Challenges in the Treatment of Urinary Tract Infections: Antibiotic Resistance Profiles of Escherichia coli Strains Isolated from Young and Elderly Patients in a Southeastern Romanian Hospital
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Resistance Profile of E. coli Strains
4. Discussion
- ESBL- and Carbapenemase-Producing E. coli Strains
- Resistance of E. coli Strains to the Aminopenicillin Group
- Resistance Profile of E. coli Strains to Third-Generation Cephalosporins
- Susceptibility of E. coli Strains to the Carbapenem Class
- Resistance Profile of E. coli Strains to the Fluoroquinolone Group
- Resistance to Nitrofurantoin and Fosfomycin
- Resistance of E. coli Strains to Trimethoprim/Sulfamethoxazole (TMP/SMX)
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMP | Ampicillin |
AMC | Amoxicilin/clavulanic acid |
CRO | Ceftriaxone |
ERT | Ertapenem |
MEM | Meropenem |
LVX | Levofloxacina |
CIP | Ciprofloxacin |
NIT | Nitrofurantoin, |
FOS | Fosfomycin |
SXT TMP/SMX | Trimethoprim/sulfamethoxazole |
MDR | Multidrug resistance |
References
- Carlet, J.; Collignon, P.; Goldmann, D.; Goosens, H.; Gyssens, I.C.; Harbarth, S.; Jarlier, V.; Levy, S.B.; N’Doye, B.; Pittet, D.; et al. Voss A: Society’s failure to protect a precious resource: Antibiotics. Lancet 2011, 378, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Carlet, J.; Jarlier, V.; Harbarth, S.; Voss, A.; Goossens, H.; Pittet, D. Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action. Antimicrob. Resist. Infect. Control 2012, 1, 11. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.M. Preserving the lifesaving power of antimicrobial agents. JAMA 2011, 305, 1027–1028. [Google Scholar] [CrossRef] [PubMed]
- Lutter, S.A.; Currie, M.L.; Mitz, L.B.; Greenbaum, L.A. Antibiotic Resistance Patterns in Children Hospitalized for Urinary Tract Infections. Arch. Pediatr. Adolesc. Med. 2005, 159, 924–928. [Google Scholar] [CrossRef]
- Baraff, L.J. Management of fever without source in infants and children. Ann. Emerg. Med. 2000, 36, 602–614. [Google Scholar] [CrossRef]
- Procop, G.W.; Church, D.L.; Hall, G.S.; Janda, W.M.; Koneman, E.W.; Schreckenberger, P.C.; Woods, G.L. Color Atlas and Textbook of Diagnostic Microbiology, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Connie, R.M.; Donald, C.L. TextBook of Diagnostic Microbiology, 7th ed.; Saunders: Philadelphia, PA, USA, 2023. [Google Scholar]
- Alanazi, M.Q.; Alqahtani, F.Y.; Aleanizy, F.S. An evaluation of E. coli in urinary tract infection in emergency department at KAMC in Riyadh, Saudi Arabia: Retrospective study. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al Yousef, S.A.; Younis, S.; Farrag, E.; Moussa, H.S.; Bayoumi, F.S.; Ali, A.M. Clinical and laboratory profile of urinary tract infections associated with extended spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae. Ann. Clin. Lab. Sci. 2016, 46, 393–400. [Google Scholar]
- Kader, A.A.; Kumar, A. Prevalence and antimicrobial susceptibility of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a general hospital. Ann. Saudi. Med. 2005, 25, 239–242. [Google Scholar] [CrossRef]
- Al-Otaibi, F.E.; Bukhari, E.E. Clinical and laboratory profiles of urinary tract infections caused by extended-spectrum beta-lactamase-producing Escherichia coli in a tertiary care center in central Saudi Arabia. Saudi. Med. J. 2013, 34, 171–176. [Google Scholar]
