R.K.; Bateni, F.S.; Asadian-Koohestani, F.; Vahedi, M.; Aein, A.; Shahmansouri, N.; Sadighi, G. The effect of escitalopram in treating mild to moderate depressive disorder and improving the quality of life in patients undergoing coronary artery bypass grafting—A double-blind randomized clinical trial. Front. Psychiatry 2024, 15, 1342754. [Google Scholar] [CrossRef]
- Rudolph, R.L.; Entsuah, R.; Chitra, R. A meta-analysis of the effects of venlafaxine on anxiety associated with depression. J. Clin. Psychopharmacol. 1998, 18, 136–144. [Google Scholar] [CrossRef]
- Klaas, S.; Siva, J.B.; Bak, M.; Govers, M.; Schreiber, R. The pathophysiology of Post SSRI Sexual Dysfunction-Lessons from a case study. Biomed. Pharmacother. 2023, 161, 114166. [Google Scholar] [CrossRef]
- Alvarez-Silva, A.; Rodriguez-Manzo, G.; Reyes, R.; Fernandez-Guasti, A. Combination of low doses of mirtazapine plus venlafaxine produces antidepressant-like effects in rats, without affecting male or female sexual behavior. Psychopharmacol. 2025, 242, 189–204. [Google Scholar] [CrossRef]
- Gao, W.; Gao, Y.; Xu, Y.; Liang, J.; Sun, Y.; Zhang, Y.; Shan, F.; Ge, J.; Xia, Q. Effect of duloxetine on changes in serum proinflammatory cytokine levels in patients with major depressive disorder. BMC Psychiatry 2024, 24, 449. [Google Scholar] [CrossRef]
- Blier, P.; Gommoll, C.; Chen, C.; Kramer, K. Effects of levomilnacipran ER on noradrenergic symptoms, anxiety symptoms, and functional impairment in adults with major depressive disorder: Post hoc analysis of 5 clinical trials. J. Affect. Disord. 2017, 210, 273–279. [Google Scholar] [CrossRef]
- Guico-Pabia, C.J.; Jiang, Q.; Ninan, P.T.; Thase, M.E. Clinical outcomes following switch from venlafaxine ER to desvenlafaxine in nonresponders and responders. Curr. Med. Res. Opin. 2011, 27, 1815–1826. [Google Scholar] [CrossRef] [PubMed]
- Incalzi, R.A.; Caraci, F.; Cuoml, A.; Fagiolini, A.; Strambi, L.F. Personalized treatment of depression phenotypes: Role of trazodone in depression with insomnia. Riv. Psichiatr. 2020, 55, 371–379. [Google Scholar]
- Giannelli, A.; Rabboni, M.; Zarattini, F.; Malgeri, C.; Magnolfi, G. A Combination of Hypothalamic Phospholipid Liposomes with Trazodone for Treatment of Depression—An Open Controlled-Study. Acta Psychiatry Scand. 1989, 79, 52–58. [Google Scholar] [CrossRef]
- El-Kasaby, A.; Boytsov, D.; Kasture, A.; Krumpl, G.; Hummel, T.; Freissmuth, M.; Sandtner, W. Allosteric Inhibition and Pharmacochaperoning of the Serotonin Transporter by the Antidepressant Drugs Trazodone and Nefazodone. Mol. Pharmacol. 2024, 106, 56–70. [Google Scholar] [CrossRef]
- Willett, K.C.; Bond, L.R.; Morrill, A.M.; Lorena, D.; Petru, I. Dextromethorphan/Bupropion: A Novel Treatment for Patients With Major Depressive Disorder. Am. J. Ther. 2024, 31, e24–e29. [Google Scholar] [CrossRef]
- Zisook, S.; Rush, A.J.; Haight, B.R.; Clines, D.C.; Rockett, C.B. Use of bupropion in combination with serotonin reuptake inhibitors. Biol. Psychiatry 2006, 59, 203–210. [Google Scholar] [CrossRef]
- Yetkin, D.; Yilmaz, I.A.; Ayaz, F. Anti-inflammatory activity of bupropion through immunomodulation of the macrophages. Naunyn-Schmiedebergs Arch. Pharmacol. 2023, 396, 2087–2093. [Google Scholar] [CrossRef]
