Challenges in the Treatment of Urinary Tract Infections: Antibiotic Resistance Profiles of Escherichia coli Strains Isolated from Young and Elderly Patients in a Southeastern Romanian Hospital
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Resistance Profile of E. coli Strains
4. Discussion
- ESBL- and Carbapenemase-Producing E. coli Strains
- Resistance of E. coli Strains to the Aminopenicillin Group
- Resistance Profile of E. coli Strains to Third-Generation Cephalosporins
- Susceptibility of E. coli Strains to the Carbapenem Class
- Resistance Profile of E. coli Strains to the Fluoroquinolone Group
- Resistance to Nitrofurantoin and Fosfomycin
- Resistance of E. coli Strains to Trimethoprim/Sulfamethoxazole (TMP/SMX)
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMP | Ampicillin |
AMC | Amoxicilin/clavulanic acid |
CRO | Ceftriaxone |
ERT | Ertapenem |
MEM | Meropenem |
LVX | Levofloxacina |
CIP | Ciprofloxacin |
NIT | Nitrofurantoin, |
FOS | Fosfomycin |
SXT TMP/SMX | Trimethoprim/sulfamethoxazole |
MDR | Multidrug resistance |
References
- Carlet, J.; Collignon, P.; Goldmann, D.; Goosens, H.; Gyssens, I.C.; Harbarth, S.; Jarlier, V.; Levy, S.B.; N’Doye, B.; Pittet, D.; et al. Voss A: Society’s failure to protect a precious resource: Antibiotics. Lancet 2011, 378, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Carlet, J.; Jarlier, V.; Harbarth, S.; Voss, A.; Goossens, H.; Pittet, D. Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action. Antimicrob. Resist. Infect. Control 2012, 1, 11. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.M. Preserving the lifesaving power of antimicrobial agents. JAMA 2011, 305, 1027–1028. [Google Scholar] [CrossRef] [PubMed]
- Lutter, S.A.; Currie, M.L.; Mitz, L.B.; Greenbaum, L.A. Antibiotic Resistance Patterns in Children Hospitalized for Urinary Tract Infections. Arch. Pediatr. Adolesc. Med. 2005, 159, 924–928. [Google Scholar] [CrossRef]
- Baraff, L.J. Management of fever without source in infants and children. Ann. Emerg. Med. 2000, 36, 602–614. [Google Scholar] [CrossRef]
- Procop, G.W.; Church, D.L.; Hall, G.S.; Janda, W.M.; Koneman, E.W.; Schreckenberger, P.C.; Woods, G.L. Color Atlas and Textbook of Diagnostic Microbiology, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Connie, R.M.; Donald, C.L. TextBook of Diagnostic Microbiology, 7th ed.; Saunders: Philadelphia, PA, USA, 2023. [Google Scholar]
- Alanazi, M.Q.; Alqahtani, F.Y.; Aleanizy, F.S. An evaluation of E. coli in urinary tract infection in emergency department at KAMC in Riyadh, Saudi Arabia: Retrospective study. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al Yousef, S.A.; Younis, S.; Farrag, E.; Moussa, H.S.; Bayoumi, F.S.; Ali, A.M. Clinical and laboratory profile of urinary tract infections associated with extended spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae. Ann. Clin. Lab. Sci. 2016, 46, 393–400. [Google Scholar]
- Kader, A.A.; Kumar, A. Prevalence and antimicrobial susceptibility of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a general hospital. Ann. Saudi. Med. 2005, 25, 239–242. [Google Scholar] [CrossRef]
- Al-Otaibi, F.E.; Bukhari, E.E. Clinical and laboratory profiles of urinary tract infections caused by extended-spectrum beta-lactamase-producing Escherichia coli in a tertiary care center in central Saudi Arabia. Saudi. Med. J. 2013, 34, 171–176. [Google Scholar]
