Neuroendocrine Neoplasms of the Lungs, Thyroid, and Thymus
Abstract
:1. Introduction
2. Pulmonary Neuroendocrine Neoplasms
2.1. Epidemiology
2.2. Classification
2.3. Clinical Presentation
2.4. Diagnostic Work-Up
2.5. Treatment
3. Thyroid Neuroendocrine Tumours
3.1. Epidemiology and Classificatiom
3.2. Clinical Presentation
3.3. Histopathology
3.4. Treatment
4. Neuroendocrine Tumours of the Thymus
4.1. Epidemiology
4.2. Classification
4.3. Clinical Presentation
4.4. Diagnostic Work-Up
4.5. Treatment
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Migut, A.E.; Kaur, H.; Avritscher, R. Neuroendocrine Tumors: Imaging of Treatment and Follow-up. Radiol. Clin. N. Am. 2020, 58, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Rosai, J. The origin of neuroendocrine tumors and the neural crest saga. Mod. Pathol. 2011, 24, S53–S57. [Google Scholar] [CrossRef]
- Oronsky, B.; Ma, P.C.; Morgensztern, D.; Carter, C.A. Nothing But NET: A Review of Neuroendocrine Tumors and Carcinomas. Neoplasia 2017, 19, 991–1002. [Google Scholar] [CrossRef]
- Taal, B.G.; Visser, O. Epidemiology of neuroendocrine tumours. Neuroendocrinology 2004, 80 (Suppl. 1), 3–7. [Google Scholar] [CrossRef] [PubMed]
- Galgano, S.J.; Sharbidre, K.; Morgan, D.E. Multimodality Imaging of Neuroendocrine Tumors. Radiol. Clin. N. Am. 2020, 58, 1147–1159. [Google Scholar] [CrossRef]
- Sanli, Y.; Garg, I.; Kandathil, A.; Kendi, T.; Zanetti, M.J.B.; Kuyumcu, S.; Subramaniam, R.M. Neuroendocrine Tumor Diagnosis and Management: (68)Ga-DOTATATE PET/CT. AJR Am. J. Roentgenol. 2018, 211, 267–277. [Google Scholar] [CrossRef]
- Mittra, E.S. Neuroendocrine Tumor Therapy: (177)Lu-DOTATATE. AJR Am. J. Roentgenol. 2018, 211, 278–285. [Google Scholar] [CrossRef]
- Naalsund, A.; Rostad, H.; Strøm, E.H.; Lund, M.B.; Strand, T.E. Carcinoid lung tumors--incidence, treatment and outcomes: A population-based study. Eur. J. Cardiothorac. Surg. 2011, 39, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Caplin, M.E.; Baudin, E.; Ferolla, P.; Filosso, P.; Garcia-Yuste, M.; Lim, E.; Oberg, K.; Pelosi, G.; Perren, A.; Rossi, R.E.; et al. Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. Ann. Oncol. 2015, 26, 1604–1620. [Google Scholar] [CrossRef]
- Zheng, M. Classification and Pathology of Lung Cancer. Surg. Oncol. Clin. N. Am. 2016, 25, 447–468. [Google Scholar] [CrossRef]
- Filosso, P.L.; Rena, O.; Guerrera, F.; Moreno Casado, P.; Sagan, D.; Raveglia, F.; Brunelli, A.; Welter, S.; Gust, L.; Pompili, C.; et al. Clinical management of atypical carcinoid and large-cell neuroendocrine carcinoma: A multicentre study on behalf of the European Association of Thoracic Surgeons (ESTS) Neuroendocrine Tumours of the Lung Working Group†. Eur. J. Cardio-Thorac. Surg. 2014, 48, 55–64. [Google Scholar] [CrossRef]
- Diaz, R.E.; Wohllk, N. Multiple endocrine neoplasia: The Chilean experience. Clinics 2012, 67 (Suppl. S1), 7–11. [Google Scholar] [CrossRef] [PubMed]
- Rindi, G.; Mete, O.; Uccella, S.; Basturk, O.; La Rosa, S.; Brosens, L.A.A.; Ezzat, S.; de Herder, W.W.; Klimstra, D.S.; Papotti, M.; et al. Overview of the 2022 WHO Classification of Neuroendocrine Neoplasms. Endocr. Pathol. 2022, 33, 115–154. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.P. Neuroendocrine Tumors of the Lung: Updates and Diagnostic Pitfalls. Surg. Pathol. Clin. 2019, 12, 1055–1071. [Google Scholar] [CrossRef]