- Stein, D.J. Evidence-Based Pharmacotherapy of Anxiety Symptoms in Patients with Major Depressive Disorder: Focus on Agomelatine. Neurol. Ther. 2023, 12, 13–19. [Google Scholar] [CrossRef]
- Lur, G.; Fariborzi, M.; Higley, M.J. Ketamine disrupts neuromodulatory control of glutamatergic synaptic transmission. PLoS ONE 2019, 14, e0213721. [Google Scholar] [CrossRef]
- Fukumoto, K.; Iijima, M.; Chaki, S. The Antidepressant Effects of an mGlu2/3 Receptor Antagonist and Ketamine Require AMPA Receptor Stimulation in the mPFC and Subsequent Activation of the 5-HT Neurons in the DRN. Neuropsychopharmacology 2016, 41, 1046–1056. [Google Scholar] [CrossRef]
- Chang, L.; Zhang, K.; Pu, Y.; Qu, Y.; Wang, S.M.; Xiong, Z.; Ren, Q.; Dong, C.; Fujita, Y.; Hashimoto, K. Comparison of antidepressant and side effects in mice after intranasal administration of (R,S)-ketamine, (R)-ketamine, and (S)-ketamine. Pharmacol. Biochem. Behav. 2019, 181, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.A.; Neufeld, K.-A.M. Gut-brain: How the microbiome influences anxiety and depression. Trends Neurosci. 2013, 36, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.T.; Walsh, R.F.L.; Sheehan, A.E. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neurosci. Biobehav. Rev. 2019, 102, 13–23. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Harrison, J.; Loft, H.; Jacobson, W.; Olsen, C.K. The Effects of Vortioxetine on Cognitive Function in Patients with Major Depressive Disorder: A Meta-Analysis of Three Randomized Controlled Trials. Int. J. Neuropsychopharmacol. 2016, 19, pyw055. [Google Scholar] [CrossRef]
- Vahid-Ansari, F.; Zahrai, A.; Daigle, M.; Albert, P.R. Chronic Desipramine Reverses De fi cits in Cell Activity, Norepinephrine Innervation, and Anxiety—Depression Phenotypes in Fluoxetine-Resistant cF1ko Mice. J. Neurosci. 2024, 44, e1147232023. [Google Scholar] [CrossRef]
- Hashemi, S.; Shirazi, H.G.; Mohammadi, A.; Zadeh-Bagheri, G.; Noorian, K.; Malekzadeh, M. Nortriptyline versus fluoxetine in the treatment of major depressive disorder: A six-month, double-blind clinical trial. Clin. Pharmacol. Adv. Appl. 2012, 4, 1–6. [Google Scholar]
- Croft, H.A.; Pomara, N.; Gommoll, C.; Chen, D.; Nunez, R.; Mathews, M. Efficacy and Safety of Vilazodone in Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Clin. Psychiatry 2014, 75, E1291–E1298. [Google Scholar] [CrossRef]
- Casarotto, P.C.; Girych, M.; Fred, S.M.; Kovaleva, V.; Moliner, R.; Enkavi, G.; Biojone, C.; Cannarozzo, C.; Sahu, M.P.; Kaurinkoski, K.; et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 2021, 184, 1299. [Google Scholar] [CrossRef]
- Castrén, E.; Monteggia, L.M. Brain-Derived Neurotrophic Factor Signaling in Depression and Antidepressant Action. Biol. Psychiatry 2021, 90, 128–136. [Google Scholar] [CrossRef]
- Duman, R.S.; Aghajanian, G.K.; Sanacora, G.; Krysta, J.H. Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nat. Med. 2016, 22, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Notaras, M.; Du, X.; Gogos, J.; van den Buuse, M.; Hill, R.A. The BDNF Val66Met polymorphism regulates glucocorticoid-induced corticohippocampal remodeling and behavioral despair. Transl. Psychiatry 2017, 7, e1233. [Google Scholar] [CrossRef]