- Wilder, J.L.; Parsons, C.R.; Growdon, A.S.; Toomey, S.L.; Mansbach, J.M. Pediatric Hospitalizations During the COVID-19 Pandemic. Pediatrics 2020, 146, e2020005983. [Google Scholar] [CrossRef] [PubMed]
- Dann, L.; Fitzsimons, J.; Gorman, K.M.; Hourihane, J.; Okafor, I. Disappearing act: COVID-19 and paediatric emergency department attendances. Arch. Dis. Child. 2020, 105, 810–811. [Google Scholar] [CrossRef] [PubMed]
- Meena, S.; Bharti, G.; Mathur, P. Pre- and Post-COVID-19 Appraisal of Antimicrobial Susceptibility for Urinary Tract Infections at an Outpatient Setting of a Tertiary Care Hospital in Delhi. Cureus 2023, 15, e47095. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gul, A.; Ekici, O.; Zengin, S.; Boyaci, C. Has the COVID-19 pandemic affected community-acquired urinary tract infections in children? Urol. J. 2022, 19, 386–391. [Google Scholar] [CrossRef]
- Cesca, L.; Conversano, E.; Vianello, F.A.; Martelli, L.; Gualeni, C.; Bassani, F.; Brugnara, M.; Rubin, G.; Parolin, M.; Anselmi, M.; et al. How COVID-19 changed the epidemiology of febrile urinary tract infections in children in the emergency department during the first outbreak. BMC Pediatr. 2022, 22, 550. [Google Scholar] [CrossRef]
- Kuitunen, I.; Artama, M.; Haapanen, M.; Renko, M. Urinary tract infections decreased in Finnish children during the COVID-19 pandemic. Eur. J. Pediatr. 2022, 181, 1979–1984. [Google Scholar] [CrossRef]
- Henry, A.; Yang, J.; Grattan, S.; Roberts, L.; Lainchbury, A.; Shanthosh, J.; Cullen, P.; Everitt, L. Effects of the COVID-19 pandemic and telehealth on antenatal screening and services, including for mental health and domestic violence: An Australian mixed-methods study. Front. Glob. Womens Health 2022, 3, 819953. [Google Scholar] [CrossRef]
- Altamimi, I.; Binkhamis, K.; Alhumimidi, A.; Alabdulkarim, I.M.; Almugren, A.; Alhemsi, H.; Altamimi, A.; Almazyed, A.; Elbih, S.; Alghunaim, R.; et al. Decline in ESBL Production and Carbapenem Resistance in Urinary Tract Infections among Key Bacterial Species during the COVID-19 Pandemic. Antibiotics 2024, 13, 216. [Google Scholar] [CrossRef]
- Bradford, P.A. Extended-Spectrum β-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clin. Microbiol. Rev. 2001, 14, 933–951. [Google Scholar] [CrossRef]
- Mena, A.J.; Lora, M.D.; Sorondo, C.; Billini, B.; Gonzalez, P.; Bleasdale, S.C. Antimicrobial resistance in Escherichia coli and Pseudomonas aeruginosa before and after the coronavirus disease 2019 (COVID-19) pandemic in the Dominican Republic. Antimicrob. Steward. Healthc. Epidemiol. 2022, 2, e191. [Google Scholar] [CrossRef]
- Wardoyo, E.H.; Suardana, I.W.; Yasa, I.W.P.S.; Sukrama, I.D.M. Antibiotics Susceptibility of Escherichia coli Isolates from Clinical Specimens before and during COVID-19 Pandemic. Iran. J. Microbiol. 2021, 13, 156. [Google Scholar]
- Golli, A.L.; Popa, S.G.; Cara, M.L.; Stoica, G.A.; Fortofoiu, D.; Stoica, M. Antibiotic Resistance Pattern of Pathogens Isolated from Pediatric Patients during and after the COVID-19 Pandemic. Antibiotics 2021, 13, 966. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mączyńska, B.; Frej-Mądrzak, M.; Sarowska, J.; Woronowicz, K.; Choroszy-Król, I.; Jama-Kmiecik, A. Evolution of Antibiotic Resistance in Escherichia coli and Klebsiella pneumoniae Clinical Isolates in a Multi-Profile Hospital over 5 Years (2017–2021). J. Clin. Med. 2023, 12, 2414. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2018; ECDC: Stockholm, Sweden, 2019. [Google Scholar]
