Machine Learning-Driven Identification of Exosome-Related Genes in Head and Neck Squamous Cell Carcinoma for Prognostic Evaluation and Drug Response Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Dataset
2.2. Data Processing and Identification of Differentially Expressed Exosome-Related Genes
2.3. Functional Enrichment (GO) and Pathway Analysis (KEGG)
2.4. GSEA Results
2.5. Construction of a Risk Model for Prognostic HNSCC Exosome-Related Genes
2.6. Receiver Operating Characteristic Curve Analysis and Prognostic Nomograms
2.7. ssGSEA and Immune Score Risk Exosome-Related Gene Correlation in HNSCC
2.8. Prediction of Candidate Drugs
2.9. Molecular Docking
2.10. Statistical Analyses
3. Results
3.1. Identification of Differentially Expressed Exosome-Related Genes in HNSCC
3.2. Functional Enrichment Analysis of Differentially Expressed Exosome-Related Genes
3.3. GSEA Enrichment Analysis
3.4. Comparison of the LASSO, SVM-RFE, and Random Forest Algorithms
3.5. Receiver Operating Characteristic Curve Analysis and a Prognostic Nomogram
3.6. ssGSEA and Immune Correlation Analysis
3.7. Candidate Drug Prediction
3.8. Molecular Docking
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Cao, J.; Zhang, M.; Xie, F.; Lou, J.; Zhou, X.; Zhang, L.; Fang, M.; Zhou, F. Exosomes in head and neck cancer: Roles, mechanisms and applications. Cancer Lett. 2020, 494, 7–16. [Google Scholar] [CrossRef] [PubMed]
- De Toro, J.; Herschlik, L.; Waldner, C.; Mongini, C. Emerging roles of exosomes in normal and pathological conditions: New insights for diagnosis and therapeutic applications. Front. Immunol. 2015, 6, 203. [Google Scholar] [CrossRef] [PubMed]
- Thery, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002, 2, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Zhang, Z.; Zhang, J.; Pan, X.; Zhu, X.; Wang, X.; Li, Z.; Ruan, M.; Li, H.; Chen, W.; et al. CD73 in small extracellular vesicles derived from HNSCC defines tumour-associated immunosuppression mediated by macrophages in the microenvironment. J. Extracell. Vesicles 2022, 11, e12218. [Google Scholar] [CrossRef]
- Cheng, H.Y.; Hsieh, C.H.; Lin, P.H.; Chen, Y.T.; Hsu, D.S.; Tai, S.K.; Chu, P.Y.; Yang, M.H. Snail-regulated exosomal microRNA−21 suppresses NLRP3 inflammasome activity to enhance cisplatin resistance. J. Immunother. Cancer 2022, 10, e004832. [Google Scholar] [CrossRef]
- Xie, C.; Ji, N.; Tang, Z.; Li, J.; Chen, Q. The role of extracellular vesicles from different origin in the microenvironment of head and neck cancers. Mol. Cancer 2019, 18, 83. [Google Scholar] [CrossRef]
- Paskeh, M.D.A.; Entezari, M.; Mirzaei, S.; Zabolian, A.; Saleki, H.; Naghdi, M.J.; Sabet, S.; Khoshbakht, M.A.; Hashemi, M.; Hushmandi, K.; et al. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J. Hematol. Oncol. 2022, 15, 83. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics A J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Gene Ontology Consortium. Gene Ontology Consortium: Going forward. Nucleic Acids Res. 2015, 43, D1049–D1056. [Google Scholar] [CrossRef]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef]
- Huang, S.; Cai, N.; Pacheco, P.P.; Narrandes, S.; Wang, Y.; Xu, W. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genom. Proteom. 2018, 15, 41–51. [Google Scholar] [CrossRef]
- Yu, X.; Zeng, Q. Random forest algorithm-based classification model of pesticide aquatic toxicity to fishes. Aquat. Toxicol. 2022, 251, 106265. [Google Scholar] [CrossRef] [PubMed]
- Hanzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Yoo, M.; Shin, J.; Kim, J.; Ryall, K.A.; Lee, K.; Lee, S.; Jeon, M.; Kang, J.; Tan, A.C. DSigDB: Drug signatures database for gene set analysis. Bioinformatics 2015, 31, 3069–3071. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res 2021, 49, D1388–D1395. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; Yang, Y.; Zhu, H.; Chen, X.; Zhang, H.; Wang, F.; Qin, Q.; Cheng, H.; Sun, X. Exosomes: A Promising Factor Involved in Cancer Hypoxic Microenvironments. Curr. Med. Chem. 2015, 22, 4189–4195. [Google Scholar] [CrossRef]
- Walma, D.A.C.; Yamada, K.M. The extracellular matrix in development. Development 2020, 147, dev175596. [Google Scholar] [CrossRef]
- Zhu, M.; Li, W.; Dong, X.; Yuan, X.; Midgley, A.C.; Chang, H.; Wang, Y.; Wang, H.; Wang, K.; Ma, P.X.; et al. In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration. Nat. Commun. 2019, 10, 4620. [Google Scholar] [CrossRef]
- Winkler, J.; Abisoye-Ogunniyan, A.; Metcalf, K.J.; Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 2020, 11, 5120. [Google Scholar] [CrossRef]
- Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res. 2003, 92, 827–839. [Google Scholar] [CrossRef]
- Mondal, S.; Adhikari, N.; Banerjee, S.; Amin, S.A.; Jha, T. Matrix metalloproteinase−9 (MMP−9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem. 2020, 194, 112260. [Google Scholar] [CrossRef] [PubMed]
- Pickup, M.W.; Mouw, J.K.; Weaver, V.M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014, 15, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.L.; Hames, R.A.; Mastroianni, N.M.; Greenstein, A.E.; Weed, S.A. Evaluation of the matrix metalloproteinase 9 (MMP9) inhibitor Andecaliximab as an Anti-invasive therapeutic in Head and neck squamous cell carcinoma. Oral. Oncol. 2022, 132, 106008. [Google Scholar] [CrossRef]
- Rosenthal, E.L.; Matrisian, L.M. Matrix metalloproteases in head and neck cancer. Head. Neck 2006, 28, 639–648. [Google Scholar] [CrossRef]
- Vilen, S.T.; Salo, T.; Sorsa, T.; Nyberg, P. Fluctuating roles of matrix metalloproteinase−9 in oral squamous cell carcinoma. Sci. World J. 2013, 2013, 920595. [Google Scholar] [CrossRef]
- Burgess, R.W.; Skarnes, W.C.; Sanes, J.R. Agrin isoforms with distinct amino termini: Differential expression, localization, and function. J. Cell Biol. 2000, 151, 41–52. [Google Scholar] [CrossRef]
- Chakraborty, S.; Lakshmanan, M.; Swa, H.L.; Chen, J.; Zhang, X.; Ong, Y.S.; Loo, L.S.; Akincilar, S.C.; Gunaratne, J.; Tergaonkar, V.; et al. An oncogenic role of Agrin in regulating focal adhesion integrity in hepatocellular carcinoma. Nat. Commun. 2015, 6, 6184. [Google Scholar] [CrossRef]
- Kim, N.; Stiegler, A.L.; Cameron, T.O.; Hallock, P.T.; Gomez, A.M.; Huang, J.H.; Hubbard, S.R.; Dustin, M.L.; Burden, S.J. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell 2008, 135, 334–342. [Google Scholar] [CrossRef]
- Ruegg, M.A.; Bixby, J.L. Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction. Trends Neurosci. 1998, 21, 22–27. [Google Scholar] [CrossRef]
- Bassat, E.; Mutlak, Y.E.; Genzelinakh, A.; Shadrin, I.Y.; Baruch Umansky, K.; Yifa, O.; Kain, D.; Rajchman, D.; Leach, J.; Riabov Bassat, D.; et al. The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 2017, 547, 179–184. [Google Scholar] [CrossRef]
- Rivera, C.; Zandonadi, F.S.; Sanchez-Romero, C.; Soares, C.D.; Granato, D.C.; Gonzalez-Arriagada, W.A.; Paes Leme, A.F. Agrin has a pathological role in the progression of oral cancer. Br. J. Cancer 2018, 118, 1628–1638. [Google Scholar] [CrossRef] [PubMed]