- Marchevsky, A.M.; Hendifar, A.; Walts, A.E. The use of Ki-67 labeling index to grade pulmonary well-differentiated neuroendocrine neoplasms: Current best evidence. Mod. Pathol. 2018, 31, 1523–1531. [Google Scholar] [CrossRef] [PubMed]
- Raso, M.G.; Bota-Rabassedas, N.; Wistuba, I.I. Pathology and Classification of SCLC. Cancers 2021, 13, 820. [Google Scholar] [CrossRef]
- Stencel, K.; Bryl, M.; Langfort, R. Pulmonary large cell neuroendocrine carcinoma—Diagnostic and therapeutic clinical dilemmas. Oncol. Clin. Pract. 2024. [Google Scholar] [CrossRef]
- Fernandez-Cuesta, L.; Peifer, M.; Lu, X.; Sun, R.; Ozretić, L.; Seidel, D.; Zander, T.; Leenders, F.; George, J.; Müller, C.; et al. Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nat. Commun. 2014, 5, 3518. [Google Scholar] [CrossRef]
- Borczuk, A.C. Pulmonary Neuroendocrine Tumors. Surg. Pathol. Clin. 2020, 13, 35–55. [Google Scholar] [CrossRef]
- Detterbeck, F.C. Clinical presentation and evaluation of neuroendocrine tumors of the lung. Thorac. Surg. Clin. 2014, 24, 267–276. [Google Scholar] [CrossRef]
- Baudin, E.; Caplin, M.; Garcia-Carbonero, R.; Fazio, N.; Ferolla, P.; Filosso, P.L.; Frilling, A.; de Herder, W.W.; Hörsch, D.; Knigge, U.; et al. Lung and thymic carcinoids: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Silosky, M.S.; Karki, R.; Morgan, R.; Anderson, J.; Chin, B.B. Physical characteristics of (68)Ga DOTATATE PET/CT affecting small lesion detectability. Am. J. Nucl. Med. Mol. Imaging 2021, 11, 27–39. [Google Scholar] [PubMed]
- Jiang, Y.; Hou, G.; Cheng, W. The utility of 18F-FDG and 68Ga-DOTA-Peptide PET/CT in the evaluation of primary pulmonary carcinoid: A systematic review and meta-analysis. Medicine 2019, 98, e14769. [Google Scholar] [CrossRef] [PubMed]
- Moonen, L.; Derks, J.L.; Hermans, B.C.M.; Bunnik, I.M.; Hillen, L.M.; van Suylen, R.J.; den Bakker, M.A.; von der Thüsen, J.H.; Damhuis, R.A.; van den Broek, E.C.; et al. Preoperative Biopsy Diagnosis in Pulmonary Carcinoids, a Shot in the Dark. J. Thorac. Oncol. 2021, 16, 610–618. [Google Scholar] [CrossRef]
- Swarts, D.R.; van Suylen, R.J.; den Bakker, M.A.; van Oosterhout, M.F.; Thunnissen, F.B.; Volante, M.; Dingemans, A.M.; Scheltinga, M.R.; Bootsma, G.P.; Pouwels, H.M.; et al. Interobserver variability for the WHO classification of pulmonary carcinoids. Am. J. Surg. Pathol. 2014, 38, 1429–1436. [Google Scholar] [CrossRef]
- Gosain, R.; Mukherjee, S.; Yendamuri, S.S.; Iyer, R. Management of Typical and Atypical Pulmonary Carcinoids Based on Different Established Guidelines. Cancers 2018, 10, 510. [Google Scholar] [CrossRef]
- Soldath, P.; Petersen, R.H. The Surgical Management of Lung Neuroendocrine Neoplasms. Cancers 2023, 15, 1695. [Google Scholar] [CrossRef]
- Marquez-Medina, D.; Popat, S. Systemic therapy for pulmonary carcinoids. Lung Cancer 2015, 90, 139–147. [Google Scholar] [CrossRef]
- Mulvey, C.K. Emerging Precision Medicine Approaches for Lung Neuroendocrine Tumors. Cancers 2023, 15, 5575. [Google Scholar] [CrossRef]