- Autry, A.E.; Monteggia, L.M. Brain-Derived Neurotrophic Factor and Neuropsychiatric Disorders. Pharmacol. Rev. 2012, 64, 238–258. [Google Scholar] [CrossRef] [PubMed]
- Stolfi, F.; Abreu, H.; Sinella, R.; Nembrini, S.; Centonze, S.; Landra, V.; Brasso, C.; Cappellano, G.; Rocca, P.; Chiocchetti, A. Omics approaches open new horizons in major depressive disorder: From biomarkers to precision medicine. Front. Psychiatry 2024, 15, 1422939. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.L.; Wu, C.H.; Jia, C.X.; Gao, K.; Wang, J.P.; Zhao, H.H.; Wang, W.; Chen, J.X. Artificial intelligence based discovery of the association between depression and chronic fatigue syndrome. J. Affect. Disord. 2019, 250, 380–390. [Google Scholar] [CrossRef]
- Allen, L.V., Jr. Dosage form design and development. Clin. Ther. 2008, 30, 2102–2111. [Google Scholar] [CrossRef]
- Gibson, K.; Cartwright, C.; Read, J. Conflict in Men’s Experiences With Antidepressants. Am. J. Mens Health 2018, 12, 104–116. [Google Scholar] [CrossRef]
- Frijlink, H.W. Benefits of different drug formulations in psychopharmacology. Eur. Neuropsychopharmacol. 2003, 13 (Suppl. S3), S77–S84. [Google Scholar] [CrossRef]
- Xu, M.; Zhou, Y.; Ni, Y.; He, X.; Li, H.; Sattar, H.; Chen, H.; Li, W. Tolerability and Pharmacokinetic Comparison of Oral, Intramuscular, and Intravenous Administration of Levosulpiride After Single and Multiple Dosing in Healthy Chinese Volunteers. Clin. Ther. 2015, 37, 2458–2467. [Google Scholar] [CrossRef]
- Khakpai, F.; Ramezanikhah, M.; Valizadegan, F.; Zarrindast, M.R. Synergistic effect between imipramine and citicoline upon induction of analgesic and antidepressant effects in mice. Neurosci. Lett. 2021, 760, 136095. [Google Scholar] [CrossRef]
- Zhang, B.; Chang, H.S.; Hu, K.L.; Yu, X.; Li, L.N.; Xu, X.Q. Combination of Geniposide and Eleutheroside B Exerts Antidepressant-like Effect on Lipopolysaccharide-Induced Depression Mice Model. Chin. J. Integr. Med. 2021, 27, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Bodkin, J.A.; Amsterdam, J.D. Transdermal selegiline in major depression: A double-blind, placebo-controlled, parallel-group study in outpatients. Am. J. Psychiatry 2002, 159, 1869–1875. [Google Scholar] [CrossRef] [PubMed]
- Feiger, A.D.; Rickels, K.; Rynn, M.A.; Zimbroff, D.L.; Robinson, D.S. Selegiline transdermal system for the treatment of major depressive disorder: An 8-week, double-blind, placebo-controlled, flexible-dose titration trial. J. Clin. Psychiatry 2006, 67, 1354–1361. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.; Rajput, A.; Subbappa, P.; Pawar, A. Formulation, development and in vivo characterization of selegiline hydrochloride nanostructured lipid nanocarrier loaded microneedle array patch for depression. Int. J. Pharm. 2025, 671, 125257. [Google Scholar] [CrossRef]
- Glue, P.; Medlicott, N.J.; Neehoff, S.; Surman, P.; Lam, F.; Hung, N.; Hung, C.-t. Safety and efficacy of extended release ketamine tablets in patients with treatment-resistant depression and anxiety: Open label pilot study. Ther. Adv. Psychopharmacol. 2020, 10, 2045125320922474. [Google Scholar] [CrossRef]
