Exploring the Non-Toxic Therapeutic Potential of Dioscorea communis in Combating Oral Pathogenic Bacteria and Their Effects on Hard and Soft Oral Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Study Design
2.2. Plant Material, Paste Preparation and Administration
2.3. Ligature Placement
2.4. Periodontal and Dental Assessment
2.4.1. Photo-Documentation
2.4.2. Clinical Evaluation
2.5. Sample Collection
2.6. FT-IR Analysis
2.7. Histopathological Analysis
2.8. Nuclear Magnetic Resonance (NMR) Spectroscopy
3. Results
3.1. Photo-Documentation
3.2. Clinical Evaluation
3.3. Histopathological Analysis
3.4. FTIR Spectroscopic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Primers 2017, 3, 17038. [Google Scholar] [CrossRef] [PubMed]
- Pihlstrom, B.L.; Michalowicz, B.S.; Johnson, N.W. Periodontal diseases. Lancet 2005, 366, 1809–1820. [Google Scholar] [CrossRef] [PubMed]
- Darveau, R.P. Periodontitis: A polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 2010, 8, 481–490. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J. Periodontol. 2018, 89 (Suppl. 1), S159–S172. [Google Scholar] [CrossRef]
- Yamashita, Y.; Takeshita, T. The oral microbiome and human health. J. Oral Sci. 2017, 59, 201–206. [Google Scholar] [CrossRef]
- Xu, B.; Han, Y.W. Oral bacteria, oral health, and adverse pregnancy outcomes. Periodontol. 2000 2022, 89, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Mathur, V.P.; Dhillon, J.K. Dental caries: A disease which needs attention. Indian J. Pediatr. 2018, 85, 202–206. [Google Scholar] [CrossRef]
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef]
- Glickman, I. Periodontal disease. N. Engl. J. Med. 1971, 284, 1071–1077. [Google Scholar] [CrossRef]
- Rojas, C.; García, M.P.; Polanco, A.F.; González-Osuna, L.; Sierra-Cristancho, A.; Melgar-Rodríguez, S.; Cafferata, E.A.; Vernal, R. Humanized mouse models for the study of periodontitis: An opportunity to elucidate unresolved aspects of its immunopathogenesis and analyze new immunotherapeutic strategies. Front. Immunol. 2021, 12, 663328. [Google Scholar] [CrossRef]
- Kaboosaya, B.; Wulansari, L.K.; Nguyen, V.N.; Aoki, K.; Kasugai, S. Ligation period required to induce periodontitis in mice: Analysis with micro-computed tomography. J. Oral Tissue Eng. 2017, 15, 25–34. [Google Scholar]
- Lin, P.; Niimi, H.; Ohsugi, Y.; Tsuchiya, Y.; Shimohira, T.; Komatsu, K.; Liu, A.; Shiba, T.; Aoki, A.; Iwata, T.; et al. Application of ligature-induced periodontitis in mice to explore the molecular mechanism of periodontal disease. Int. J. Mol. Sci. 2021, 22, 8900. [Google Scholar] [CrossRef] [PubMed]
- De Molon, R.S.; de Avila, E.D.; Boas Nogueira, A.V.; Chaves de Souza, J.A.; Avila-Campos, M.J.; de Andrade, C.R.; Cirelli, J.A. Evaluation of the host response in various models of induced periodontal disease in mice. J. Periodontol. 2014, 85, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Cafferata, E.A.; Terraza-Aguirre, C.; Barrera, R.; Faúndez, N.; González, N.; Rojas, C.; Melgar-Rodríguez, S.; Hernández, M.; Carvajal, P.; Cortez, C.; et al. Interleukin-35 inhibits alveolar bone resorption by modulating the Th17/Treg imbalance during periodontitis. J. Clin. Periodontol. 2020, 47, 676–688. [Google Scholar] [CrossRef]
- Cafferata, E.A.; Castro-Saavedra, S.; Fuentes-Barros, G.; Melgar-Rodríguez, S.; Rivera, F.; Carvajal, P.; Hernández, M.; Cortés, B.I.; Cortez, C.; Cassels, B.K.; et al. Boldine inhibits alveolar bone resorption during ligature-induced periodontitis by modulating the Th17/Treg imbalance. J. Periodontol. 2021, 92, 123–136. [Google Scholar] [CrossRef]
