Fungal Pulmonary Coinfections in COVID-19: Microbiological Assessment, Inflammatory Profiles, and Clinical Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Patient Selection and Group Allocation
2.3. Data Collection
2.4. Statistical Analysis
3. Results
Patient Demographics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azer, S.A. COVID-19: Pathophysiology, diagnosis, complications and investigational therapeutics. New Microbes New Infect. 2020, 37, 100738. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Desai, A.D.; Lavelle, M.; Boursiquot, B.C.; Wan, E.Y. Long-term complications of COVID-19. Am. J. Physiol. Cell Physiol. 2022, 322, C1–C11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Domán, M.; Bányai, K. COVID-19-Associated Fungal Infections: An Urgent Need for Alternative Therapeutic Approach? Front. Microbiol. 2022, 13, 919501. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elalouf, A.; Elalouf, H.; Rosenfeld, A. Modulatory immune responses in fungal infection associated with organ transplant—Advancements, management, and challenges. Front. Immunol. 2023, 14, 1292625. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salazar, F.; Bignell, E.; Brown, G.D.; Cook, P.C.; Warris, A. Pathogenesis of Respiratory Viral and Fungal Coinfections. Clin. Microbiol. Rev. 2022, 35, e0009421. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heung, L.J.; Wiesner, D.L.; Wang, K.; Rivera, A.; Hohl, T.M. Immunity to fungi in the lung. Semin. Immunol. 2023, 66, 101728. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dueñas, D.; Daza, J.; Liscano, Y. Coinfections and Superinfections Associated with COVID-19 in Colombia: A Narrative Review. Medicina 2023, 59, 1336. [Google Scholar] [CrossRef]
- Polvi, E.J.; Li, X.; O’Meara, T.R.; Leach, M.D.; Cowen, L.E. Opportunistic yeast pathogens: Reservoirs, virulence mechanisms, and therapeutic strategies. Cell Mol. Life Sci. 2015, 72, 2261–2287. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parums, D.V. Editorial: The World Health Organization (WHO) Fungal Priority Pathogens List in Response to Emerging Fungal Pathogens During the COVID-19 Pandemic. Med. Sci. Monit. 2022, 28, e939088. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fang, W.; Wu, J.; Cheng, M.; Zhu, X.; Du, M.; Chen, C.; Liao, W.; Zhi, K.; Pan, W. Diagnosis of invasive fungal infections: Challenges and recent developments. J. Biomed. Sci. 2023, 30, 42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luyt, C.E.; Bouadma, L.; Morris, A.C.; Dhanani, J.A.; Kollef, M.; Lipman, J.; Martin-Loeches, I.; Nseir, S.; Ranzani, O.T.; Roquilly, A.; et al. Pulmonary infections complicating ARDS. Intensive Care Med. 2020, 46, 2168–2183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matthay, M.A.; Zemans, R.L.; Zimmerman, G.A.; Arabi, Y.M.; Beitler, J.R.; Mercat, A.; Herridge, M.; Randolph, A.G.; Calfee, C.S. Acute respiratory distress syndrome. Nat. Rev. Dis. Primers 2019, 5, 18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Z.; Denning, D.W. The Impact of Corticosteroids on the Outcome of Fungal Disease: A Systematic Review and Meta-analysis. Curr. Fungal Infect. Rep. 2023, 17, 54–70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Monreal, E.; Sainz de la Maza, S.; Natera-Villalba, E.; Beltrán-Corbellini, Á.; Rodríguez-Jorge, F.; Fernández-Velasco, J.I.; Walo-Delgado, P.; Muriel, A.; Zamora, J.; Alonso-Canovas, A.; et al. High versus standard doses of corticosteroids in severe COVID-19: A retrospective cohort study. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 761–769. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barantsevich, N.; Barantsevich, E. Diagnosis and Treatment of Invasive Candidiasis. Antibiotics 2022, 11, 718. [Google Scholar] [CrossRef] [PubMed]