- Rodríguez-Lozanoa, J.; de Maleta, A.; Canoa, M.E.; de la Rubiab, L.; Wallmannc, R.; Martínez-Martínezd, L.; Calvoa, J. Antimicrobial Susceptibility of Microorganisms That Cause Urinary Tract Infections in Pediatric Patients; Elsevier: Amsterdam, The Netherlands, 2018; Volume 36, pp. 417–422. [Google Scholar] [CrossRef]
- Sorlozano, A.; Jimenez-Pacheco, A.; del Castillo, J.L.; Sampedro, A.; Martinez-Brocal, A.; Miranda-Casas, C.; Navarro-Marí, J.M. Evolution of the resistance to antibiotics of bacteria involved in urinary tract infections: A 7-year surveillance study. Am. J. Infect. Control 2014, 42, 1033–1038. [Google Scholar] [CrossRef]
- Tena, D.; González-Praetorius, A.; González, J.C.; Heredero, E.; Illescas, S.; De Baranda, C.S.; Seseña, G. Changes in the antimicrobial susceptibility of Escherichia coli isolates from community diagnosed urinary tract infections during the period 2003–2007: A multicenter study in Castilla La Mancha (Spain). Rev. Esp. Quimioter. 2010, 23, 36–42. [Google Scholar]
- Andreu, A.; Planells, I. Grupo Cooperativo Español para el Estudio de la Sensibilidad Antimicrobiana de los Patógenos Urinarios Etiology of community acquired lower urinary infections and antimicrobial resistance of Escherichia coli: A national surveillance study. Med. Clin. 2008, 130, 481–486. [Google Scholar] [CrossRef]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef]
- Madani, S.H.; Khazaee, S.; Kanani, M.; Shahi, M. Antibiotic resistance pattern of E. coli isolated from urine culture in Imam Reza Hospital Kermanshah-2006. J. Kermanshah Univ. Med. Sci. 2008, 12, 287–295. [Google Scholar]
- Safdari, H.; Ghazvini, K. Antimicrobial susceptibility patterns among E. coli isolated from urinary tract infections in Ghaem University hospital, Mashhad. Zahedan J. Res. Med. Sci. 2007, 3, 225–229. [Google Scholar]
- Ferdosi-Shahandashti, E.; Javanian, M.; Moradian-Kouchaksaraei, M.; Yeganeh, B.; Bijani, A.; Motevaseli, E.; Moradian-Kouchaksaraei, F. Resistance patterns of Escherichia coli causing urinary tract infection. Caspian. J. Intern. Med. 2015, 6, 148–151. [Google Scholar] [PubMed] [PubMed Central]
- Kamenski, G.; Wagner, G.; Zehetmayer, S.; Fink, W.; Spiegel, W.; Hoffmann, K. Antibacterial resistances in uncomplicated urinary tract infections in women: ECO·SENS II data from primary health care in Austria. BMC Infect. Dis. 2012, 12, 222. [Google Scholar] [CrossRef]
- Mehr, S.; Powell, C.; Curtis, N. Cephalosporin resistant urinary tract infections in young children. J. Paediatr. Child Health 2004, 40, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Shimoni, Z.; Salah, M.; Kasem, A.; Hermush, V.; Froom, P. Bacterial Resistance to Cephalosporin Treatment in Elderly Stable Patients Hospitalized with a Urinary Tract Infection. Am. J. Med. Sci. 2020, 360, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Mareș, C.; Petca, R.-C.; Petca, A.; Popescu, R.-I.; Jinga, V. Does the COVID Pandemic Modify the Antibiotic Resistance of Uropathogens in Female Patients? A New Storm? Antibiotics 2022, 11, 376. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Dortet, L.; Poirel, L. Carbapenem Resistance in Enterobacteriaceae: Here Is the Storm! Trends Mol. Med. 2012, 18, 263–272. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Adegoke, A.A.; Ikott, W.E.; Okoh, A.I. Carbapenem Resistance Associated with Coliuria among Outpatient and Hospitalised Urology Patients. New Microbes New Infect. 2022, 48, 101019. [Google Scholar] [CrossRef]