- Marchesan, J.; Girnary, M.S.; Jing, L.; Miao, M.Z.; Zhang, S.; Sun, L.; Morelli, T.; Schoenfisch, M.H.; Inohara, N.; Offenbacher, S.; et al. An experimental murine model to study periodontitis. Nat. Protoc. 2018, 13, 2247–2267. [Google Scholar] [CrossRef]
- Saadi-Thiers, K.; Huck, O.; Simonis, P.; Tilly, P.; Fabre, J.; Tenenbaum, H.; Davideau, J.L. Periodontal and systemic responses in various mice models of experimental periodontitis: Respective roles of inflammation duration and Porphyromonas gingivalis infection. J. Periodontol. 2013, 84, 396–406. [Google Scholar] [CrossRef]
- De Molon, R.S.; Mascarenhas, V.I.; de Avila, E.D.; Finoti, L.S.; Toffoli, G.B.; Spolidorio, D.M.P.; Scarel-Caminaga, R.M.; Tetradis, S.; Cirelli, J.A. Long-term evaluation of oral gavage with periodontopathogens or ligature induction of experimental periodontal disease in mice. Clin. Oral Investig. 2016, 20, 1203–1216. [Google Scholar] [CrossRef]
- Abe, T.; Hajishengallis, G. Optimization of the ligature-induced periodontitis model in mice. J. Immunol. Methods 2013, 394, 49. [Google Scholar] [CrossRef]
- Shimauchi, H.; Nemoto, E.; Ishihata, H.; Shimomura, M. Possible functional scaffolds for periodontal regeneration. Jpn. Dent. Sci. Rev. 2013, 49, 118–130. [Google Scholar] [CrossRef]
- Caddick, L.R.; Wilkin, P.; Rudall, P.J.; Hedderson, T.A.J.; Chase, M.W. Yams reclassified: A recircumscription of Dioscoreaceae and Dioscoreales. Taxon 2002, 51, 103–114. [Google Scholar] [CrossRef]
- Tsami, K.; Barda, C.; Ladopoulos, G.; Didaras, N.A.; Grafakou, M.-E.; Heilmann, J.; Mossialos, D.; Rallis, M.C.; Skaltsa, H. Chemical profile and in vitro evaluation of the antibacterial activity of Dioscorea communis berry juice. Sci 2022, 4, 21. [Google Scholar] [CrossRef]
- De Cortes Sánchez-Mata, M.; Tardío, J. Mediterranean Wild Edible Plants: Ethnobotany and Food Composition Tables; Springer: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Ferrer-Gallego, P.P.; Boisset, F. Typification of Dioscorea communis and its synonym Tamus communis var. subtriloba (Dioscoreaceae). Phytotaxa 2016, 260, 258–266. [Google Scholar] [CrossRef]
- Wynn, S.G.; Fougere, B.J. Veterinary Herbal Medicine; Mosby Elsevier: St. Louis, MO, USA, 2007. [Google Scholar] [CrossRef]
- Boudjada, A.; Touil, A.; Bensouici, C.; Bendif, H.; Rhouati, S. Phenanthrene and dihydrophenanthrene derivatives from Dioscorea communis with anticholinesterase and antioxidant activities. Nat. Prod. Res. 2019, 33, 3278–3282. [Google Scholar] [CrossRef]
- Vazquez-Zapien, G.J.; Martinez-Cuazitl, A.; Granados-Jimenez, A.; Sanchez-Brito, M.; Guerrero-Ruiz, M.; Camacho-Ibarra, A.; Miranda-Ruiz, M.A.; Dox-Aguillón, I.S.; Ramirez-Torres, J.A.; Mata-Miranda, M.M. Skin wound healing improvement in diabetic mice through FTIR microspectroscopy after implanting pluripotent stem cells. APL Bioeng. 2023, 7, 1. [Google Scholar] [CrossRef]
- Rocha, D.M.; Zenóbio, E.G.; Van Dyke, T.; Silva, K.S.; Costa, F.O.; Soares, R.V. Differential expression of salivary glycoproteins in aggressive and chronic periodontitis. J. Appl. Oral Sci. 2012, 20, 180–185. [Google Scholar] [CrossRef]