- Wilder, J.L.; Parsons, C.R.; Growdon, A.S.; Toomey, S.L.; Mansbach, J.M. Pediatric Hospitalizations During the COVID-19 Pandemic. Pediatrics 2020, 146, e2020005983. [Google Scholar] [CrossRef] [PubMed]
- Dann, L.; Fitzsimons, J.; Gorman, K.M.; Hourihane, J.; Okafor, I. Disappearing act: COVID-19 and paediatric emergency department attendances. Arch. Dis. Child. 2020, 105, 810–811. [Google Scholar] [CrossRef] [PubMed]
- Meena, S.; Bharti, G.; Mathur, P. Pre- and Post-COVID-19 Appraisal of Antimicrobial Susceptibility for Urinary Tract Infections at an Outpatient Setting of a Tertiary Care Hospital in Delhi. Cureus 2023, 15, e47095. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gul, A.; Ekici, O.; Zengin, S.; Boyaci, C. Has the COVID-19 pandemic affected community-acquired urinary tract infections in children? Urol. J. 2022, 19, 386–391. [Google Scholar] [CrossRef]
- Cesca, L.; Conversano, E.; Vianello, F.A.; Martelli, L.; Gualeni, C.; Bassani, F.; Brugnara, M.; Rubin, G.; Parolin, M.; Anselmi, M.; et al. How COVID-19 changed the epidemiology of febrile urinary tract infections in children in the emergency department during the first outbreak. BMC Pediatr. 2022, 22, 550. [Google Scholar] [CrossRef]
- Kuitunen, I.; Artama, M.; Haapanen, M.; Renko, M. Urinary tract infections decreased in Finnish children during the COVID-19 pandemic. Eur. J. Pediatr. 2022, 181, 1979–1984. [Google Scholar] [CrossRef]
- Henry, A.; Yang, J.; Grattan, S.; Roberts, L.; Lainchbury, A.; Shanthosh, J.; Cullen, P.; Everitt, L. Effects of the COVID-19 pandemic and telehealth on antenatal screening and services, including for mental health and domestic violence: An Australian mixed-methods study. Front. Glob. Womens Health 2022, 3, 819953. [Google Scholar] [CrossRef]
- Altamimi, I.; Binkhamis, K.; Alhumimidi, A.; Alabdulkarim, I.M.; Almugren, A.; Alhemsi, H.; Altamimi, A.; Almazyed, A.; Elbih, S.; Alghunaim, R.; et al. Decline in ESBL Production and Carbapenem Resistance in Urinary Tract Infections among Key Bacterial Species during the COVID-19 Pandemic. Antibiotics 2024, 13, 216. [Google Scholar] [CrossRef]
- Bradford, P.A. Extended-Spectrum β-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clin. Microbiol. Rev. 2001, 14, 933–951. [Google Scholar] [CrossRef]
- Mena, A.J.; Lora, M.D.; Sorondo, C.; Billini, B.; Gonzalez, P.; Bleasdale, S.C. Antimicrobial resistance in Escherichia coli and Pseudomonas aeruginosa before and after the coronavirus disease 2019 (COVID-19) pandemic in the Dominican Republic. Antimicrob. Steward. Healthc. Epidemiol. 2022, 2, e191. [Google Scholar] [CrossRef]
- Wardoyo, E.H.; Suardana, I.W.; Yasa, I.W.P.S.; Sukrama, I.D.M. Antibiotics Susceptibility of Escherichia coli Isolates from Clinical Specimens before and during COVID-19 Pandemic. Iran. J. Microbiol. 2021, 13, 156. [Google Scholar]
- Golli, A.L.; Popa, S.G.; Cara, M.L.; Stoica, G.A.; Fortofoiu, D.; Stoica, M. Antibiotic Resistance Pattern of Pathogens Isolated from Pediatric Patients during and after the COVID-19 Pandemic. Antibiotics 2021, 13, 966. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mączyńska, B.; Frej-Mądrzak, M.; Sarowska, J.; Woronowicz, K.; Choroszy-Król, I.; Jama-Kmiecik, A. Evolution of Antibiotic Resistance in Escherichia coli and Klebsiella pneumoniae Clinical Isolates in a Multi-Profile Hospital over 5 Years (2017–2021). J. Clin. Med. 2023, 12, 2414. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2018; ECDC: Stockholm, Sweden, 2019. [Google Scholar]