- Di Nicola, M.; Pepe, M.; Panaccione, I.; Moccia, L.; Janiri, L.; Sani, G. Update on Pharmacological Treatment for Comorbid Major Depressive and Alcohol Use Disorders: The Role of Extended-release Trazodone. Curr. Neuropharmacol. 2023, 21, 2195–2205. [Google Scholar] [CrossRef]
- Golden, R.N. Efficacy and tolerability of controlled-release paroxetine. Psychopharmacol. Bul. 2003, 37 (Suppl. S1), 176–186. [Google Scholar]
- Kanojia, G.; Have, R.T.; Soema, P.C.; Frijlink, H.; Amorij, J.P.; Kersten, G. Developments in the formulation and delivery of spray dried vaccines. Hum. Vacc. Immunother. 2017, 13, 2364–2378. [Google Scholar] [CrossRef]
- Kryst, J.; Kawalec, P.; Pilc, A. Efficacy and safety of intranasal esketamine for the treatment of major depressive disorder. Expert Opin. Pharmacoth. 2020, 21, 9–20. [Google Scholar] [CrossRef]
- Molero, P.; Ramos-Quiroga, J.A.; Martin-Santos, R.; Calvo-Sánchez, E.; Gutiérrez-Rojas, L.; Meana, J.J. Antidepressant Efficacy and Tolerability of Ketamine and Esketamine: A Critical Review. CNS Drugs 2018, 32, 411–420. [Google Scholar] [CrossRef]
- Xu, J.; Tao, J.; Wang, J. Design and Application in Delivery System of Intranasal Antidepressants. Front. Bioeng. Biotechnol. 2020, 8, 626882. [Google Scholar] [CrossRef] [PubMed]
- Tong, G.F.; Qin, N.; Sun, L.W. Development and evaluation of Desvenlafaxine loaded PLGA-chitosan nanoparticles for brain delivery. Saudi Pharm. J. 2017, 25, 844–851. [Google Scholar] [CrossRef]
- Singh, D.; Rashid, M.; Hallan, S.S.; Mehra, N.K.; Prakash, A.; Mishra, N. Pharmacological evaluation of nasal delivery of selegiline hydrochloride-loaded thiolated chitosan nanoparticles for the treatment of depression. Artif. Cells Nanomed. Biotechnol. 2016, 44, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Chougule, M.B.; Shoyele, S.A.; Alexander, A. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J. Control. Release 2018, 281, 139–177. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Li, T. Clinical applications of mirtazapine orally disintegrating tablets in depression treatment. Chin. J. New Drugs Clin. Remed. 2014, 33, 646–648. [Google Scholar]
- Nguyen, T.X.; Huang, L.; Gauthier, M.; Yang, G.; Wang, Q. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine 2016, 11, 1169–1185. [Google Scholar] [CrossRef]
- Lee, Y.; Thompson, D.H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1450. [Google Scholar] [CrossRef]
- Krauze, M.T.; Forsayeth, J.; Park, J.W.; Bankiewicz, K.S. Real-time imaging and quantification of brain delivery of liposomes. Pharm. Res. 2006, 23, 2493–2504. [Google Scholar] [CrossRef]
- Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed. 2006, 1, 297–315. [Google Scholar]
- Ong, J.C.; Sun, F.; Chan, E. Development of stealth liposome coencapsulating doxorubicin and fluoxetine. J. Liposome Res. 2011, 21, 261–271. [Google Scholar] [CrossRef]
- Drago, F.; Continella, G.; Mason, G.A.; Hernandez, D.E.; Scapagnini, U. Phospholipid liposomes potentiate the inhibitory effect of antidepressant drugs on immobility of rats in a despair test (constrained swim). Eur. J. Pharmacol. 1985, 115, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Siyal, F.J.; Memon, Z.; Siddiqui, R.A.; Aslam, Z.; Nisar, U.; Imad, R.; Shah, M.R. Eugenol and liposome-based nanocarriers loaded with eugenol protect against anxiolytic disorder via down regulation of neurokinin-1 receptors in mice. Pak. J. Pharm. Sci. 2020, 33, 2275–2284. [Google Scholar] [PubMed]