- Bandeira, C.C.S.; Madureira, K.C.R.; Rossi, M.B.; Gallo, J.F.; da Silva, A.P.M.A.; Torres, V.L.; de Lima, V.A.; Júnior, N.K.; Almeida, J.D.; Zerbinati, R.M.; et al. Micro-Fourier-transform infrared reflectance spectroscopy as a tool for probing IgG glycosylation in COVID-19 patients. Sci. Rep. 2022, 12, 4269. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Curtis, M.A.; Diaz, P.I.; Van Dyke, T.E. The role of the microbiota in periodontal disease. Periodontol. 2000 2020, 83, 14–25. [Google Scholar] [CrossRef]
- Adomėnienė, A.; Venskutonis, P.R. Dioscorea spp.: Comprehensive Review of Antioxidant Properties and Their Relation to Phytochemicals and Health Benefits. Molecules 2022, 27, 2530. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, D.; Zhu, S.; Du, X.; Wang, X. The genus Dioscorea L. (Dioscoreaceae): A review of traditional uses, phytochemistry, pharmacology, and toxicity. J. Ethnopharmacol. 2024, 329, 118069. [Google Scholar] [CrossRef] [PubMed]
- Slavova, I.; Tomova, T.; Kusovska, S.; Chukova, Y.; Argirova, M. Phytochemical Constituents and Pharmacological Potential of Tamus communis Rhizomes. Molecules 2022, 27, 1851. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.A. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int. J. Health Sci. 2017, 11, 72. [Google Scholar]
- Hajishengallis, G.; Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 2021, 21, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.C.; Widmer, R.P. Handbook of Pediatric Dentistry: Children with Special Needs; Elsevier: St. Louis, MI, USA, 2013. [Google Scholar] [CrossRef]
Trade name | INCI name | Function | %w/w |
---|---|---|---|
Sorbitol 70% | Sorbitol | Humectant | 39.70 |
Sodium Benzoate | Sodium Benzoate | Preservative | 0.50 |
Titanium Oxide | Titanium Oxide | Opacifier/Colorant | 0.50 |
Carbopol Ultrez 10 | Carbomer | Thickening Agent | 1.00 |
Tixosil 73 | Hydrated Silica | Abrasive/Thickening Agent | 14.00 |
Tixosil 43 | Hydrated Silica | Abrasive/Thickening Agent | 8.00 |
D. communis berry juice | 3 or 7 | ||
Water | Aqua | Solvent | q.s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papantonaki, A.-I.; Georgakopoulou, E.; Barda, C.; Loumou, P.; Sfiniadakis, I.; Anastassopoulou, J.; Vitsos, A.; Rallis, M.C. Exploring the Non-Toxic Therapeutic Potential of Dioscorea communis in Combating Oral Pathogenic Bacteria and Their Effects on Hard and Soft Oral Tissues. Biomedicines 2025, 13, 983. https://doi.org/10.3390/biomedicines13040983
Papantonaki A-I, Georgakopoulou E, Barda C, Loumou P, Sfiniadakis I, Anastassopoulou J, Vitsos A, Rallis MC. Exploring the Non-Toxic Therapeutic Potential of Dioscorea communis in Combating Oral Pathogenic Bacteria and Their Effects on Hard and Soft Oral Tissues. Biomedicines. 2025; 13(4):983. https://doi.org/10.3390/biomedicines13040983
Chicago/Turabian StylePapantonaki, Anastasia-Ioanna, Eleni Georgakopoulou, Christina Barda, Panagiota Loumou, Ioannis Sfiniadakis, Jane Anastassopoulou, Andreas Vitsos, and Michail Christou Rallis. 2025. "Exploring the Non-Toxic Therapeutic Potential of Dioscorea communis in Combating Oral Pathogenic Bacteria and Their Effects on Hard and Soft Oral Tissues" Biomedicines 13, no. 4: 983. https://doi.org/10.3390/biomedicines13040983
APA StylePapantonaki, A.-I., Georgakopoulou, E., Barda, C., Loumou, P., Sfiniadakis, I., Anastassopoulou, J., Vitsos, A., & Rallis, M. C. (2025). Exploring the Non-Toxic Therapeutic Potential of Dioscorea communis in Combating Oral Pathogenic Bacteria and Their Effects on Hard and Soft Oral Tissues. Biomedicines, 13(4), 983. https://doi.org/10.3390/biomedicines13040983