- Rodríguez-Lozanoa, J.; de Maleta, A.; Canoa, M.E.; de la Rubiab, L.; Wallmannc, R.; Martínez-Martínezd, L.; Calvoa, J. Antimicrobial Susceptibility of Microorganisms That Cause Urinary Tract Infections in Pediatric Patients; Elsevier: Amsterdam, The Netherlands, 2018; Volume 36, pp. 417–422. [Google Scholar] [CrossRef]
- Sorlozano, A.; Jimenez-Pacheco, A.; del Castillo, J.L.; Sampedro, A.; Martinez-Brocal, A.; Miranda-Casas, C.; Navarro-Marí, J.M. Evolution of the resistance to antibiotics of bacteria involved in urinary tract infections: A 7-year surveillance study. Am. J. Infect. Control 2014, 42, 1033–1038. [Google Scholar] [CrossRef]
- Tena, D.; González-Praetorius, A.; González, J.C.; Heredero, E.; Illescas, S.; De Baranda, C.S.; Seseña, G. Changes in the antimicrobial susceptibility of Escherichia coli isolates from community diagnosed urinary tract infections during the period 2003–2007: A multicenter study in Castilla La Mancha (Spain). Rev. Esp. Quimioter. 2010, 23, 36–42. [Google Scholar]
- Andreu, A.; Planells, I. Grupo Cooperativo Español para el Estudio de la Sensibilidad Antimicrobiana de los Patógenos Urinarios Etiology of community acquired lower urinary infections and antimicrobial resistance of Escherichia coli: A national surveillance study. Med. Clin. 2008, 130, 481–486. [Google Scholar] [CrossRef]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef]
- Madani, S.H.; Khazaee, S.; Kanani, M.; Shahi, M. Antibiotic resistance pattern of E. coli isolated from urine culture in Imam Reza Hospital Kermanshah-2006. J. Kermanshah Univ. Med. Sci. 2008, 12, 287–295. [Google Scholar]
- Safdari, H.; Ghazvini, K. Antimicrobial susceptibility patterns among E. coli isolated from urinary tract infections in Ghaem University hospital, Mashhad. Zahedan J. Res. Med. Sci. 2007, 3, 225–229. [Google Scholar]
- Ferdosi-Shahandashti, E.; Javanian, M.; Moradian-Kouchaksaraei, M.; Yeganeh, B.; Bijani, A.; Motevaseli, E.; Moradian-Kouchaksaraei, F. Resistance patterns of Escherichia coli causing urinary tract infection. Caspian. J. Intern. Med. 2015, 6, 148–151. [Google Scholar] [PubMed] [PubMed Central]
- Kamenski, G.; Wagner, G.; Zehetmayer, S.; Fink, W.; Spiegel, W.; Hoffmann, K. Antibacterial resistances in uncomplicated urinary tract infections in women: ECO·SENS II data from primary health care in Austria. BMC Infect. Dis. 2012, 12, 222. [Google Scholar] [CrossRef]
- Mehr, S.; Powell, C.; Curtis, N. Cephalosporin resistant urinary tract infections in young children. J. Paediatr. Child Health 2004, 40, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Shimoni, Z.; Salah, M.; Kasem, A.; Hermush, V.; Froom, P. Bacterial Resistance to Cephalosporin Treatment in Elderly Stable Patients Hospitalized with a Urinary Tract Infection. Am. J. Med. Sci. 2020, 360, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Mareș, C.; Petca, R.-C.; Petca, A.; Popescu, R.-I.; Jinga, V. Does the COVID Pandemic Modify the Antibiotic Resistance of Uropathogens in Female Patients? A New Storm? Antibiotics 2022, 11, 376. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Dortet, L.; Poirel, L. Carbapenem Resistance in Enterobacteriaceae: Here Is the Storm! Trends Mol. Med. 2012, 18, 263–272. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Adegoke, A.A.; Ikott, W.E.; Okoh, A.I. Carbapenem Resistance Associated with Coliuria among Outpatient and Hospitalised Urology Patients. New Microbes New Infect. 2022, 48, 101019. [Google Scholar] [CrossRef]