- Mareș, C.; Petca, R.C.; Popescu, R.I.; Petca, A.; Geavlete, B.F.; Jinga, V. Uropathogens’ Antibiotic Resistance Evolution in a Female Population: A Sequential Multi-Year Comparative Analysis. Antibiotics 2023, 12, 948. [Google Scholar] [CrossRef]
- Ruiz-Lievano, A.P.; Cervantes-Flores, F.; Nava-Torres, A.; Carbajal-Morales, P.J.; Villaseñor-Garcia, L.F.; Zavala-Cerna, M.G. Fluoroquinolone Resistance in Escherichia coli Causing Community-Acquired Urinary Tract Infections: A Systematic Review. Microorganisms 2024, 12, 2320. [Google Scholar] [CrossRef]
- Islam, M.A.; Islam, M.R.; Khan, R.; Amin, M.B.; Rahman, M.; Hossain, M.I.; Ahmed, D.; Asaduzzaman, M.; Riley, L.W. Prevalence, etiology and antibiotic resistance patterns of community-acquired urinary tract infections in Dhaka, Bangladesh. PLoS ONE 2022, 17, e0274423. [Google Scholar] [CrossRef]
- Afsharikhah, S.; Ghanbarpour, R.; Mohseni, P.; Adib, N.; Bagheri, M.; Jajarmi, M. High prevalence of β-lactam and fluoroquinolone resistance in various phylotypes of Escherichia coli isolates from urinary tract infections in Jiroft city, Iran. BMC Microbiol. 2023, 23, 114. [Google Scholar] [CrossRef]
- Cristea, V.C.; Gheorghe, I.; Czobor Barbu, I.; Popa, L.I.; Ispas, B.; Grigore, G.A.; Bucatariu, I.; Popa, G.L.; Angelescu, M.C.; Velican, A.; et al. Snapshot of Phylogenetic Groups, Virulence, and Resistance Markers in Escherichia coli Uropathogenic Strains Isolated from Outpatients with Urinary Tract Infections in Bucharest, Romania. BioMed Res. Int. 2019, 2019, 5712371. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Du, L.; Yan, L.; Dai, W.; Wang, Z.; Xu, X. Eight-Year Surveillance of Uropathogenic Escherichia coli in Southwest China. Infect. Drug Resist. 2020, 13, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, A.E.; Wagenlehner, F.M.E.; Mulgirigama, A.; Twynholm, M. Escherichia coli Resistance to Fluoroquinolones in Community-Acquired Uncomplicated Urinary Tract Infection in Women: A Systematic Review. Antimicrob. Agents Chemother. 2020, 64, e00862-20. [Google Scholar] [CrossRef] [PubMed]
- Dobbyn, D.; Zeggil, T.; Kudrowich, B.; Beahm, N.P. Ciprofloxacin resistances rates in Escherichia coli across Canada (CREAC): A longitudinal analysis 2015–2019. Int. J. Antimicrob. Agents 2022, 59, 106532. [Google Scholar] [CrossRef]
- Akgoz, M.; Akman, I.; Ates, A.B.; Celik, C.; Keskin, B.; Ozmen Capin, B.B.; Karahan, Z.C. Plasmidic Fluoroquinolone Resistance Genes in Fluoroquinolone-Resistant and/or Extended Spectrum Beta-Lactamase-Producing Escherichia coli Strains Isolated from Pediatric and Adult Patients Diagnosed with Urinary Tract Infection. Microb. Drug Resist. 2020, 26, 1334–1341. [Google Scholar] [CrossRef]
- Zavala-Cerna, M.G.; Segura-Cobos, M.; Gonzalez, R.; Zavala-Trujillo, I.G.; Navarro-Perez, S.F.; Rueda-Cruz, J.A.; Satoscoy-Tovar, F.A. The Clinical Significance of High Antimicrobial Resistance in Community-Acquired Urinary Tract Infections. Can. J. Infect. Dis. Med. Microbiol. 2020, 2020, 2967260. [Google Scholar] [CrossRef]
- Venugopal, S.; Chunchanur, S.; Panigrahy, R.; Tak, V.; Yadav, M.; Chauhan, A.; Srinivasamurthy, H.; Rajendran, J.; Pundir, S.; Bhatt, S.; et al. Investigators of the CAUTION-ED Study (Community-Acquired UTI and Emerging Drug Resistance). Changes in antimicrobial resistance of Escherichia coli isolated from community-associated urinary tract infection before and during the COVID-19 pandemic in India. J. Glob. Antimicrob. Resist. 2024, 37, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Wanke-Rytt, M.; Sobierajski, T.; Lachowicz, D.; Seliga-Gąsior, D.; Podsiadły, E. Analysis of Etiology of Community-Acquired and Nosocomial Urinary Tract Infections and Antibiotic Resistance of Isolated Strains: Results of a 3-Year Surveillance (2020–2022) at the Pediatric Teaching Hospital in Warsaw. Microorganisms 2023, 11, 1438. [Google Scholar] [CrossRef]