- Torniai, M.; Scortichini, L.; Tronconi, F.; Rubini, C.; Morgese, F.; Rinaldi, S.; Mazzanti, P.; Berardi, R. Systemic treatment for lung carcinoids: From bench to bedside. Clin. Transl. Med. 2019, 8, 22. [Google Scholar] [CrossRef]
- Rinke, A.; Wittenberg, M.; Schade-Brittinger, C.; Aminossadati, B.; Ronicke, E.; Gress, T.M.; Müller, H.H.; Arnold, R. Placebo-Controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients with Metastatic Neuroendocrine Midgut Tumors (PROMID): Results of Long-Term Survival. Neuroendocrinology 2017, 104, 26–32. [Google Scholar] [CrossRef]
- Caplin, M.E.; Pavel, M.; Phan, A.T.; Ćwikła, J.B.; Sedláčková, E.; Thanh, X.T.; Wolin, E.M.; Ruszniewski, P. Lanreotide autogel/depot in advanced enteropancreatic neuroendocrine tumours: Final results of the CLARINET open-label extension study. Endocrine 2021, 71, 502–513. [Google Scholar] [CrossRef]
- Baudin, E.; Capdevila, J.; Hörsch, D.; Singh, S.; Caplin, M.; Wolin, E.M.; Buikhuisen, W.; Raderer, M.; Dansin, E.; Grohe, C.; et al. Treatment of Advanced BP-NETS with Lanreotide Autogel/Depot vs Placebo: The Phase III SPINET Study. Endocr. Relat. Cancer 2024, 31, e230337. [Google Scholar] [CrossRef] [PubMed]
- Melosky, B. Advanced typical and atypical carcinoid tumours of the lung: Management recommendations. Curr. Oncol. 2018, 25, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.C.; Fazio, N.; Singh, S.; Buzzoni, R.; Carnaghi, C.; Wolin, E.; Tomasek, J.; Raderer, M.; Lahner, H.; Voi, M.; et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): A randomised, placebo-controlled, phase 3 study. Lancet 2016, 387, 968–977. [Google Scholar] [CrossRef]
- Ferolla, P.; Brizzi, M.P.; Meyer, T.; Mansoor, W.; Mazieres, J.; Do Cao, C.; Léna, H.; Berruti, A.; Damiano, V.; Buikhuisen, W.; et al. Efficacy and safety of long-acting pasireotide or everolimus alone or in combination in patients with advanced carcinoids of the lung and thymus (LUNA): An open-label, multicentre, randomised, phase 2 trial. Lancet Oncol. 2017, 18, 1652–1664. [Google Scholar] [CrossRef] [PubMed]
- Di Molfetta, S.; Feola, T.; Fanciulli, G.; Florio, T.; Colao, A.; Faggiano, A.; Group, N. Immune Checkpoint Blockade in Lung Carcinoids with Aggressive Behaviour: One More Arrow in Our Quiver? J. Clin. Med. 2022, 11, 1019. [Google Scholar] [CrossRef]
- Garcia, J.; Hurwitz, H.I.; Sandler, A.B.; Miles, D.; Coleman, R.L.; Deurloo, R.; Chinot, O.L. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat. Rev. 2020, 86, 102017. [Google Scholar] [CrossRef]
- Tabernero, J.; Andre, F.; Blay, J.Y.; Bustillos, A.; Fear, S.; Ganta, S.; Jaeger, D.; Maio, M.; Mileshkin, L.; Melero, I. Phase II multicohort study of atezolizumab monotherapy in multiple advanced solid cancers. ESMO Open 2022, 7, 100419. [Google Scholar] [CrossRef]
- Cai, H.J.; Wang, H.; Cao, N.; Huang, B.; Kong, F.L.; Lu, L.R.; Huang, Y.Y.; Wang, W. Calcitonin-negative neuroendocrine tumor of the thyroid with metastasis to liver-rare presentation of an unusual tumor: A case report and review of literature. World J. Clin. Cases 2020, 8, 179–187. [Google Scholar] [CrossRef]
- Caillé, S.; Debreuve-Theresette, A.; Vitellius, G.; Deguelte, S.; La Manna, L.; Zalzali, M. Medullary Thyroid Cancer: Epidemiology and Characteristics According to Data from the Marne-Ardennes Register 1975–2018. J. Endocr. Soc. 2024, 8, bvae084. [Google Scholar] [CrossRef]