- Mareș, C.; Petca, R.C.; Popescu, R.I.; Petca, A.; Geavlete, B.F.; Jinga, V. Uropathogens’ Antibiotic Resistance Evolution in a Female Population: A Sequential Multi-Year Comparative Analysis. Antibiotics 2023, 12, 948. [Google Scholar] [CrossRef]
- Ruiz-Lievano, A.P.; Cervantes-Flores, F.; Nava-Torres, A.; Carbajal-Morales, P.J.; Villaseñor-Garcia, L.F.; Zavala-Cerna, M.G. Fluoroquinolone Resistance in Escherichia coli Causing Community-Acquired Urinary Tract Infections: A Systematic Review. Microorganisms 2024, 12, 2320. [Google Scholar] [CrossRef]
- Islam, M.A.; Islam, M.R.; Khan, R.; Amin, M.B.; Rahman, M.; Hossain, M.I.; Ahmed, D.; Asaduzzaman, M.; Riley, L.W. Prevalence, etiology and antibiotic resistance patterns of community-acquired urinary tract infections in Dhaka, Bangladesh. PLoS ONE 2022, 17, e0274423. [Google Scholar] [CrossRef]
- Afsharikhah, S.; Ghanbarpour, R.; Mohseni, P.; Adib, N.; Bagheri, M.; Jajarmi, M. High prevalence of β-lactam and fluoroquinolone resistance in various phylotypes of Escherichia coli isolates from urinary tract infections in Jiroft city, Iran. BMC Microbiol. 2023, 23, 114. [Google Scholar] [CrossRef]
- Cristea, V.C.; Gheorghe, I.; Czobor Barbu, I.; Popa, L.I.; Ispas, B.; Grigore, G.A.; Bucatariu, I.; Popa, G.L.; Angelescu, M.C.; Velican, A.; et al. Snapshot of Phylogenetic Groups, Virulence, and Resistance Markers in Escherichia coli Uropathogenic Strains Isolated from Outpatients with Urinary Tract Infections in Bucharest, Romania. BioMed Res. Int. 2019, 2019, 5712371. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Du, L.; Yan, L.; Dai, W.; Wang, Z.; Xu, X. Eight-Year Surveillance of Uropathogenic Escherichia coli in Southwest China. Infect. Drug Resist. 2020, 13, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, A.E.; Wagenlehner, F.M.E.; Mulgirigama, A.; Twynholm, M. Escherichia coli Resistance to Fluoroquinolones in Community-Acquired Uncomplicated Urinary Tract Infection in Women: A Systematic Review. Antimicrob. Agents Chemother. 2020, 64, e00862-20. [Google Scholar] [CrossRef] [PubMed]
- Dobbyn, D.; Zeggil, T.; Kudrowich, B.; Beahm, N.P. Ciprofloxacin resistances rates in Escherichia coli across Canada (CREAC): A longitudinal analysis 2015–2019. Int. J. Antimicrob. Agents 2022, 59, 106532. [Google Scholar] [CrossRef]
- Akgoz, M.; Akman, I.; Ates, A.B.; Celik, C.; Keskin, B.; Ozmen Capin, B.B.; Karahan, Z.C. Plasmidic Fluoroquinolone Resistance Genes in Fluoroquinolone-Resistant and/or Extended Spectrum Beta-Lactamase-Producing Escherichia coli Strains Isolated from Pediatric and Adult Patients Diagnosed with Urinary Tract Infection. Microb. Drug Resist. 2020, 26, 1334–1341. [Google Scholar] [CrossRef]
- Zavala-Cerna, M.G.; Segura-Cobos, M.; Gonzalez, R.; Zavala-Trujillo, I.G.; Navarro-Perez, S.F.; Rueda-Cruz, J.A.; Satoscoy-Tovar, F.A. The Clinical Significance of High Antimicrobial Resistance in Community-Acquired Urinary Tract Infections. Can. J. Infect. Dis. Med. Microbiol. 2020, 2020, 2967260. [Google Scholar] [CrossRef]
- Venugopal, S.; Chunchanur, S.; Panigrahy, R.; Tak, V.; Yadav, M.; Chauhan, A.; Srinivasamurthy, H.; Rajendran, J.; Pundir, S.; Bhatt, S.; et al. Investigators of the CAUTION-ED Study (Community-Acquired UTI and Emerging Drug Resistance). Changes in antimicrobial resistance of Escherichia coli isolated from community-associated urinary tract infection before and during the COVID-19 pandemic in India. J. Glob. Antimicrob. Resist. 2024, 37, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Wanke-Rytt, M.; Sobierajski, T.; Lachowicz, D.; Seliga-Gąsior, D.; Podsiadły, E. Analysis of Etiology of Community-Acquired and Nosocomial Urinary Tract Infections and Antibiotic Resistance of Isolated Strains: Results of a 3-Year Surveillance (2020–2022) at the Pediatric Teaching Hospital in Warsaw. Microorganisms 2023, 11, 1438. [Google Scholar] [CrossRef]