- Jockusch, B.M.; Murk, K.; Rothkegel, M. The profile of profilins. Rev. Physiol. Biochem. Pharmacol. 2007, 159, 131–149. [Google Scholar] [CrossRef] [PubMed]
- Khadka, D.K.; Liu, W.; Habas, R. Non-redundant roles for Profilin2 and Profilin1 during vertebrate gastrulation. Dev. Biol. 2009, 332, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Olson, E.N.; Nordheim, A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat. Rev. Mol. Cell Biol. 2010, 11, 353–365. [Google Scholar] [CrossRef]
- Li, Z.; Huo, X.; Chen, K.; Yang, F.; Tan, W.; Zhang, Q.; Yu, H.; Li, C.; Zhou, D.; Chen, H.; et al. Profilin 2 and Endothelial Exosomal Profilin 2 Promote Angiogenesis and Myocardial Infarction Repair in Mice. Front. Cardiovasc. Med. 2022, 9, 781753. [Google Scholar] [CrossRef]
- Jiang, M.; Qiu, N.; Xia, H.; Liang, H.; Li, H.; Ao, X. Long non-coding RNA FOXD2-AS1/miR-150-5p/PFN2 axis regulates breast cancer malignancy and tumorigenesis. Int. J. Oncol. 2019, 54, 1043–1052. [Google Scholar] [CrossRef]
- Cao, Q.; Liu, Y.; Wu, Y.; Hu, C.; Sun, L.; Wang, J.; Li, C.; Guo, M.; Liu, X.; Lv, J.; et al. Profilin 2 promotes growth, metastasis, and angiogenesis of small cell lung cancer through cancer-derived exosomes. Aging 2020, 12, 25981–25999. [Google Scholar] [CrossRef]
- Cui, X.B.; Zhang, S.M.; Xu, Y.X.; Dang, H.W.; Liu, C.X.; Wang, L.H.; Yang, L.; Hu, J.M.; Liang, W.H.; Jiang, J.F.; et al. PFN2, a novel marker of unfavorable prognosis, is a potential therapeutic target involved in esophageal squamous cell carcinoma. J. Transl. Med. 2016, 14, 137. [Google Scholar] [CrossRef]
- Ma, C.Y.; Zhang, C.P.; Zhong, L.P.; Pan, H.Y.; Chen, W.T.; Wang, L.Z.; Andrew, O.W.; Ji, T.; Han, W. Decreased expression of profilin 2 in oral squamous cell carcinoma and its clinicopathological implications. Oncol. Rep. 2011, 26, 813–823. [Google Scholar] [CrossRef]
- Asai, S.; Koma, A.; Nohata, N.; Kinoshita, T.; Kikkawa, N.; Kato, M.; Minemura, C.; Uzawa, K.; Hanazawa, T.; Seki, N. Impact of miR−1/miR−133 Clustered miRNAs: PFN2 Facilitates Malignant Phenotypes in Head and Neck Squamous Cell Carcinoma. Biomedicines 2022, 10, 663. [Google Scholar] [CrossRef]
- Zhou, K.; Chen, J.; Wu, J.; Xu, Y.; Wu, Q.; Yue, J.; Song, Y.; Li, S.; Zhou, P.; Tu, W.; et al. Profilin 2 Promotes Proliferation and Metastasis of Head and Neck Cancer Cells by Regulating PI3K/AKT/beta-Catenin Signaling Pathway. Oncol. Res. 2019, 27, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Zendjabil, M. The glycated hemoglobin: Indication, interpretation and limitations. Ann. Pharm. Fr. 2015, 73, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Boyle, P.; Boniol, M.; Koechlin, A.; Robertson, C.; Valentini, F.; Coppens, K.; Fairley, L.L.; Boniol, M.; Zheng, T.; Zhang, Y.; et al. Diabetes and breast cancer risk: A meta-analysis. Br. J. Cancer 2012, 107, 1608–1617. [Google Scholar] [CrossRef]
- Lee, J.Y.; Jeon, I.; Lee, J.M.; Yoon, J.M.; Park, S.M. Diabetes mellitus as an independent risk factor for lung cancer: A meta-analysis of observational studies. Eur. J. Cancer 2013, 49, 2411–2423. [Google Scholar] [CrossRef]
- Tsilidis, K.K.; Kasimis, J.C.; Lopez, D.S.; Ntzani, E.E.; Ioannidis, J.P. Type 2 diabetes and cancer: Umbrella review of meta-analyses of observational studies. BMJ 2015, 350, g7607. [Google Scholar] [CrossRef]