- Ting, S.; Synoracki, S.; Schmid, K.W. [Thyroid C cells and their pathology: Part 1: Normal C cells, -C cell hyperplasia, -precursor of familial medullary thyroid carcinoma]. Pathologe 2015, 36, 246–253. [Google Scholar] [CrossRef]
- Lai, A.Z.; Gujral, T.S.; Mulligan, L.M. RET signaling in endocrine tumors: Delving deeper into molecular mechanisms. Endocr. Pathol. 2007, 18, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.M.; Asa, S.L.; Ezzat, S.; Sawka, A.M.; Goldstein, D. Diagnosis and pathologic characteristics of medullary thyroid carcinoma-review of current guidelines. Curr. Oncol. 2019, 26, 338–344. [Google Scholar] [CrossRef]
- Baloch, Z.W.; Asa, S.L.; Barletta, J.A.; Ghossein, R.A.; Juhlin, C.C.; Jung, C.K.; LiVolsi, V.A.; Papotti, M.G.; Sobrinho-Simões, M.; Tallini, G.; et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr. Pathol. 2022, 33, 27–63. [Google Scholar] [CrossRef] [PubMed]
- Nigam, A.; Xu, B.; Spanheimer, P.M.; Ganly, I.; Tuttle, R.M.; Wong, R.J.; Shaha, A.R.; Ghossein, R.A.; Untch, B.R. Tumor Grade Predicts for Calcitonin Doubling Times and Disease-Specific Outcomes After Resection of Medullary Thyroid Carcinoma. Thyroid 2022, 32, 1193–1200. [Google Scholar] [CrossRef] [PubMed]
- Maia, A.L.; Siqueira, D.R.; Kulcsar, M.A.; Tincani, A.J.; Mazeto, G.M.; Maciel, L.M. Diagnosis, treatment, and follow-up of medullary thyroid carcinoma: Recommendations by the Thyroid Department of the Brazilian Society of Endocrinology and Metabolism. Arq. Bras. Endocrinol. Metab. 2014, 58, 667–700. [Google Scholar] [CrossRef]
- Desai, S.S.; Sarkar, S.; Borges, A.M. A study of histopathological features of medullary carcinoma of the thyroid: Cases from a single institute in India. Indian J. Cancer 2005, 42, 25–29. [Google Scholar] [CrossRef]
- Romei, C.; Ciampi, R.; Elisei, R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat. Rev. Endocrinol. 2016, 12, 192–202. [Google Scholar] [CrossRef]
- McDonnell, J.E.; Gild, M.L.; Clifton-Bligh, R.J.; Robinson, B.G. Multiple endocrine neoplasia: An update. Intern. Med. J. 2019, 49, 954–961. [Google Scholar] [CrossRef]
- Mathiesen, J.S.; Effraimidis, G.; Rossing, M.; Rasmussen, Å.K.; Hoejberg, L.; Bastholt, L.; Godballe, C.; Oturai, P.; Feldt-Rasmussen, U. Multiple endocrine neoplasia type 2: A review. Semin. Cancer Biol. 2022, 79, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lu, D.; Liu, M.; Zhang, M.; Peng, Q. Identification and interaction analysis of key miRNAs in medullary thyroid carcinoma by bioinformatics analysis. Mol. Med. Rep. 2019, 20, 2316–2324. [Google Scholar] [CrossRef]
- Cappagli, V.; Potes, C.S.; Ferreira, L.B.; Tavares, C.; Eloy, C.; Elisei, R.; Sobrinho-Simões, M.; Wookey, P.J.; Soares, P. Calcitonin receptor expression in medullary thyroid carcinoma. PeerJ 2017, 5, e3778. [Google Scholar] [CrossRef]
- Nahm, J.H.; Kim, H.M.; Koo, J.S. Glycolysis-related protein expression in thyroid cancer. Tumor Biol. 2017, 39, 1010428317695922. [Google Scholar] [CrossRef]
- Liang, X.; Zhu, J.; Cai, M.; Dai, Z.; Fang, L.; Chen, H.; Yu, L.; Lin, Y.; Lin, E.; Wu, G. Progrp as a novel biomarker for the differential diagnosis of medullary thyroid carcinoma in patients with thyroid nodules. Endocr. Pract. 2020, 26, 514–522. [Google Scholar] [CrossRef]