- Mahony, M.; McMullan, B.; Brown, J.; Kennedy, S.E. Multidrug-resistant organisms in urinary tract infections in children. Pediatr. Nephrol. 2020, 35, 1563–1573. [Google Scholar] [CrossRef]
- King, L.M.; Bartoces, M.; Fleming-Dutra, K.E.; Roberts, R.M.; Hicks, L.A. Changes in US Outpatient Antibiotic Prescriptions from 2011–2016. Clin. Infect. Dis. 2020, 70, 370–377. [Google Scholar] [CrossRef]
- Etminan, M.; Guo, M.Y.; Carleton, B. Oral Fluoroquinolone Prescribing to Children in the United States From 2006 to 2015. Pediatr. Infect. Dis. J. 2019, 38, 268–270. [Google Scholar] [CrossRef] [PubMed]
- Meesters, K.; Mauel, R.; Dhont, E.; Walle, J.V.; De Bruyne, P. Systemic fluoroquinolone prescriptions for hospitalized children in Belgium, results of a multicenter retrospective drug utilization study. BMC. Infect. Dis. 2018, 18, 89. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Hossain, S.A.; Fatema, A.N.; Wahab, A.; Alam, M.M.; Islam, N.; Hossain, M.Z.; Ahsan, G.U. Ahsan, Age and gender-specific antibiotic resistance patterns among Bangladeshi patients with urinary tract infection caused by Escherichia coli. Heliyon 2020, 6, e04161. [Google Scholar] [CrossRef]
- Sandegren, L.; Lindqvist, A.; Kahlmeter, G.; Andersson, D.I. Nitrofurantoin resistance mechanism and fitness cost in Escherichia coli. J. Antimicrob. Chemother 2008, 62, 495–503. [Google Scholar] [CrossRef]
- Tasbakan, M.I.; Pullukcu, H.; Sipahi, O.R.; Yamazhan, T.; Ulusoy, S. Nitrofurantoin in the treatment of extended-spectrum β-lactamase-producing Escherichia coli-related lower urinary tract infection. Int. J. Antimicrob. Agents 2012, 40, 554–556. [Google Scholar] [CrossRef]
- Kashanian, J.; Hakimian, P.; Blute, M.; Wong, J.; Khana, H.; Wise, G.; Shabsign, R. Nitrofurantoin: The return of an old friend in the wake of growing resistance. BJU Int. 2008, 102, 1634–1637. [Google Scholar] [CrossRef]
- Sanchez, G.V.; Baird, A.M.G.; Karlowsky, J.A.; Master, R.N.; Bordon, J.M. Nitrofurantoin retains antimicrobial activity against multidrug-resistant urinary Escherichia coli from US outpatients. J. Antimicrob. Chemother. 2014, 69, 3259–3262. [Google Scholar] [CrossRef]
- Stańczyk, M.; Pawlak-Bratkowska, M.; Jander, A.; Puczko-Nogal, B.; Tkaczyk, M.; Seraficka, A. Fosfomycin prophylaxis can reduce the risk of severe recurrent urinary tract infections requiring hospitalisation in children with complex urinary tract malformations. Pediatr. Pol.-Pol. J. Paediatr. 2023, 98, 285–292. [Google Scholar] [CrossRef]
- Bryce, A.; Costelloe, C.; Wootton, M.; Butler, C.C.; Hay, A.D. Comparison of risk factors for, and prevalence of, antibiotic resistance in contaminating and pathogenic urinary Escherichia coli in children in primary care: Prospective cohort study. J Antimicrob. Chemother. 2018, 73, 1359–1367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- World Health Organization (WHO). Antimicrobial Stewardship Programmes in Health-Care Facilities in Low- and Middle-Income Countries: A WHO Practical Toolkit; World Health Organization: Geneva, Switzerland, 2019; Available online: https://iris.who.int/bitstream/handle/10665/329404/9789241515481-eng.pdf (accessed on 25 March 2025).