- Mahony, M.; McMullan, B.; Brown, J.; Kennedy, S.E. Multidrug-resistant organisms in urinary tract infections in children. Pediatr. Nephrol. 2020, 35, 1563–1573. [Google Scholar] [CrossRef]
- King, L.M.; Bartoces, M.; Fleming-Dutra, K.E.; Roberts, R.M.; Hicks, L.A. Changes in US Outpatient Antibiotic Prescriptions from 2011–2016. Clin. Infect. Dis. 2020, 70, 370–377. [Google Scholar] [CrossRef]
- Etminan, M.; Guo, M.Y.; Carleton, B. Oral Fluoroquinolone Prescribing to Children in the United States From 2006 to 2015. Pediatr. Infect. Dis. J. 2019, 38, 268–270. [Google Scholar] [CrossRef] [PubMed]
- Meesters, K.; Mauel, R.; Dhont, E.; Walle, J.V.; De Bruyne, P. Systemic fluoroquinolone prescriptions for hospitalized children in Belgium, results of a multicenter retrospective drug utilization study. BMC. Infect. Dis. 2018, 18, 89. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Hossain, S.A.; Fatema, A.N.; Wahab, A.; Alam, M.M.; Islam, N.; Hossain, M.Z.; Ahsan, G.U. Ahsan, Age and gender-specific antibiotic resistance patterns among Bangladeshi patients with urinary tract infection caused by Escherichia coli. Heliyon 2020, 6, e04161. [Google Scholar] [CrossRef]
- Sandegren, L.; Lindqvist, A.; Kahlmeter, G.; Andersson, D.I. Nitrofurantoin resistance mechanism and fitness cost in Escherichia coli. J. Antimicrob. Chemother 2008, 62, 495–503. [Google Scholar] [CrossRef]
- Tasbakan, M.I.; Pullukcu, H.; Sipahi, O.R.; Yamazhan, T.; Ulusoy, S. Nitrofurantoin in the treatment of extended-spectrum β-lactamase-producing Escherichia coli-related lower urinary tract infection. Int. J. Antimicrob. Agents 2012, 40, 554–556. [Google Scholar] [CrossRef]
- Kashanian, J.; Hakimian, P.; Blute, M.; Wong, J.; Khana, H.; Wise, G.; Shabsign, R. Nitrofurantoin: The return of an old friend in the wake of growing resistance. BJU Int. 2008, 102, 1634–1637. [Google Scholar] [CrossRef]
- Sanchez, G.V.; Baird, A.M.G.; Karlowsky, J.A.; Master, R.N.; Bordon, J.M. Nitrofurantoin retains antimicrobial activity against multidrug-resistant urinary Escherichia coli from US outpatients. J. Antimicrob. Chemother. 2014, 69, 3259–3262. [Google Scholar] [CrossRef]
- Stańczyk, M.; Pawlak-Bratkowska, M.; Jander, A.; Puczko-Nogal, B.; Tkaczyk, M.; Seraficka, A. Fosfomycin prophylaxis can reduce the risk of severe recurrent urinary tract infections requiring hospitalisation in children with complex urinary tract malformations. Pediatr. Pol.-Pol. J. Paediatr. 2023, 98, 285–292. [Google Scholar] [CrossRef]
- Bryce, A.; Costelloe, C.; Wootton, M.; Butler, C.C.; Hay, A.D. Comparison of risk factors for, and prevalence of, antibiotic resistance in contaminating and pathogenic urinary Escherichia coli in children in primary care: Prospective cohort study. J Antimicrob. Chemother. 2018, 73, 1359–1367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- World Health Organization (WHO). Antimicrobial Stewardship Programmes in Health-Care Facilities in Low- and Middle-Income Countries: A WHO Practical Toolkit; World Health Organization: Geneva, Switzerland, 2019; Available online: https://iris.who.int/bitstream/handle/10665/329404/9789241515481-eng.pdf (accessed on 25 March 2025).