- Trimboli, P.; Lauretta, R.; Barnabei, A.; Valabrega, S.; Romanelli, F.; Giovanella, L.; Appetecchia, M. Procalcitonin as a postoperative marker in the follow-up of patients affected by medullary thyroid carcinoma. Int. J. Biol. Markers 2018, 33, 156–160. [Google Scholar] [CrossRef]
- Wang, B.; Huang, J.; Chen, L. Management of medullary thyroid cancer based on variation of carcinoembryonic antigen and calcitonin. Front. Endocrinol. 2024, 15, 1418657. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, C.; Offi, C.; Patrone, R.; Clarizia, G.; Mauriello, C.; Tartaglia, E.; Di Capua, F.; Di Martino, S.; Romano, R.M.; Fiore, L.; et al. Calcitonin negative Medullary Thyroid Carcinoma: A challenging diagnosis or a medical dilemma? BMC Endocr. Disord. 2019, 19 (Suppl. 1), 45. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Policarpio-Nicolas, M.L. Thyroid Paraganglioma. Arch. Pathol. Lab. Med. 2015, 139, 1062–1067. [Google Scholar] [CrossRef]
- Thodou, E.; Choreftaki, T.; Kounadi, T.; Papanastasiou, L.; Kontogeorgos, G. Thyroid Paraganglioma with Medullary Carcinoma: A Unique Combination in a Patient in Association with Multiple Endocrine Neoplasia Type 2B Syndrome with Prolonged Survival. Cureus 2022, 14, e28423. [Google Scholar] [CrossRef]
- Filetti, S.D.C.; Hartl, D.; Leboulleux, S. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1856–1883. [Google Scholar] [CrossRef]
- Ismailov, S.I.; Piulatova, N.R. Postoperative calcitonin study in medullary thyroid carcinoma. Endocr. Relat. Cancer 2004, 11, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Wells, S.A., Jr.; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; Machens, A.; Moley, J.F.; Pacini, F.; et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015, 25, 567–610. [Google Scholar] [CrossRef]
- Shaghaghi, A.; Salari, A.; Jalaeefar, A.; Shirkhoda, M. Management of lymph nodes in medullary thyroid carcinoma: A review. Ann. Med. Surg. 2022, 81, 104538. [Google Scholar] [CrossRef] [PubMed]
- Maia, A.L.; Wajner, S.M.; Vargas, C.V. Advances and controversies in the management of medullary thyroid carcinoma. Curr. Opin. Oncol. 2017, 29, 25–32. [Google Scholar] [CrossRef]
- Efstathiadou, Z.A.; Tsentidis, C.; Bargiota, A.; Daraki, V.; Kotsa, K.; Ntali, G.; Papanastasiou, L.; Tigas, S.; Toulis, K.; Pazaitou-Panayiotou, K.; et al. Benefits and Limitations of TKIs in Patients with Medullary Thyroid Cancer: A Systematic Review and Meta-Analysis. Eur. Thyroid J. 2021, 10, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Højer Wang, L.; Wehland, M.; Wise, P.M.; Infanger, M.; Grimm, D.; Kreissl, M.C. Cabozantinib, Vandetanib, Pralsetinib and Selpercatinib as Treatment for Progressed Medullary Thyroid Cancer with a Main Focus on Hypertension as Adverse Effect. Int. J. Mol. Sci. 2023, 24, 2312. [Google Scholar] [CrossRef]
- Kim, M.; Yoon, J.H.; Ahn, J.; Jeon, M.J.; Kim, H.K.; Lim, D.J.; Kang, H.C.; Kim, I.J.; Shong, Y.K.; Kim, T.Y.; et al. Vandetanib for the Management of Advanced Medullary Thyroid Cancer: A Real-World Multicenter Experience. Endocrinol. Metab. 2020, 35, 587–594. [Google Scholar] [CrossRef]