- European Centre for Disease Prevention and Control (ECDC). Antimicrobial Resistance in the EU/EEA (EARS-Net), Annual Epidemiological Report for 2023; ECDC: Stockholm, Sweden, 2023. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical Breakpoints-Bacteria. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 25 March 2025).
- Wu, T.; Fu, Y.; Guo, S.; Shi, Y.; Zhang, Y.; Fan, Z.; Yang, B.; Ding, B.; Liao, Y. Self-assembly multifunctional DNA tetrahedron for efficient elimination of antibiotic-resistant bacteria. Aggregate 2023, 5, e402. [Google Scholar] [CrossRef]
- Lin, X.; Liao, Y.; Chen, X.; Long, D.; Yu, T.; Shen, F. Regulation of Oncoprotein 18/Stathmin Signaling by ERK Concerns the Resistance to Taxol in Nonsmall Cell Lung Cancer Cells. Cancer Biother. Radiopharm. 2016, 31, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Cambrea, S.C. Antibiotic Susceptibility of Escherichia coli Strains Isolated in a Pediatric Population from Southeastern Romania. J. Pediatr. Infect. Dis. 2015, 9, 157–162. [Google Scholar]
- Cambrea, S.C.; Petcu, L.C.; Mihai, C.M.; Hangan, T.L.; Iliescu, D.M. Influence of Environmental Factors on the Evolution of Shigellosis in Constanta County, Romania. J. Environ. Prot. Ecol. 2019, 20, 986–994. [Google Scholar]
- Cambrea, S.C.; Badiu, D.; Ionescu, C.; Penciu, R.; Pazara, L.; Mihai, C.M.; Cambrea, M.A.; Mihai, L. Boutonneuse fever in Southeastern Romania. Microorganism 2023, 11, 2734. [Google Scholar] [CrossRef]
- Halichidis, S.; Balasa, A.L.; Ionescu, E.V.; Iliescu, M.G.; Cambrea, S.C.; Petcu, L.C.; Mihai, C.M. Evolution of Salmonellosis in Constanta area in correlation with environmental factors. J. Environ. Prot. Ecol. 2019, 20, 1496–1504. [Google Scholar]
- Matusz, P.; Bordei, P.; Sapte, E.; Iliescu, D.; Bulbuc, I. Segmentation of renal parenchyma in the case of presence of additional renal arteries. FASEB J. 2012, 26, 722.7. [Google Scholar] [CrossRef]
Overall N = 644 | Pre-Pandemic 2018–2019 N = 361 | Post-Pandemic 2023–2024 N = 283 | p-Value | ||
---|---|---|---|---|---|
Category of age | Sex, n (%) | ||||
Adults (19–64 ani) | Female | 293 (45.49) | 182 (50.41) | 111 (39.22) | 0.031 |
Male | 80 (12.42) | 39 (10.80) | 41 (14.48) | ||
Children (1–18 ani) | Female | 46 (7.14) | 22 (6.09) | 24 (8.48) | 0.9 |
Male | 10 (1.55) | 5 (1.38) | 5 (1.76) | ||
Older adult (≥65 ani) | Female | 188 (29.19) | 95 (26.31) | 93 (32.87) | 0.116 |
Male | 27 (4.19) | 18 (4.99) | 9 (3.18) | ||
Age, Median (IQR) | 53 | 51 | 55 | 0.08 |
Overall N = 644 | Pre-Pandemic 2018–2019 N = 361 | Post-Pandemic 2023–2024 N = 283 | p-Value | |