- Hillenbrand, M.; Mendy, A.; Patel, K.; Wilkinson, R.; Liao, S.; Robertson, J.; Apewokin, S. The Incidence of Ocular Complications in Candidemic Patients and Implications for the Practice of Routine Eye Exams. Open Forum Infect. Dis. 2022, 9, ofac045. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kousha, M.; Tadi, R.; Soubani, A.O. Pulmonary aspergillosis: A clinical review. Eur. Respir. Rev. 2011, 20, 156–174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tran, D.; Schmit, B. An Aggressive Case of Mucormycosis. Cureus 2020, 12, e9610. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xia, W.; Tan, Y.; Hu, S.; Li, C.; Jiang, T. Predictive Value of Systemic Immune-Inflammation index and Neutrophil-to-Lymphocyte Ratio in Patients with Severe COVID-19. Clin. Appl. Thromb. Hemost. 2022, 28, 10760296221111391. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gutiérrez-Pérez, I.A.; Buendía-Roldán, I.; Pérez-Rubio, G.; Chávez-Galán, L.; Hernández-Zenteno, R.J.; Aguilar-Duran, H.; Fricke-Galindo, I.; Zaragoza-García, O.; Falfán-Valencia, R.; Guzmán-Guzmán, I.P. Outcome predictors in COVID-19: An analysis of emergent systemic inflammation indices in Mexican population. Front. Med. 2022, 9, 1000147. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khari, S.; Salimi Akin Abadi, A.; Pazokian, M.; Yousefifard, M. CURB-65, qSOFA, and SIRS Criteria in Predicting In-Hospital Mortality of Critically Ill COVID-19 Patients; a Prognostic Accuracy Study. Arch. Acad. Emerg. Med. 2022, 10, e36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Udompongpaiboon, P.; Reangvilaikul, T.; Vattanavanit, V. Predicting mortality among patients with severe COVID-19 pneumonia based on admission vital sign indices: A retrospective cohort study. BMC Pulm. Med. 2023, 23, 342. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, J.; Zhou, B.; Zhu, M.; Yuan, Y.; Wang, Q.; Zhou, H.; Wang, X.; Lv, T.; Li, S.; Liu, P.; et al. CURB-65 may serve as a useful prognostic marker in COVID-19 patients within Wuhan, China: A retrospective cohort study. Epidemiol. Infect. 2020, 148, e241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arikan-Akdagli, S.; Ghannoum, M.; Meis, J.F. Antifungal Resistance: Specific Focus on Multidrug Resistance in Candida auris and Secondary Azole Resistance in Aspergillus fumigatus. J. Fungi 2018, 4, 129. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, I.; Reddyreddy, A.R.; Nelluri, A.; Maganti, R.K.; Bratosin, F.; Fericean, R.M.; Dumitru, C.; Barata, P.I.; Tapalaga, G.; Marincu, I. Fungal Infections Identified with Multiplex PCR in Severe COVID-19 Patients during Six Pandemic Waves. Medicina 2023, 59, 1253. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ziegler, C.G.K.; Owings, A.H.; Miao, V.N.; Navia, A.W.; Tang, Y.; Bromley, J.D.; Lotfy, P.; Sloan, M.; Laird, H.; Williams, H.B.; et al. Severe COVID-19 is associated with fungal colonization of the nasopharynx and potent induction of IL-17 responses in the nasal epithelium. medRxiv 2022. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Golpour, M.; Jalali, H.; Alizadeh-Navaei, R.; Talarposhti, M.R.; Mousavi, T.; Ghara, A.A.N. Co-infection of SARS-CoV-2 and influenza A/B among patients with COVID-19: A systematic review and meta-analysis. BMC Infect. Dis. 2025, 25, 145. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soltani, S.; Zandi, M.; Faramarzi, S.; Shahbahrami, R.; Vali, M.; Rezayat, S.A.; Pakzad, R.; Malekifar, P.; Pakzad, I.; Jahandoost, N.; et al. Worldwide prevalence of fungal coinfections among COVID-19 patients: A comprehensive systematic review and meta-analysis. Osong Public Health Res. Perspect. 2022, 13, 15–23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rayens, E.; Norris, K.A. Prevalence and Healthcare Burden of Fungal Infections in the United States, 2018. Open Forum Infect. Dis. 2022, 9, ofab593. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kundu, R.; Singla, N. COVID-19 and Plethora of Fungal Infections. Curr. Fungal Infect. Rep. 2022, 16, 47–54. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kanj, S.S.; Haddad, S.F.; Meis, J.F.; Verweij, P.E.; Voss, A.; Rautemaa-Richardson, R.; Levy-Hara, G.; Chowdhary, A.; Ghafur, A.; Brüggemann, R.; et al. The battle against fungi: Lessons in antifungal stewardship from COVID 19 times. Int. J. Antimicrob. Agents 2023, 62, 106846, Erratum in: Int. J. Antimicrob. Agents 2023, 62, 106901. https://doi.org/10.1016/j.ijantimicag.2023.106901. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chavda, V.P.; Mishra, T.; Kamaraj, S.; Punetha, S.; Sengupta, O.; Joshi, Y.; Vuppu, S.; Vaghela, D.; Vora, L. Post-COVID-19 Fungal Infection in the Aged Population. Vaccines 2023, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Blaize, M.; Raoelina, A.; Kornblum, D.; Kamus, L.; Lampros, A.; Berger, M.; Demeret, S.; Constantin, J.M.; Monsel, A.; Mayaux, J.; et al. Occurrence of Candidemia in Patients with COVID-19 Admitted to Five ICUs in France. J. Fungi 2022, 8, 678. [Google Scholar] [CrossRef] [PubMed]
- Caciagli, V.; Coloretti, I.; Talamonti, M.; Farinelli, C.; Gatto, I.; Biagioni, E.; Sarti, M.; Franceschini, E.; Meschiari, M.; Mussini, C.; et al. Association between Pulmonary Aspergillosis and Cytomegalovirus Reactivation in Critically Ill COVID-19 Patients: A Prospective Observational Cohort Study. Viruses 2023, 15, 2260. [Google Scholar] [CrossRef]
- Sinclair, A.J.; Abdelhafiz, A.H. Age, frailty and diabetes—Triple jeopardy for vulnerability to COVID-19 infection. EClinicalMedicine 2020, 22, 100343. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mantovani, A.; Byrne, C.D.; Zheng, M.H.; Targher, G. Diabetes as a risk factor for greater COVID-19 severity and in-hospital death: A meta-analysis of observational studies. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1236–1248. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhatt, K.; Agolli, A.; Patel, M.H.; Garimella, R.; Devi, M.; Garcia, E.; Amin, H.; Domingue, C.; Guerra Del Castillo, R.; Sanchez-Gonzalez, M. High mortality co-infections of COVID-19 patients: Mucormycosis and other fungal infections. Discoveries 2021, 9, e126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gold, J.A.W.; Adjei, S.; Gundlapalli, A.V.; Huang, Y.A.; Chiller, T.; Benedict, K.; Toda, M. Increased Hospitalizations Involving Fungal Infections during COVID-19 Pandemic, United States, January 2020-December 2021. Emerg. Infect. Dis. 2023, 29, 1433–1437. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, A.; Li, Z.; Su, G.; Li, Y.; Zhang, Y.; Liang, J.; Cheng, X.; Wang, X.; Li, Y.; Ye, F. Mycotic infection as a risk factor for COVID-19: A meta-analysis. Front. Public Health 2022, 10, 943234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zuniga-Moya, J.C.; Papadopoulos, B.; Mansoor, A.E.; Mazi, P.B.; Rauseo, A.M.; Spec, A. Incidence and Mortality of COVID-19-Associated Invasive Fungal Infections Among Critically Ill Intubated Patients: A Multicenter Retrospective Cohort Analysis. Open Forum Infect. Dis. 2024, 11, ofae108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Negm, E.M.; Mohamed, M.S.; Rabie, R.A.; Fouad, W.S.; Beniamen, A.; Mosallem, A.; Tawfik, A.E.; Salama, H.M. Fungal infection profile in critically ill COVID-19 patients: A prospective study at a large teaching hospital in a middle-income country. BMC Infect. Dis. 2023, 23, 246. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maeshima, K.; Yamamoto, R.; Matsumura, K.; Kaito, D.; Homma, K.; Yamakawa, K.; Tagami, T.; Hayakawa, M.; Ogura, T.; Hirayama, A.; et al. Fungal infection-related conditions and outcomes in severe COVID-19: A nationwide case-control study. BMC Infect. Dis. 2024, 24, 1435. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Parameter | COVID-19–Fungal (n = 64) | COVID-19-Only (n = 216) | p-Value |
---|---|---|---|
Age (years), mean ± SD | 59.7 ± 9.8 | 58.5 ± 10.2 | 0.395 |
Male Sex, n (%) | 37 (57.8) | 127 (58.8) | 0.869 |
BMI (kg/m2), mean ± SD | 27.6 ± 4.7 | 27.3 ± 4.4 | 0.650 |
Hypertension, n (%) | 36 (56.3) | 121 (56.0) | 0.974 |
Diabetes Mellitus, n (%) | 19 (29.7) | 64 (29.6) | 0.996 |
Duration of Diabetes (years), mean ± SD | 8.2 ± 3.3 | 8.0 ± 3.1 | 0.817 |
Chronic Kidney Disease, n (%) | 10 (15.6) | 29 (13.4) | 0.657 |
COPD, n (%) | 9 (14.1) | 26 (12.0) | 0.667 |
Malignancy, n (%) | 6 (9.4) | 14 (6.5) | 0.428 |
Current or Ex-Smoker, n (%) | 16 (25.0) | 49 (22.7) | 0.701 |
Days from Symptom Onset to Admission, mean ± SD | 6.3 ± 1.9 | 5.8 ± 1.7 | 0.059 |
Corticosteroids, n (%) | 45 (70.3) | 110 (50.9) | 0.004 |
Immunosuppressive Medications, n (%) | 12 (18.8) | 18 (8.3) | 0.009 |
Specific Antifungal Regimens Used, n (%) | 58 (90.6) | N/A | N/A |
Azoles (Aspergillus, Candida) | 20 (31.3) | N/A | N/A |
Echinocandins (Candida, resistant strains) | 18 (28.1) | N/A | N/A |
Amphotericin B (Mucorales, severe cases) | 12 (18.8) | N/A | N/A |
Timing of Therapy Initiation (days post-admission), mean ± SD | 2.3 ± 1.1 | N/A | N/A |
Fungal Pathogens and Complications | Frequency (n = 64) | Percentage (%) |
---|---|---|
Fungal Species | ||
Aspergillus fumigatus | 20 | 31.3 |
Other Aspergillus spp. | 4 | 6.3 |
Candida albicans | 18 | 28.1 |
Other Candida spp. | 8 | 12.5 |
Cryptococcus neoformans | 5 | 7.8 |
Pneumocystis jirovecii | 4 | 6.3 |
Mucorales (e.g., Mucor/Rhizopus) | 4 | 6.3 |
Mixed Fungal Species | 1 | 1.6 |
Major Fungal Complications | ||
Candidemia (Blood Culture Positive) | 7 | 10.9 |
Aspergillus Invasive Pulmonary Infection | 8 | 12.5 |
Mucormycosis with Tissue Invasion | 3 | 4.7 |
Pneumocystis Pneumonia (clinical + PCR) | 4 | 6.3 |
Cryptococcal Pneumonia (positive antigen/culture) | 5 | 7.8 |
Candida Endophthalmitis | 1 | 1.6 |