- Howell, B.A.; Chauhan, A. Binding of imipramine, dosulepin, and opipramol to liposomes for overdose treatment. J. Pharm. Sci. 2009, 98, 3718–3729. [Google Scholar] [CrossRef] [PubMed]
- Ceh, B.; Lasic, D.D. A Rigorous Theory of Remote Loading of Drugs into Liposomes: Transmembrane Potential and Induced pH-Gradient Loading and Leakage of Liposomes. J. Colloid Interf. Sci. 1997, 185, 9–18. [Google Scholar] [CrossRef]
- Tan, H.; Cao, K.; Zhao, Y.; Zhong, J.; Deng, D.; Pan, B.; Zhang, J.; Zhang, R.; Wang, Z.; Chen, T.; et al. Brain-Targeted Black Phosphorus-Based Nanotherapeutic Platform for Enhanced Hypericin Delivery in Depression. Small 2024, 20, e2310608. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, X.; Huang, Q.; Lei, T.; Luo, H.; Wu, D.; Yang, Z.; Xu, Y.; Dou, Y.; Ma, X.; et al. Microglial-Biomimetic Memantine-Loaded Polydopamine Nanomedicines for Alleviating Depression. Adv. Mater. 2025, 37, e2417869. [Google Scholar] [CrossRef]
- He, J.H.; Yang, L.; Li, D.M.; Xie, J.X.; Zhou, G.L.; Zhou, R.F.; Li, Y.; Wei, G.N.; Gong, Z.Q.; Li, L.; et al. Transferrin-modified carboxymethyl chitosan-chitosan nanoparticles as an efficient delivery carrier for targeted therapy of depression. Int. J. Biol. Macromol. 2025, 286, 138352. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, X.; Han, Z.; Xun, Z.; Qi, Y.; Wang, H.; Chen, C.; Gong, Z.; Xue, X. Nanoenzymes-Integrated and Microenvironment Self-Adaptive Hydrogel for the Healing of Burn Injury and Post-Burn Depression. Adv. Sci. 2024, 12, e2413032. [Google Scholar] [CrossRef]
- Aranaz, I.; Panos, I.; Peniche, C.; Heras, A.; Acosta, N. Chitosan Spray-Dried Microparticles for Controlled Delivery of Venlafaxine Hydrochloride. Molecules 2017, 22, 1980. [Google Scholar] [CrossRef]
- Zhang, H.J.; Pu, C.G.; Wang, Q.; Tan, X.Y.; Gou, J.X.; He, H.B.; Zhang, Y.; Yin, T.; Wang, Y.J.; Tang, X. Physicochemical Characterization and Pharmacokinetics of Agomelatine-Loaded PLGA Microspheres for Intramuscular Injection. Pharm. Res. 2019, 36, 9. [Google Scholar] [CrossRef]
- Tang, J.; Slowing, I.I.; Huang, Y.; Trewyn, B.G.; Hu, J.; Liu, H.; Lin, V.S. Poly(lactic acid)-coated mesoporous silica nanosphere for controlled release of venlafaxine. J. Colloid Interface Sci. 2011, 360, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Vysloužil, J.; Doležel, P.; Kejdušová, M.; Košťál, V.; Beneš, L.; Dvořáčková, K. Long-term controlled release of PLGA microparticles containing antidepressant mirtazapine. Pharm. Dev. Technol. 2016, 21, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Jani, P.; Vanza, J.; Pandya, N.; Tandel, H. Formulation of polymeric nanoparticles of antidepressant drug for intranasal delivery. Ther. Deliv. 2019, 10, 683–696. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, O.P.; Shavi, G.V.; Nayak, U.Y.; Arumugam, K.; Averineni, R.K.; Meka, S.R.; Sureshwar, P. Controlled release chitosan microspheres of mirtazapine: In vitro and in vivo evaluation. Arch. Pharm. Res. 2011, 34, 1919–1929. [Google Scholar] [CrossRef]