- Pitoia, F.; Abelleira, E.; Román-González, A.; Danilovic, D.L.S.; Scheffel, R.S.; Maia, A.L.; Hoff, A.O.; Califano, I. Neoadjuvant Treatment of Locally Advanced Thyroid Cancer: A Preliminary Latin American Experience. Thyroid 2024, 34, 949–952. [Google Scholar] [CrossRef]
- Baek, H.S.; Ha, J.; Ha, S.; Bae, J.S.; Jung, C.K.; Lim, D.J. Initial Experiences of Selective RET Inhibitor Selpercatinib in Adults with Metastatic Differentiated Thyroid Carcinoma and Medullary Thyroid Carcinoma: Real-World Case Series in Korea. Curr. Oncol. 2023, 30, 3020–3031. [Google Scholar] [CrossRef]
- Elisei, R.; Schlumberger, M.J.; Müller, S.P.; Schöffski, P.; Brose, M.S.; Shah, M.H.; Licitra, L.; Jarzab, B.; Medvedev, V.; Kreissl, M.C.; et al. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol. 2013, 31, 3639–3646. [Google Scholar] [CrossRef] [PubMed]
- Koehler, V.F.; Adam, P.; Frank-Raue, K.; Raue, F.; Berg, E.; Hoster, E.; Allelein, S.; Schott, M.; Kroiss, M.; Spitzweg, C. Real-World Efficacy and Safety of Cabozantinib and Vandetanib in Advanced Medullary Thyroid Cancer. Thyroid 2021, 31, 459–469. [Google Scholar] [CrossRef]
- Subbiah, V.; Hu, M.I.; Mansfield, A.S.; Taylor, M.H.; Schuler, M.; Zhu, V.W.; Hadoux, J.; Curigliano, G.; Wirth, L.; Gainor, J.F.; et al. Pralsetinib in Patients with Advanced/Metastatic Rearranged During Transfection (RET)-Altered Thyroid Cancer: Updated Efficacy and Safety Data from the ARROW Study. Thyroid 2024, 34, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Rottenburger, C.; Nicolas, G.P.; McDougall, L.; Kaul, F.; Cachovan, M.; Vija, A.H.; Schibli, R.; Geistlich, S.; Schumann, A.; Rau, T.; et al. Cholecystokinin 2 Receptor Agonist (177)Lu-PP-F11N for Radionuclide Therapy of Medullary Thyroid Carcinoma: Results of the Lumed Phase 0a Study. J. Nucl. Med. 2020, 61, 520–526. [Google Scholar] [CrossRef]
- Pelizzo, M.R.; Conti, C.; Pennelli, G.; Bellan, E.; Cook, G.J.; Wong, K.K.; Colletti, P.M.; Merante Boschin, I.; Rubello, D. Thyroid Paraganglioma: Our Experience and Systematic Review of the Literature on a Rare Tumor. Am. J. Clin. Oncol. 2018, 41, 416–423. [Google Scholar] [CrossRef]
- Girard, N. Neuroendocrine tumors of the thymus: The oncologist point of view. J. Thorac. Dis. 2017, 9 (Suppl. S15), S1491–S1500. [Google Scholar] [CrossRef] [PubMed]
- Filosso, P.L.; Ruffini, E.; Solidoro, P.; Roffinella, M.; Lausi, P.O.; Lyberis, P.; Oliaro, A.; Guerrera, F. Neuroendocrine tumors of the thymus. J. Thorac. Dis. 2017, 9 (Suppl. S15), S1484–S1490. [Google Scholar] [CrossRef]
- Berman, K.; Kirsch, J.; Bejarano, P.; Drexler, I.; Martinez, F. Primary Neuroendocrine Tumor of the Thymus: Radiological and Pathological Correlation. J. Radiol. Case Rep. 2020, 14, 1–11. [Google Scholar] [CrossRef]
- Bohnenberger, H.; Ströbel, P. Recent advances and conceptual changes in the classification of neuroendocrine tumors of the thymus. Virchows Arch. 2021, 478, 129–135. [Google Scholar] [CrossRef]
- Bohnenberger, H.; Dinter, H.; König, A.; Ströbel, P. Neuroendocrine tumors of the thymus and mediastinum. J. Thorac. Dis. 2017, 9 (Suppl. S15), S1448–S1457. [Google Scholar] [CrossRef]
