Transpulmonary LOX-1 Levels Are Predictive of Acute Respiratory Distress Syndrome After Cardiac Surgery: A Proof-of-Concept Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Measurements
2.3. Data Collection
2.4. Proteomics Assay
2.5. Endpoints
- ○
- The transmural left atrial pressure or the transmural pulmonary artery occlusion pressure were inferior or equal to 18 mmHg.
- ○
- The ratio of early diastolic mitral inflow velocity to early diastolic mitral annulus velocity (E/e’ ratio), estimated using tissue Doppler imaging, was inferior or equal to 14.
- ○
- The left ventricular ejection fraction had not decreased by more than 15% compared to a previous assessment when the patient was not hypoxemic.
2.6. Bioinformatics Analysis
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Occurrence of ARDS After Cardiac Surgery
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AaDO2 | Alveolo-arterial oxygenation difference |
ARDS | Acute respiratory distress syndrome |
AUC | Area under the curve |
CI | Confidence interval |
CPB | Cardiopulmonary bypass |
D0 | Day 0 |
FDRq | False discovery rate q-value |
H0 | Hour 0 |
H24 | Hour 24 |
HR | Hazard ratios |
ICU | Intensive care unit |
IQR | Interquartile ranges |
LA | Left atrium |
LOX-1 | Lectin-like oxidized low-density lipoprotein receptor-1 |
OR | Odds ratios |
PA | Pulmonary artery |
PAC | Pulmonary artery catheter |
ROC | Receiver operating characteristic curve |
SLIP | Surgical Lung Injury Prediction |
References
- Thompson, B.T.; Chambers, R.C.; Liu, K.D. Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2017, 377, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Matthay, M.A.; Arabi, Y.; Arroliga, A.C.; Bernard, G.; Bersten, A.D.; Brochard, L.J.; Calfee, C.S.; Combes, A.; Daniel, B.M.; Ferguson, N.D.; et al. A New Global Definition of Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2024, 209, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, N.D.; Fan, E.; Camporota, L.; Antonelli, M.; Anzueto, A.; Beale, R.; Brochard, L.; Brower, R.; Esteban, A.; Gattinoni, L.; et al. The Berlin definition of ARDS: An expanded rationale, justification, and supplementary material. Intensive Care Med. 2012, 38, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- ARDS Definition of Task Force; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Ashbaugh, D.G.; Bigelow, D.B.; Petty, T.L.; Levine, B.E. Acute respiratory distress in adults. Lancet 1967, 2, 319–323. [Google Scholar] [CrossRef]
- Meyer, N.J.; Gattinoni, L.; Calfee, C.S. Acute respiratory distress syndrome. Lancet 2021, 398, 622–637. [Google Scholar] [CrossRef]
- Sanfilippo, F.; Palumbo, G.J.; Bignami, E.; Pavesi, M.; Ranucci, M.; Scolletta, S.; Pelosi, P.; Astuto, M. Acute Respiratory Distress Syndrome in the Perioperative Period of Cardiac Surgery: Predictors, Diagnosis, Prognosis, Management Options, and Future Directions. J. Cardiothorac. Vasc. Anesth. 2022, 36, 1169–1179. [Google Scholar] [CrossRef]
- Vlaar, A.P.; Toy, P.; Fung, M.; Looney, M.R.; Juffermans, N.P.; Bux, J.; Bolton-Maggs, P.; Peters, A.L.; Silliman, C.C.; Kor, D.J.; et al. A consensus redefinition of transfusion-related acute lung injury. Transfusion 2019, 59, 2465–2476. [Google Scholar] [CrossRef]
- Chen, S.W.; Chang, C.H.; Chu, P.H.; Chen, T.H.; Wu, V.C.C.; Huang, Y.K.; Liao, C.H.; Wang, S.Y.; Lin, P.J.; Tsai, F.C. Risk factor analysis of postoperative acute respiratory distress syndrome in valvular heart surgery. J. Crit. Care 2016, 31, 139–143. [Google Scholar] [CrossRef]