- Haque, S.; Md, S.; Fazil, M.; Kumar, M.; Sahni, J.K.; Ali, J.; Baboota, S. Venlafaxine loaded chitosan NPs for brain targeting: Pharmacokinetic and pharmacodynamic evaluation. Carbohydr. Polym. 2012, 89, 72–79. [Google Scholar] [CrossRef]
- Nagpal, K.; Singh, S.K.; Mishra, D. Evaluation of safety and efficacy of brain targeted chitosan nanoparticles of minocycline. Int. J. Biol. Macromol. 2013, 59, 20–28. [Google Scholar] [CrossRef]
- Nagpal, K.; Singh, S.K.; Mishra, D.N. Nanoparticle mediated brain targeted delivery of gallic acid: In vivo behavioral and biochemical studies for improved antioxidant and antidepressant-like activity. Drug Deliv. 2012, 19, 378–391. [Google Scholar] [CrossRef]
- Kamel, R.; Abbas, H.; El-Naa, M. Composite carbohydrate interpenetrating polyelectrolyte nano-complexes (IPNC) as a controlled oral delivery system of citalopram HCl for pediatric use: In-vitro/in-vivo evaluation and histopathological examination. Drug Deliv. Transl. Res. 2018, 8, 657–669. [Google Scholar] [CrossRef]
- Naik, A.; Nair, H. Formulation and evaluation of thermosensitive biogels for nose to brain delivery of doxepin. BioMed Res. Int. 2014, 2014, 847547. [Google Scholar] [CrossRef]
- Nakao, Y.; Horiguchi, M.; Nakamura, R.; Sasaki-Hamada, S.; Ozawa, C.; Funane, T.; Ozawa, R.; Oka, J.I.; Yamashita, C. LARETH-25 and β-CD improve central transitivity and central pharmacological effect of the GLP-2 peptide. Int. J. Pharm. 2016, 515, 37–45. [Google Scholar] [CrossRef]
- Sung, C.; Raeder, J.E.; Merrill, E.W. Drug partitioning and release characteristics of tricyclic antidepressant drugs using a series of related hydrophilic-hydrophobic copolymers. J. Pharm. Sci. 1990, 79, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Guan, T.; Wang, J.; Li, G.; Tang, X. Comparative study of the stability of venlafaxine hydrochloride sustained-release pellets prepared by double-polymer coatings and hot-melt subcoating combined with Eudragit(®) NE30D outercoating. Pharm. Dev. Technol. 2011, 16, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Lopina, S.T. Extended release of a novel antidepressant, venlafaxine, based on anionic polyamidoamine dendrimers and poly(ethylene glycol)-containing semi-interpenetrating networks. J. Biomed. Mater. Res. A 2005, 72, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Lu, Y.R.; Kou, N.; Hu, M.J.; Wang, Q.S.; Cui, Y.L. Intranasal delivery of icariin via a nanogel-thermoresponsive hydrogel compound system to improve its antidepressant-like activity. Int. J. Pharm. 2020, 586, 119550. [Google Scholar] [CrossRef]
- Ahmed, S.; Gull, A.; Aqil, M.; Danish Ansari, M.; Sultana, Y. Poloxamer-407 thickened lipid colloidal system of agomelatine for brain targeting: Characterization, brain pharmacokinetic study and behavioral study on Wistar rats. Colloids Surf. B. 2019, 181, 426–436. [Google Scholar] [CrossRef]
- Wang, Q.S.; Li, K.; Gao, L.N.; Zhang, Y.; Lin, K.M.; Cui, Y.L. Intranasal delivery of berberine via in situ thermoresponsive hydrogels with non-invasive therapy exhibits better antidepressant-like effects. Biomater. Sci. 2020, 8, 2853–2865. [Google Scholar] [CrossRef]