- Jia, R.; Sulentic, P.; Xu, J.M.; Grossman, A.B. Thymic Neuroendocrine Neoplasms: Biological Behaviour and Therapy. Neuroendocrinology 2017, 105, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, T.; Okuzumi, S.; Matsuhashi, A.; Takahashi, H.; Hata, K.; Shimizu, S.; Iwasaki, Y. Large Cell Neuroendocrine Carcinoma of the Mediastinum Successfully Treated with Systemic Chemotherapy after Palliative Radiotherapy. Intern. Med. 2019, 58, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Bertero, L.; Metovic, J.; Vittone, F.; Cassoni, P.; Papotti, M. Overview of the pathology of thymic neuroendocrine tumors. Mediastinum 2017, 1, 10. [Google Scholar] [CrossRef]
- Litvak, A.; Pietanza, M.C. Bronchial and Thymic Carcinoid Tumors. Hematol. Oncol. Clin. N. Am. 2016, 30, 83–102. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, L.; Zhang, P.; Choi, H.; Ahmad, U.; Arrossi, V.; Purysko, A.; Makin, V. A unique case of ectopic Cushing’s syndrome from a thymic neuroendocrine carcinoma. Endocrinol. Diabetes Metab. Case Rep. 2019, 2019. [Google Scholar] [CrossRef]
- Rao, X.; Chen, W.; Li, J.; Peng, G.; Wu, G.; Zhou, R.; Ding, Q. Primary thymic atypical carcinoid with rare multiple bone metastasis: A case report and literature review. Mol. Clin. Oncol. 2021, 14, 78. [Google Scholar] [CrossRef]
- Kushchayev, S.V.; Kushchayeva, Y.S.; Tella, S.H.; Glushko, T.; Pacak, K.; Teytelboym, O.M. Medullary Thyroid Carcinoma: An Update on Imaging. J. Thyroid Res. 2019, 2019, 1893047. [Google Scholar] [CrossRef]
Feature | Typical Carcinoid | Atypical Carcinoid |
---|---|---|
Differentiation | High | Intermediate |
Mitoses per 10 HPF | <2 | ≤10 |
Ki-67 | <5% | <20% |
Necrosis | Absent | Focal if any |
Presence of paraneoplastic syndrome | Rarely | Rarely |
Prognosis 5-year OS | Around 90% | Around 70% |
Pulmonary NETs | Thyroid NETs | NETTs | |
---|---|---|---|
Types | TC, AC, SCLC, LCNEC [13] | MTC, thyroid paraganglioma [41,59] | TC, AC, SCLC, LCNEC [80] |
Clinical presentation |
| Single thyroid nodule [47] | Asymptomatic or cough, dyspnoea, hoarseness, paraneoplastic syndromes [80,84] |
Imaging | X-ray, CT, MRI, Somatostatin Receptor Scintigraphy [9] | USG, CT, MRI, 18F-FDOPA PET/CT, 18F-FDG PET/CT, Somatostatin Receptor Scintigraphy [87] | CT, MRI, Somatostatin Receptor Scintigraphy [80] |
Treatment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchalska, B.; Solnik, M.; Maciejewski, K.; Fudalej, M.; Deptała, A.; Badowska-Kozakiewicz, A. Neuroendocrine Neoplasms of the Lungs, Thyroid, and Thymus. Biomedicines 2025, 13, 1028. https://doi.org/10.3390/biomedicines13051028
Buchalska B, Solnik M, Maciejewski K, Fudalej M, Deptała A, Badowska-Kozakiewicz A. Neuroendocrine Neoplasms of the Lungs, Thyroid, and Thymus. Biomedicines. 2025; 13(5):1028. https://doi.org/10.3390/biomedicines13051028
Chicago/Turabian StyleBuchalska, Barbara, Małgorzata Solnik, Karol Maciejewski, Marta Fudalej, Andrzej Deptała, and Anna Badowska-Kozakiewicz. 2025. "Neuroendocrine Neoplasms of the Lungs, Thyroid, and Thymus" Biomedicines 13, no. 5: 1028. https://doi.org/10.3390/biomedicines13051028
APA StyleBuchalska, B., Solnik, M., Maciejewski, K., Fudalej, M., Deptała, A., & Badowska-Kozakiewicz, A. (2025). Neuroendocrine Neoplasms of the Lungs, Thyroid, and Thymus. Biomedicines, 13(5), 1028. https://doi.org/10.3390/biomedicines13051028