- Christenson, J.; Lavoie, A.; O’Connor, M.; Bhorade, S.; Pohlman, A.; Hall, J.B. The incidence and pathogenesis of cardiopulmonary deterioration after abrupt withdrawal of inhaled nitric oxide. Am. J. Respir. Crit. Care Med. 2000, 161, 1443–1449. [Google Scholar] [CrossRef]
- Matthay, M.A.; Zemans, R.L.; Zimmerman, G.A.; Arabi, Y.M.; Beitler, J.R.; Mercat, A.; Herridge, M.; Randolph, A.G.; Calfee, C.S. Acute respiratory distress syndrome. Nat. Rev. Dis. Primers 2019, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Rubin, D.B.; Wiener-Kronish, J.P.; Murray, J.F.; Green, D.R.; Turner, J.; Luce, J.M.; Montgomery, A.B.; Marks, J.D.; Matthay, M.A. Elevated von Willebrand factor antigen is an early plasma predictor of acute lung injury in nonpulmonary sepsis syndrome. J. Clin. Investig. 1990, 86, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Matthay, M.A.; Kangelaris, K.N.; Stein, J.; Chu, J.C.; Imp, B.M.; Cortez, A.; Abbott, J.; Liu, K.D.; Calfee, C.S. Plasma angiopoietin-2 predicts the onset of acute lung injury in critically ill patients. Am. J. Respir. Crit. Care Med. 2013, 187, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, F.T.; Shenoy, A.T.; Symer, E.M.; Baird, L.A.; Odom, C.V.; Arafa, E.I.; Dimbo, E.L.; Na, E.; Molina-Arocho, W.; Brudner, M.; et al. Lectin-like oxidized low-density lipoprotein receptor 1 attenuates pneumonia-induced lung injury. JCI Insight 2022, 7, e149955. [Google Scholar] [CrossRef]
- Sawamura, T.; Kume, N.; Aoyama, T.; Moriwaki, H.; Hoshikawa, H.; Aiba, Y.; Tanaka, T.; Miwa, S.; Katsura, Y.; Kita, T.; et al. An endothelial receptor for oxidized low-density lipoprotein. Nature 1997, 386, 73–77. [Google Scholar] [CrossRef]
- Zeya, B.; Chandra, N.C. LOX-1: Its cytotopographical variance and disease stress. J. Biochem. Mol. Toxicol. 2019, 33, e22375. [Google Scholar] [CrossRef]
- Quinton, L.J.; Mizgerd, J.P.; Hilliard, K.L.; Jones, M.R.; Kwon, C.Y.; Allen, E. Leukemia inhibitory factor signaling is required for lung protection during pneumonia. J. Immunol. 2012, 188, 6300–6308. [Google Scholar] [CrossRef]
- Traber, K.E.; Symer, E.M.; Allen, E.; Kim, Y.; Hilliard, K.L.; Wasserman, G.A.; Stewart, C.L.; Jones, M.R.; Mizgerd, J.P.; Quinton, L.J. Myeloid-epithelial cross talk coordinates synthesis of the tissue-protective cytokine leukemia inhibitory factor during pneumonia. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 313, L548–L558. [Google Scholar] [CrossRef]
- Kor, D.J.; Warner, D.O.; Alsara, A.; Fernández-Pérez, E.R.; Malinchoc, M.M.; Kashyap, R.; Li, G.; Gajic, O. Derivation and diagnostic accuracy of the surgical lung injury prediction model. Anesthesiology 2011, 115, 117–128. [Google Scholar] [CrossRef]
- Bendjelid, K.; Treggiari, M.M.; Romand, J.A. Transpulmonary lactate gradient after hypothermic cardiopulmonary bypass. Intensive Care Med. 2004, 30, 817–821. [Google Scholar] [CrossRef]
- Takala, J. Pulmonary capillary pressure. Intensive Care Med. 2003, 29, 890–893. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, M.; Thorsen, S.B.; Assarsson, E.; Villablanca, A.; Tran, B.; Gee, N.; Knowles, M.; Nielsen, B.S.; Couto, E.G.; Martin, R.; et al. Multiplexed homogeneous proximity ligation assays for high-throughput protein biomarker research in serological material. Mol. Cell Proteomics. 2011, 10, M110.004978. [Google Scholar] [CrossRef] [PubMed]