- European Centre for Disease Prevention and Control (ECDC). Antimicrobial Resistance in the EU/EEA (EARS-Net), Annual Epidemiological Report for 2023; ECDC: Stockholm, Sweden, 2023. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical Breakpoints-Bacteria. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 25 March 2025).
- Wu, T.; Fu, Y.; Guo, S.; Shi, Y.; Zhang, Y.; Fan, Z.; Yang, B.; Ding, B.; Liao, Y. Self-assembly multifunctional DNA tetrahedron for efficient elimination of antibiotic-resistant bacteria. Aggregate 2023, 5, e402. [Google Scholar] [CrossRef]
- Lin, X.; Liao, Y.; Chen, X.; Long, D.; Yu, T.; Shen, F. Regulation of Oncoprotein 18/Stathmin Signaling by ERK Concerns the Resistance to Taxol in Nonsmall Cell Lung Cancer Cells. Cancer Biother. Radiopharm. 2016, 31, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Cambrea, S.C. Antibiotic Susceptibility of Escherichia coli Strains Isolated in a Pediatric Population from Southeastern Romania. J. Pediatr. Infect. Dis. 2015, 9, 157–162. [Google Scholar]
- Cambrea, S.C.; Petcu, L.C.; Mihai, C.M.; Hangan, T.L.; Iliescu, D.M. Influence of Environmental Factors on the Evolution of Shigellosis in Constanta County, Romania. J. Environ. Prot. Ecol. 2019, 20, 986–994. [Google Scholar]
- Cambrea, S.C.; Badiu, D.; Ionescu, C.; Penciu, R.; Pazara, L.; Mihai, C.M.; Cambrea, M.A.; Mihai, L. Boutonneuse fever in Southeastern Romania. Microorganism 2023, 11, 2734. [Google Scholar] [CrossRef]
- Halichidis, S.; Balasa, A.L.; Ionescu, E.V.; Iliescu, M.G.; Cambrea, S.C.; Petcu, L.C.; Mihai, C.M. Evolution of Salmonellosis in Constanta area in correlation with environmental factors. J. Environ. Prot. Ecol. 2019, 20, 1496–1504. [Google Scholar]
- Matusz, P.; Bordei, P.; Sapte, E.; Iliescu, D.; Bulbuc, I. Segmentation of renal parenchyma in the case of presence of additional renal arteries. FASEB J. 2012, 26, 722.7. [Google Scholar] [CrossRef]
Overall N = 644 | Pre-Pandemic 2018–2019 N = 361 | Post-Pandemic 2023–2024 N = 283 | p-Value | ||
---|---|---|---|---|---|
Category of age | Sex, n (%) | ||||
Adults (19–64 ani) | Female | 293 (45.49) | 182 (50.41) | 111 (39.22) | 0.031 |
Male | 80 (12.42) | 39 (10.80) | 41 (14.48) | ||
Children (1–18 ani) | Female | 46 (7.14) | 22 (6.09) | 24 (8.48) | 0.9 |
Male | 10 (1.55) | 5 (1.38) | 5 (1.76) | ||
Older adult (≥65 ani) | Female | 188 (29.19) | 95 (26.31) | 93 (32.87) | 0.116 |
Male | 27 (4.19) | 18 (4.99) | 9 (3.18) | ||
Age, Median (IQR) | 53 | 51 | 55 | 0.08 |
Overall N = 644 | Pre-Pandemic 2018–2019 N = 361 | Post-Pandemic 2023–2024 N = 283 | p-Value | |