---|---|---|---|---|
Ward, n (%) | <0.001 | |||
Adults ID | 446 (69.25) | 291 (80.61) | 155 (54.7) | |
Childrent ID | 43 (6.67) | 19 (5.26) | 24 (8.48) | |
ICU-ID | 14 (2.17) | 5 (1.38) | 9 (3.18) | |
Emergency | 25 (3.88) | 2 (0.55) | 23 (8.13) | |
Imunodepressed (Human Immunodeficiency virus) | 108 (16.77) | 43 (11.91) | 65 (22.9) | |
Others | 8 (1.24) | 1 (0.27) | 7 (2.47) |
Overall N = 644 | Pre-Pandemic 2018–2019 N = 361 | Post-Pandemic 2023–2024 N = 283 | p-Value | |
---|---|---|---|---|
ESBL, n (%) | 0.3 | |||
Negative | 567 (88.04) | 322 (89.19) | 245 (86.57) | |
Positive | 77 (11.95) | 39 (10.80) | 38 (13.42) | |
Carbapenemase, n (%) | 0.8 | |||
Negative | 642 (99.7) | 360 (99.72) | 282 (99.64) | |
Positive | 2 (0.31) | 1 (0.27) | 1 (0.35) |
Pre-Pandemic 2018–2019 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total No Isolates/Susceptibility to All Antibiotic/Resistance to One or More N (%) Isolate Resistance to | ||||||||||||||
AMP | AMC | CRO | ERT | MEM | LVX | CIP | NIT | FOS | SXT | %MDR | ||||
Gender | ||||||||||||||
Male | 62 (17.2) | 16 (4.4) | 46 (12.74) | 40 (11.1) | 38 (10.5) | 8 (2.2) | 2 (0.6) | 0 (NA) | 19 (5.3) | 19 (5.3) | 3 (0.8) | 4 (1.11) | 24 (6.64) | 8 (2.21) |
Female | 299 (82.8) | 89 (24.6) | 210 (58.17) | 184 (50.9) | 168 (46.5) | 25 (6.9) | 4 (0.4) | 3 (0.3) | 70 (19.4) | 48 (13.3) | 2 (0.6) | 20 (5.5) | 117 (32.4) | 16 (4.4) |
Total | 361 | 105 (29.1) | 256 (19.6) | 224 (61.5) | 206 (57.1) | 33 (9.1) | 6 (1.7) | 3 (0.8) | 89 (24.6) | 67 (18.5) | 5 (1.4) | 24 (6.6) | 141 (39) | 24 (6.6) |
Category of age | ||||||||||||||
Children 1–18 years | 27 (7.5) | 4 (1.1) | 8 (2.2) | 19 (5.3) | 20 (5.54) | 3 (0.8) | 0 (NA) | 0 (NA) | 7 (1.9) | 5 (1.4) | 0 (NA) | 3 (0.8) | 12 (3.3) | 2 (0.5) |
Adults 19–64 years | 221 (61.2) | 66 (18.3) | 162 (44.9) | 139 (38.5) | 126 (34.6) | 20 (5.5) | 2 (0.5) | 1 (0.2) | 50 (14) | 36 (10) | 4 (1.1) | 15 (4.1) | 84 (23.3) | 16 (4.4) |
Geriatrics ≥65 years | 113 (31.3) | 35 (9.6) | 86 (23.9) | 66 (18.3) | 60 (16.6) | 10 (2.8) | 4 (1.1) | 2 (0.6) | 32 (8.8) | 26 (7.2) | 1 (0.2) | 6 (1.7) | 45 (12.4) | 6 (1.7) |
Total | 361 | 105 | 256 | 224 | 206 | 33 | 6 | 3 | 89 | 67 | 5 | 24 | 141 | 24 |
Post-pandemic 2023–2024 | ||||||||||||||
Gender | ||||||||||||||
Male | 55 (19.4) | 10 (3.4) | 41 (14.4) | 41 (14.5) | 35 (12.4) | 16 (5.6) | 1 (0.35) | 1 (0.35) | 28 (9.9) | 27 (9.5) | 2 (0.7) | 4 (1.4) | 37 (13.1) | 13 (4.6) |
Female | 228 (80.6) | 79 (28) | 153 (54.1) | 122 (43.1) | 108 (38.1) | 32 (11.3) | 0 (NA) | 0 (NA) | 51 (18) | 47 (16.6) | 6 (2.1) | 18 (6.4) | 68 (24) | 21 (7.4) |