- Xu, D.; Qiao, T.; Wang, Y.; Wang, Q.S.; Cui, Y.L. Alginate nanogels-based thermosensitive hydrogel to improve antidepressant-like effects of albiflorin via intranasal delivery. Drug Deliv. 2021, 28, 2137–2149. [Google Scholar] [CrossRef]
- Elhesaisy, N.; Swidan, S. Trazodone Loaded Lipid Core Poly (ε-caprolactone) Nanocapsules: Development, Characterization and In Vivo Antidepressant Effect Evaluation. Sci. Rep. 2020, 10, 1964. [Google Scholar] [CrossRef]
- Han, L.; Yanling, J.; Jisheng, Y.; Rui, P.; Yanan, C.; Liuting, M.; Qiong, J.; Zhiyong, Q. Preparation of curcumin-chitosan composite film with high antioxidant and antibacterial capacity: Improving the solubility of curcumin by encapsulation of biopolymers. Food Hydrocoll. 2023, 145, 109150. [Google Scholar]
- Lee, J.Y.; Bae, K.H.; Kim, J.S.; Nam, Y.S.; Park, T.G. Intracellular delivery of paclitaxel using oil-free, shell cross-linked HSA—Multi-armed PEG nanocapsules. Biomaterials 2011, 32, 8635–8644. [Google Scholar] [CrossRef]
- Yu, J.; Xie, X.; Xu, X.; Zhang, L.; Zhou, X.; Yu, H.; Wu, P.; Wang, T.; Che, X.; Hu, Z. Development of dual ligand-targeted polymeric micelles as drug carriers for cancer therapy in vitro and in vivo. J. Mater. Chem. B 2014, 2, 2114–2126. [Google Scholar] [CrossRef] [PubMed]
- Malos, I.G.; Pasarin, D.; Ghizdareanu, A.-I.; Frunzareanu, B. A Promising Approach for the Food Industry: Enhancing Probiotic Viability Through Microencapsulated Synbiotics. Microorganisms 2025, 13, 336. [Google Scholar] [CrossRef]
- Vartak, A.; Sucheck, S.J. Recent Advances in Subunit Vaccine Carriers. Vaccines 2016, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Zhang, C.; Li, F.; Li, B.; McCarthy, A.; Zhang, Y.; Chen, S.; Zhang, L. Hierarchically Assembled Nanofiber Scaffolds with Dual Growth Factor Gradients Promote Skin Wound Healing Through Rapid Cell Recruitment. Adv. Sci. 2024, 11, e2309993. [Google Scholar] [CrossRef]
- Su, S.; Tian, Y.; Li, Y.; Ding, Y.; Ji, T.; Wu, M.; Wu, Y.; Nie, G. “Triple-Punch” Strategy for Triple Negative Breast Cancer Therapy with Minimized Drug Dosage and Improved Antitumor Efficacy. ACS Nano 2015, 9, 1367–1378. [Google Scholar] [CrossRef]
- Min, Q.; Yu, X.; Liu, J.; Wu, J.; Wan, Y. Chitosan-Based Hydrogels Embedded with Hyaluronic Acid Complex Nanoparticles for Controlled Delivery of Bone Morphogenetic Protein-2. Pharmaceutics 2019, 11, 214. [Google Scholar] [CrossRef]
- Jeong, C.; Kim, S.E.; Shim, K.-S.; Kim, H.-J.; Song, M.H.; Park, K.; Song, H.-R. Exploring the In Vivo Anti-Inflammatory Actions of Simvastatin-Loaded Porous Microspheres on Inflamed Tenocytes in a Collagenase-Induced Animal Model of Achilles Tendinitis. Int. J. Mol. Sci. 2018, 19, 820. [Google Scholar] [CrossRef]
- Min, J. Nanolayer Multi-Agent Scaled Delivery from Implant Surface. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2016. [Google Scholar]
- Fedgchin, M.; Trivedi, M.; Daly, E.J.; Melkote, R.; Lane, R.; Lim, P.; Vitagliano, D.; Blier, P.; Fava, M.; Liebowitz, M.; et al. Efficacy and Safety of Fixed-Dose Esketamine Nasal Spray Combined With a New Oral Antidepressant in Treatment-Resistant Depression: Results of a Randomized, Double-Blind, Active-Controlled Study (TRANSFORM-1). Int. J. Neuropsychopharmacol. 2019, 22, 616–630. [Google Scholar] [CrossRef]