- Assarsson, E.; Lundberg, M.; Holmquist, G.; Björkesten, J.; Thorsen, S.B.; Ekman, D.; Eriksson, A.; Dickens, E.R.; Ohlsson, S.; Edfeldt, G.; et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 2014, 9, e95192. [Google Scholar] [CrossRef]
- Zannad, F.; Ferreira, J.P.; Butler, J.; Filippatos, G.; Januzzi, J.L.; Sumin, M.; Zwick, M.; Saadati, M.; Pocock, S.J.; Sattar, N.; et al. Effect of empagliflozin on circulating proteomics in heart failure: Mechanistic insights into the EMPEROR programme. Eur. Heart J. 2022, 43, 4991–5002. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer International Publishing: Cham, Switzerland, 2016; 260p. [Google Scholar]
- Calfee, C.S.; Delucchi, K.L.; Sinha, P.; Matthay, M.A.; Hackett, J.; Shankar-Hari, M.; McDowell, C.; Laffey, J.G.; O’Kane, C.M.; McAuley, D.F.; et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: Secondary analysis of a randomised controlled trial. Lancet Respir. Med. 2018, 6, 691–698. [Google Scholar] [CrossRef]
- Calfee, C.S.; Delucchi, K.; Parsons, P.E.; Thompson, B.T.; Ware, L.B.; Matthay, M.A. Subphenotypes in acute respiratory distress syndrome: Latent class analysis of data from two randomised controlled trials. Lancet Respir. Med. 2014, 2, 611–620. [Google Scholar] [CrossRef]
- Bos, L.D.J.; Ware, L.B. Acute respiratory distress syndrome: Causes, pathophysiology, and phenotypes. Lancet 2022, 400, 1145–1156. [Google Scholar] [CrossRef]
- Lin, W.C.; Fessler, M.B. Regulatory mechanisms of neutrophil migration from the circulation to the airspace. Cell Mol. Life Sci. 2021, 78, 4095–4124. [Google Scholar] [CrossRef]
- Lefrançais, E.; Mallavia, B.; Zhuo, H.; Calfee, C.S.; Looney, M.R. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight 2018, 3, e98178. [Google Scholar] [CrossRef]
- Mehta, J.L.; Sanada, N.; Hu, C.P.; Chen, J.; Dandapat, A.; Sugawara, F.; Satoh, H.; Inoue, K.; Kawase, Y.; Jishage, K.-I.; et al. Deletion of LOX-1 Reduces Atherogenesis in LDLR Knockout Mice Fed High Cholesterol Diet. Circ. Res. 2007, 100, 1634–1642. [Google Scholar] [CrossRef]
- Kattoor, A.J.; Goel, A.; Mehta, J.L. LOX-1: Regulation, Signaling and Its Role in Atherosclerosis. Antioxidants 2019, 8, 218. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Yao, C.; Wang, T.; Wu, J.; Shang, Y.; Li, B.; Xia, H.; Huang, S.; Wang, F.; et al. Early plasma proteomic biomarkers and prediction model of acute respiratory distress syndrome after cardiopulmonary bypass: A prospective nested cohort study. Int. J. Surg. Lond. Engl. 2023, 109, 2561–2573. [Google Scholar] [CrossRef]
- Kraus, R.F.; Ott, L.; Utpatel, K.; Kees, M.G.; Gruber, M.A.; Bitzinger, D. Neutrophils in the Spotlight-An Analysis of Neutrophil Function and Phenotype in ARDS. Int. J. Mol. Sci. 2024, 25, 12547. [Google Scholar] [CrossRef]
- Coudereau, R.; Waeckel, L.; Cour, M.; Rimmele, T.; Pescarmona, R.; Fabri, A.; Jallades, L.; Yonis, H.; Gossez, M.; Lukaszewicz, A.-C.; et al. Emergence of immunosuppressive LOX-1+ PMN-MDSC in septic shock and severe COVID-19 patients with acute respiratory distress syndrome. J. Leukoc. Biol. 2022, 111, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Balamayooran, G.; Batra, S.; Fessler, M.B.; Happel, K.I.; Jeyaseelan, S. Mechanisms of neutrophil accumulation in the lungs against bacteria. Am. J. Respir. Cell Mol. Biol. 2010, 43, 5–16. [Google Scholar] [CrossRef] [PubMed]
Variables | Overall (n = 16) * | No ARDS (n = 10) * | ARDS (n = 6) * | p-Value † |
---|---|---|---|---|
Patient characteristics | ||||
Age, years (IQR) | 74 (66–80) | 74 (68–77) | 78 (62–84) | 0.6 |
Female, n (%) | 6 (38) | 4 (40) | 2 (33) | >0.9 |