---|---|---|---|---|
Ward, n (%) | <0.001 | |||
Adults ID | 446 (69.25) | 291 (80.61) | 155 (54.7) | |
Childrent ID | 43 (6.67) | 19 (5.26) | 24 (8.48) | |
ICU-ID | 14 (2.17) | 5 (1.38) | 9 (3.18) | |
Emergency | 25 (3.88) | 2 (0.55) | 23 (8.13) | |
Imunodepressed (Human Immunodeficiency virus) | 108 (16.77) | 43 (11.91) | 65 (22.9) | |
Others | 8 (1.24) | 1 (0.27) | 7 (2.47) |
Overall N = 644 | Pre-Pandemic 2018–2019 N = 361 | Post-Pandemic 2023–2024 N = 283 | p-Value | |
---|---|---|---|---|
ESBL, n (%) | 0.3 | |||
Negative | 567 (88.04) | 322 (89.19) | 245 (86.57) | |
Positive | 77 (11.95) | 39 (10.80) | 38 (13.42) | |
Carbapenemase, n (%) | 0.8 | |||
Negative | 642 (99.7) | 360 (99.72) | 282 (99.64) | |
Positive | 2 (0.31) | 1 (0.27) | 1 (0.35) |
Pre-Pandemic 2018–2019 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total No Isolates/Susceptibility to All Antibiotic/Resistance to One or More N (%) Isolate Resistance to | ||||||||||||||
AMP | AMC | CRO | ERT | MEM | LVX | CIP | NIT | FOS | SXT | %MDR | ||||
Gender | ||||||||||||||
Male | 62 (17.2) | 16 (4.4) | 46 (12.74) | 40 (11.1) | 38 (10.5) | 8 (2.2) | 2 (0.6) | 0 (NA) | 19 (5.3) | 19 (5.3) | 3 (0.8) | 4 (1.11) | 24 (6.64) | 8 (2.21) |
Female | 299 (82.8) | 89 (24.6) | 210 (58.17) | 184 (50.9) | 168 (46.5) | 25 (6.9) | 4 (0.4) | 3 (0.3) | 70 (19.4) | 48 (13.3) | 2 (0.6) | 20 (5.5) | 117 (32.4) | 16 (4.4) |
Total | 361 | 105 (29.1) | 256 (19.6) | 224 (61.5) | 206 (57.1) | 33 (9.1) | 6 (1.7) | 3 (0.8) | 89 (24.6) | 67 (18.5) | 5 (1.4) | 24 (6.6) | 141 (39) | 24 (6.6) |
Category of age | ||||||||||||||
Children 1–18 years | 27 (7.5) | 4 (1.1) | 8 (2.2) | 19 (5.3) | 20 (5.54) | 3 (0.8) | 0 (NA) | 0 (NA) | 7 (1.9) | 5 (1.4) | 0 (NA) | 3 (0.8) | 12 (3.3) | 2 (0.5) |
Adults 19–64 years | 221 (61.2) | 66 (18.3) | 162 (44.9) | 139 (38.5) | 126 (34.6) | 20 (5.5) | 2 (0.5) | 1 (0.2) | 50 (14) | 36 (10) | 4 (1.1) | 15 (4.1) | 84 (23.3) | 16 (4.4) |
Geriatrics ≥65 years | 113 (31.3) | 35 (9.6) | 86 (23.9) | 66 (18.3) | 60 (16.6) | 10 (2.8) | 4 (1.1) | 2 (0.6) | 32 (8.8) | 26 (7.2) | 1 (0.2) | 6 (1.7) | 45 (12.4) | 6 (1.7) |
Total | 361 | 105 | 256 | 224 | 206 | 33 | 6 | 3 | 89 | 67 | 5 | 24 | 141 | 24 |
Post-pandemic 2023–2024 | ||||||||||||||
Gender | ||||||||||||||
Male | 55 (19.4) | 10 (3.4) | 41 (14.4) | 41 (14.5) | 35 (12.4) | 16 (5.6) | 1 (0.35) | 1 (0.35) | 28 (9.9) | 27 (9.5) | 2 (0.7) | 4 (1.4) | 37 (13.1) | 13 (4.6) |
Female | 228 (80.6) | 79 (28) | 153 (54.1) | 122 (43.1) | 108 (38.1) | 32 (11.3) | 0 (NA) | 0 (NA) | 51 (18) | 47 (16.6) | 6 (2.1) | 18 (6.4) | 68 (24) | 21 (7.4) |