- Murrough, J.W.; Charney, D.S. Is there anything really novel on the antidepressant horizon? Curr. Psychiatry Rep. 2012, 14, 643–649. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, C.; Wang, L.; Xiang, Y.; Zhang, W.; Li, Y.; Zhuang, X. Comparable Intestinal and Hepatic First-Pass Effect of YL-IPA08 on the Bioavailability and Effective Brain Exposure, a Rapid Anti-PTSD and Anti-Depression Compound. Front. Pharmacol. 2020, 11, 588127. [Google Scholar] [CrossRef]
- Ueno, M.; Nakagawa, T.; Wu, B.; Onodera, M.; Huang, C.L.; Kusaka, T.; Araki, N.; Sakamoto, H. Transporters in the brain endothelial barrier. Curr. Med. Chem. 2010, 17, 1125–1138. [Google Scholar] [CrossRef] [PubMed]
- Mintz, K.J.; Mercado, G.; Zhou, Y.; Ji, Y.; Hettiarachchi, S.D.; Liyanage, P.Y.; Pandey, R.R.; Chusuei, C.C.; Dallman, J.; Leblanc, R.M. Tryptophan carbon dots and their ability to cross the blood-brain barrier. Colloids Surf. B 2019, 176, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Che, X.; Wang, M.; Wang, T.; Fan, H.; Yang, M.; Wang, W.; Xu, H. Evaluation of the Antidepressant Activity, Hepatotoxicity and Blood Brain Barrier Permeability of Methyl Genipin. Molecules 2016, 21, 923. [Google Scholar] [CrossRef]
- Micó, J.A.; Ardid, D.; Berrocoso, E.; Eschalier, A. Antidepressants and pain. Trends Pharmacol. Sci. 2006, 27, 348–354. [Google Scholar] [CrossRef]
- Savalia, N.K.; Shao, L.X.; Kwan, A.C. A Dendrite-Focused Framework for Understanding the Actions of Ketamine and Psychedelics. Trends Neurosci. 2021, 44, 260–275. [Google Scholar] [CrossRef]
- Aleksandrova, L.R.; Phillips, A.G. Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics. Trends Pharmacol. Sci. 2021, 42, 929–942. [Google Scholar] [CrossRef]
- Patel, R.B.; Rao, H.R.; Thakkar, D.V.; Patel, M.R. Comprehending the potential of metallic, lipid, and polymer-based nanocarriers for treatment and management of depression. Neurochem. Int. 2022, 153, 105259. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Song, Z.; Zhang, H.; Lin, H.; Xu, P.; Li, Z.; He, Q.; Wei, B. Advancing Antidepressive Agents: Drug Discovery and Polymer-Based Drug Delivery Systems for Improved Treatment Outcome. Biomedicines 2025, 13, 1081. https://doi.org/10.3390/biomedicines13051081
Zhang Y, Song Z, Zhang H, Lin H, Xu P, Li Z, He Q, Wei B. Advancing Antidepressive Agents: Drug Discovery and Polymer-Based Drug Delivery Systems for Improved Treatment Outcome. Biomedicines. 2025; 13(5):1081. https://doi.org/10.3390/biomedicines13051081
Chicago/Turabian StyleZhang, Yufei, Zengyi Song, Hongxi Zhang, Haijiao Lin, Pu Xu, Zijia Li, Qingyun He, and Binbin Wei. 2025. "Advancing Antidepressive Agents: Drug Discovery and Polymer-Based Drug Delivery Systems for Improved Treatment Outcome" Biomedicines 13, no. 5: 1081. https://doi.org/10.3390/biomedicines13051081
APA StyleZhang, Y., Song, Z., Zhang, H., Lin, H., Xu, P., Li, Z., He, Q., & Wei, B. (2025). Advancing Antidepressive Agents: Drug Discovery and Polymer-Based Drug Delivery Systems for Improved Treatment Outcome. Biomedicines, 13(5), 1081. https://doi.org/10.3390/biomedicines13051081