Organism | Total Isolates | Resistance to Azoles (%) | Resistance to Echinocandins (%) | Resistance to Amphotericin B (%) | Multi-Drug Resistance (%) |
---|---|---|---|---|---|
Aspergillus fumigatus | 20 | 4/20 (20.0%) | - | - | 2/20 (10.0%) |
Other Aspergillus spp. | 4 | 1/4 (25.0%) | - | - | 1/4 (25.0%) |
Candida albicans | 18 | 2/18 (11.1%) | 1/18 (5.6%) | 0/18 (0.0%) | 1/18 (5.6%) |
Other Candida spp. | 8 | 0/8 (0.0%) | 2/8 (25.0%)) | 0/8 (0.0%) | 2/8 (25.0%) |
Cryptococcus neoformans | 5 | 1/5 (20.0%) | N/A | 0/5 (0.0%) | 0/5 (0.0%) |
Pneumocystis jirovecii | 4 | N/A | N/A | N/A | N/A |
Mucorales | 4 | N/A | N/A | 1/4 (25.0%) | 1/4 (25.0%) |
Total/Overall Rate | 64 | 14.3% | 9.5% | 1.6% | 9.5% |
Parameter | COVID-19–Fungal (n = 64), Mean ± SD | COVID-19-Only (n = 216), Mean ± SD | p-Value |
---|---|---|---|
C-reactive protein (mg/L) | 85.7 ± 23.8 | 71.6 ± 20.4 | <0.001 |
Procalcitonin (ng/mL) | 2.4 ± 1.0 | 1.3 ± 0.6 | <0.001 |
White blood cells (×109/L) | 8.7 ± 2.9 | 7.5 ± 2.4 | 0.003 |
Neutrophil-to-lymphocyte ratio | 6.4 ± 2.3 | 4.9 ± 2.1 | <0.001 |
Systemic immune inflammation index (×103) | 1185.3 ± 354.2 | 968.7 ± 316.9 | <0.001 |
Platelets (×109/L) | 221.3 ± 67.2 | 236.6 ± 63.7 | 0.08 |
Albumin (g/L) | 31.5 ± 4.9 | 34.0 ± 5.2 | 0.002 |
Clinical Score | COVID-19–Fungal (n = 64), Mean ± SD | COVID-19-Only (n = 216), Mean ± SD | p-Value |
---|---|---|---|
APACHE II | 18.6 ± 4.1 | 14.8 ± 4.0 | <0.001 |
CURB-65 | 2.9 ± 1.1 | 2.2 ± 1.0 | 0.001 |
NEWS | 8.4 ± 2.3 | 6.5 ± 2.3 | <0.001 |
Outcome | COVID-19–Fungal (n = 64) | COVID-19-Only (n = 216) | p-Value |
---|---|---|---|
ICU Admission, n (%) | 25 (39.1) | 43 (19.9) | 0.004 |
Mechanical Ventilation, n (%) | 17 (26.6) | 22 (10.2) | 0.01 |
In-Hospital Mortality, n (%) | 10 (15.6) | 16 (7.4) | 0.06 |
Length of Stay (days), mean ± SD | 14.2 ± 5.4 | 11.5 ± 4.3 | 0.003 |
Variable | Adjusted OR (95% CI) | p-Value |
---|---|---|
Fungal Coinfection | 2.8 (1.5–5.2) | 0.002 |
Age ≥ 65 years | 1.9 (1.1–3.4) | 0.02 |
APACHE II > 15 | 3.1 (1.7–5.7) | <0.001 |
Diabetes Mellitus | 1.2 (0.6–2.1) | 0.53 |
Male Sex | 1.0 (0.6–1.8) | 0.99 |
Antifungal Resistance | 2.2 (1.2–4.0) | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daliu, P.; Bogdan, I.; Rosca, O.; Licker, M.; Stanga, L.C.; Hogea, E.; Vaduva, D.B.; Muntean, D. Fungal Pulmonary Coinfections in COVID-19: Microbiological Assessment, Inflammatory Profiles, and Clinical Outcomes. Biomedicines 2025, 13, 864. https://doi.org/10.3390/biomedicines13040864
Daliu P, Bogdan I, Rosca O, Licker M, Stanga LC, Hogea E, Vaduva DB, Muntean D. Fungal Pulmonary Coinfections in COVID-19: Microbiological Assessment, Inflammatory Profiles, and Clinical Outcomes. Biomedicines. 2025; 13(4):864. https://doi.org/10.3390/biomedicines13040864
Chicago/Turabian StyleDaliu, Petrinela, Iulia Bogdan, Ovidiu Rosca, Monica Licker, Livia Claudia Stanga, Elena Hogea, Delia Berceanu Vaduva, and Delia Muntean. 2025. "Fungal Pulmonary Coinfections in COVID-19: Microbiological Assessment, Inflammatory Profiles, and Clinical Outcomes" Biomedicines 13, no. 4: 864. https://doi.org/10.3390/biomedicines13040864
APA StyleDaliu, P., Bogdan, I., Rosca, O., Licker, M., Stanga, L. C., Hogea, E., Vaduva, D. B., & Muntean, D. (2025). Fungal Pulmonary Coinfections in COVID-19: Microbiological Assessment, Inflammatory Profiles, and Clinical Outcomes. Biomedicines, 13(4), 864. https://doi.org/10.3390/biomedicines13040864