Total | 283 | 89 (31.4) | 194 (68.5) | 163 (57.6) | 143 (50.5) | 48 (16.9) | 1 (0.35) | 1 (0.35) | 79 (27.9) | 74 (26.1) | 8 (2.8) | 22 (7.8) | 105 (37.1) | 34 (12) |
Category of age | ||||||||||||||
Children 1–18 years | 29 (10.2) | 6 (2.1) | 19 (6.7) | 19 (6.7) | 16 (5.6) | 1 (0.35) | 0 (NA) | 0 (NA) | 6 (2.1) | 6 (2.1) | 0 (NA) | 1 (0.35) | 13 (4.6) | 1 (0.35) |
Adults 19–64 years | 152 (53.7) | 51 (18) | 101 (35.7) | 86 (30.4) | 76 (26.8) | 23 (8.1) | 0 (NA) | 0 (NA) | 42 (14.9) | 42 (14.9) | 4 (1.4) | 8 (2.8) | 58 (20.5) | 19 (6.7) |
Geriatrics ≥65 years | 102 (36) | 32 (11.3) | 74 (26.1) | 58 (20.5) | 51 (18.1) | 24 (8.5) | 1 (0.35) | 1 (0.35) | 31 (10.9) | 26 (9.2) | 4 (1.4) | 13 (4.6) | 34 (12) | 14 (4.95) |
Total | 283 | 89 | 194 | 163 | 143 | 48 | 1 | 1 | 79 | 74 | 8 | 22 | 105 | 34 |
p-value | 0.25 | 0.11 | 0.004 | 0.14 | 0.63 | 0.36 | 0.02 | 0.26 | 0.64 | 0.62 | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topa, A.-E.; Ionescu, C.; Pinzaru, A.; Mocanu, E.; Iancu, A.M.; Dumea, E.; Nitu, B.F.; Panculescu, F.G.; Cambrea, S.C. Challenges in the Treatment of Urinary Tract Infections: Antibiotic Resistance Profiles of Escherichia coli Strains Isolated from Young and Elderly Patients in a Southeastern Romanian Hospital. Biomedicines 2025, 13, 1066. https://doi.org/10.3390/biomedicines13051066
Topa A-E, Ionescu C, Pinzaru A, Mocanu E, Iancu AM, Dumea E, Nitu BF, Panculescu FG, Cambrea SC. Challenges in the Treatment of Urinary Tract Infections: Antibiotic Resistance Profiles of Escherichia coli Strains Isolated from Young and Elderly Patients in a Southeastern Romanian Hospital. Biomedicines. 2025; 13(5):1066. https://doi.org/10.3390/biomedicines13051066
Chicago/Turabian StyleTopa, Andreea-Elena, Constantin Ionescu, Anca Pinzaru, Elena Mocanu, Ana Maria Iancu, Elena Dumea, Bogdan Florentin Nitu, Florin Gabriel Panculescu, and Simona Claudia Cambrea. 2025. "Challenges in the Treatment of Urinary Tract Infections: Antibiotic Resistance Profiles of Escherichia coli Strains Isolated from Young and Elderly Patients in a Southeastern Romanian Hospital" Biomedicines 13, no. 5: 1066. https://doi.org/10.3390/biomedicines13051066
APA StyleTopa, A.-E., Ionescu, C., Pinzaru, A., Mocanu, E., Iancu, A. M., Dumea, E., Nitu, B. F., Panculescu, F. G., & Cambrea, S. C. (2025). Challenges in the Treatment of Urinary Tract Infections: Antibiotic Resistance Profiles of Escherichia coli Strains Isolated from Young and Elderly Patients in a Southeastern Romanian Hospital. Biomedicines, 13(5), 1066. https://doi.org/10.3390/biomedicines13051066