Body mass index, kg/m2 (IQR) | 23.8 (22.4–28.6) | 23.8 (22.7–26.6) | 25.8 (21.8–29.2) | >0.9 |
Medical history, n (%) | ||||
Smoking | 1 (6.3) | 0 (0) | 1 (17) | 0.4 |
Diabetes mellitus | 7 (44) | 5 (50) | 2 (33) | 0.6 |
Hypertension | 12 (75) | 7 (70) | 5 (83) | >0.9 |
Dyslipidemia | 8 (50) | 5 (50) | 3 (50) | >0.9 |
Atrial fibrillation | 7 (44) | 4 (40) | 3 (50) | >0.9 |
Previous valvular replacement | 4 (25) | 2 (20) | 2 (33) | 0.6 |
Chronic obstruction pulmonary disease | 5 (31) | 3 (30) | 2 (33) | >0.9 |
Medication, n (%) | ||||
Beta-blockers | 10 (63) | 6 (60) | 4 (67) | >0.9 |
Angiotensin-converting enzyme inhibitors | 8 (50) | 7 (70) | 1 (17) | 0.12 |
Angiotensin receptor blockers | 4 (25) | 2 (20) | 2 (33) | 0.6 |
Diuretics | 11 (69) | 8 (80) | 3 (50) | 0.3 |
Preoperative biology and transthoracic echocardiography | ||||
Plasmatic creatinine, µmol/L (IQR) | 73 (65–88) | 71 (66–82) | 80 (61–90) | >0.9 |
Ejection fraction, % (IQR) | 55 (36–61) | 55 (35–60) | 53 (47–60) | 0.7 |
Surgery | ||||
Surgical procedure | >0.9 | |||
Coronary artery bypass, n (%) | 1 (6.3) | 1 (10) | 0 (0) | |
Coronary artery bypass with valve placement, n (%) | 6 (38) | 4 (40) | 2 (33) | |
Valve replacement, n (%) | 9 (56) | 5 (50) | 4 (67) | |
Bypass duration, min (IQR) | 129 (106–178) | 140 (120–185) | 111 (105–130) | 0.2 |
Aortic cross clamping, min (IQR) | 93 (74–119) | 104 (88–126) | 77 (73–95) | 0.4 |
Time Point | Site of Sampling | No ARDS | ARDS | Difference | 95% CI | p-Value |
---|---|---|---|---|---|---|
D0 * † | Pulmonary artery | 5.89 (5.81, 6.16) | 5.81 (5.75, 5.90) | −0.20 | −1.3, 0.85 | 0.7 |
H0 * | Pulmonary artery | 7.11 (6.90, 7.23) | 6.90 (6.78, 7.64) | −0.05 | −0.94, 0.84 | 0.9 |
H0 * | Left atrium | 7.01 (6.85, 7.38) | 6.81 (6.64, 7.50) | 0.05 | −0.67, 0.78 | 0.9 |
H24 * | Pulmonary artery | 6.48 (6.27, 6.66) | 6.96 (6.83, 7.23) | −0.65 | −1.3, −0.02 | 0.016 |
H24 * | Left atrium | 6.54 (6.27, 6.81) | 6.75 (6.64, 6.97) | −0.36 | −1.0, 0.26 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deniau, B.; Ludes, P.-O.; Khalifeh-Ballan, P.; Fenninger, L.; Kindo, M.; Collange, O.; Geny, B.; Noll, E.; Azibani, F.; Mebazaa, A.; et al. Transpulmonary LOX-1 Levels Are Predictive of Acute Respiratory Distress Syndrome After Cardiac Surgery: A Proof-of-Concept Study. Biomedicines 2025, 13, 800. https://doi.org/10.3390/biomedicines13040800
Deniau B, Ludes P-O, Khalifeh-Ballan P, Fenninger L, Kindo M, Collange O, Geny B, Noll E, Azibani F, Mebazaa A, et al. Transpulmonary LOX-1 Levels Are Predictive of Acute Respiratory Distress Syndrome After Cardiac Surgery: A Proof-of-Concept Study. Biomedicines. 2025; 13(4):800. https://doi.org/10.3390/biomedicines13040800
Chicago/Turabian StyleDeniau, Benjamin, Pierre-Olivier Ludes, Pamela Khalifeh-Ballan, Luc Fenninger, Michel Kindo, Olivier Collange, Bernard Geny, Eric Noll, Fériel Azibani, Alexandre Mebazaa, and et al. 2025. "Transpulmonary LOX-1 Levels Are Predictive of Acute Respiratory Distress Syndrome After Cardiac Surgery: A Proof-of-Concept Study" Biomedicines 13, no. 4: 800. https://doi.org/10.3390/biomedicines13040800
APA StyleDeniau, B., Ludes, P.-O., Khalifeh-Ballan, P., Fenninger, L., Kindo, M., Collange, O., Geny, B., Noll, E., Azibani, F., Mebazaa, A., & Pottecher, J. (2025). Transpulmonary LOX-1 Levels Are Predictive of Acute Respiratory Distress Syndrome After Cardiac Surgery: A Proof-of-Concept Study. Biomedicines, 13(4), 800. https://doi.org/10.3390/biomedicines13040800