Total | 283 | 89 (31.4) | 194 (68.5) | 163 (57.6) | 143 (50.5) | 48 (16.9) | 1 (0.35) | 1 (0.35) | 79 (27.9) | 74 (26.1) | 8 (2.8) | 22 (7.8) | 105 (37.1) | 34 (12) |
Category of age | ||||||||||||||
Children 1–18 years | 29 (10.2) | 6 (2.1) | 19 (6.7) | 19 (6.7) | 16 (5.6) | 1 (0.35) | 0 (NA) | 0 (NA) | 6 (2.1) | 6 (2.1) | 0 (NA) | 1 (0.35) | 13 (4.6) | 1 (0.35) |
Adults 19–64 years | 152 (53.7) | 51 (18) | 101 (35.7) | 86 (30.4) | 76 (26.8) | 23 (8.1) | 0 (NA) | 0 (NA) | 42 (14.9) | 42 (14.9) | 4 (1.4) | 8 (2.8) | 58 (20.5) | 19 (6.7) |
Geriatrics ≥65 years | 102 (36) | 32 (11.3) | 74 (26.1) | 58 (20.5) | 51 (18.1) | 24 (8.5) | 1 (0.35) | 1 (0.35) | 31 (10.9) | 26 (9.2) | 4 (1.4) | 13 (4.6) | 34 (12) | 14 (4.95) |
Total | 283 | 89 | 194 | 163 | 143 | 48 | 1 | 1 | 79 | 74 | 8 | 22 | 105 | 34 |
p-value | 0.25 | 0.11 | 0.004 | 0.14 | 0.63 | 0.36 | 0.02 | 0.26 | 0.64 | 0.62 | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topa, A.-E.; Ionescu, C.; Pinzaru, A.; Mocanu, E.; Iancu, A.M.; Dumea, E.; Nitu, B.F.; Panculescu, F.G.; Cambrea, S.C. Challenges in the Treatment of Urinary Tract Infections: Antibiotic Resistance Profiles of Escherichia coli Strains Isolated from Young and Elderly Patients in a Southeastern Romanian Hospital. Biomedicines 2025, 13, 1066. https://doi.org/10.3390/biomedicines13051066
Topa A-E, Ionescu C, Pinzaru A, Mocanu E, Iancu AM, Dumea E, Nitu BF, Panculescu FG, Cambrea SC. Challenges in the Treatment of Urinary Tract Infections: Antibiotic Resistance Profiles of Escherichia coli Strains Isolated from Young and Elderly Patients in a Southeastern Romanian Hospital. Biomedicines. 2025; 13(5):1066. https://doi.org/10.3390/biomedicines13051066
Chicago/Turabian StyleTopa, Andreea-Elena, Constantin Ionescu, Anca Pinzaru, Elena Mocanu, Ana Maria Iancu, Elena Dumea, Bogdan Florentin Nitu, Florin Gabriel Panculescu, and Simona Claudia Cambrea. 2025. "Challenges in the Treatment of Urinary Tract Infections: Antibiotic Resistance Profiles of Escherichia coli Strains Isolated from Young and Elderly Patients in a Southeastern Romanian Hospital" Biomedicines 13, no. 5: 1066. https://doi.org/10.3390/biomedicines13051066
APA StyleTopa, A.-E., Ionescu, C., Pinzaru, A., Mocanu, E., Iancu, A. M., Dumea, E., Nitu, B. F., Panculescu, F. G., & Cambrea, S. C. (2025). Challenges in the Treatment of Urinary Tract Infections: Antibiotic Resistance Profiles of Escherichia coli Strains Isolated from Young and Elderly Patients in a Southeastern Romanian Hospital. Biomedicines, 13(5), 1066. https://doi.org/10.3390/biomedicines13051066