- Rubinstein, E. The complexity of tetraspanins. Biochem. Soc. Trans. 2011, 39, 501–505. [Google Scholar] [CrossRef]
- Kummer, D.; Steinbacher, T.; Schwietzer, M.F.; Tholmann, S.; Ebnet, K. Tetraspanins: Integrating cell surface receptors to functional microdomains in homeostasis and disease. Med. Microbiol. Immunol. 2020, 209, 397–405. [Google Scholar] [CrossRef]
- Humbert, P.O.; Pryjda, T.Z.; Pranjic, B.; Farrell, A.; Fujikura, K.; de Matos Simoes, R.; Karim, R.; Kozieradzki, I.; Cronin, S.J.F.; Neely, G.G.; et al. TSPAN6 is a suppressor of Ras-driven cancer. Oncogene 2022, 41, 2095–2105. [Google Scholar] [CrossRef]
- Andrijes, R.; Hejmadi, R.K.; Pugh, M.; Rajesh, S.; Novitskaya, V.; Ibrahim, M.; Overduin, M.; Tselepis, C.; Middleton, G.W.; Gyorffy, B.; et al. Tetraspanin 6 is a regulator of carcinogenesis in colorectal cancer. Proc. Natl. Acad. Sci. USA 2021, 118, e2011411118. [Google Scholar] [CrossRef]
- Zeng, X.; Xie, Y.; Xie, Y.; Zhang, C. TSPAN6 could serve as a prognostic biomarker for patients with glioma. Asian J. Surg. 2024, 47, 2250–2252. [Google Scholar] [CrossRef]
- Sridharan, G.; Shankar, A.A. Toluidine blue: A review of its chemistry and clinical utility. J. Oral. Maxillofac. Pathol. 2012, 16, 251–255. [Google Scholar] [CrossRef]
- He, Y.; Pang, J.; Yang, Z.; Zheng, M.; Yu, Y.; Liu, Z.; Zhao, B.; Hu, G.; Yin, R. Toluidine blue O-induced photoinactivation inhibit the biofilm formation of methicillin-resistant Staphylococcus aureus. Photodiagnosis Photodyn. Ther. 2022, 39, 102902. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, K.B.P.; Raimundo, A.F.G.; Klosowski, E.M.; de Souza, B.T.L.; Mito, M.S.; Constantin, R.P.; Mantovanelli, G.C.; Mewes, J.M.; Bizerra, P.F.V.; da Costa Menezes, P.V.M.; et al. Toluidine blue O directly and photodynamically impairs the bioenergetics of liver mitochondria: A potential mechanism of hepatotoxicity. Photochem. Photobiol. Sci. 2023, 22, 279–302. [Google Scholar] [CrossRef] [PubMed]
- van Dooren, B.T.; Beekhuis, W.H.; Pels, E. Biocompatibility of trypan blue with human corneal cells. Arch. Ophthalmol. 2004, 122, 736–742. [Google Scholar] [CrossRef]
- Kodjikian, L.; Richter, T.; Halberstadt, M.; Beby, F.; Flueckiger, F.; Boehnke, M.; Garweg, J.G. Toxic effects of indocyanine green, infracyanine green, and trypan blue on the human retinal pigmented epithelium. Graefes Arch. Clin. Exp. Ophthalmol. 2005, 243, 917–925. [Google Scholar] [CrossRef]
- Sicari, V.; Zabbo, C.P. Diphenhydramine. In StatPearls; StatPearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Weiler, J.M.; Bloomfield, J.R.; Woodworth, G.G.; Grant, A.R.; Layton, T.A.; Brown, T.L.; McKenzie, D.R.; Baker, T.W.; Watson, G.S. Effects of fexofenadine, diphenhydramine, and alcohol on driving performance. A randomized, placebo-controlled trial in the Iowa driving simulator. Ann. Intern. Med. 2000, 132, 354–363. [Google Scholar] [CrossRef]
- Agostini, J.V.; Leo-Summers, L.S.; Inouye, S.K. Cognitive and other adverse effects of diphenhydramine use in hospitalized older patients. Arch. Intern. Med. 2001, 161, 2091–2097. [Google Scholar] [CrossRef]
- de Leon, J.; Nikoloff, D.M. Paradoxical excitation on diphenhydramine may be associated with being a CYP2D6 ultrarapid metabolizer: Three case reports. CNS Spectr. 2008, 13, 133–135. [Google Scholar] [CrossRef]
- Nolen, A.; Dai, T. Diphenhydramine Use Disorder and Complicated Withdrawal in a Palliative Care Patient. J. Palliat. Med. 2020, 23, 1279–1282. [Google Scholar] [CrossRef]
- Ramachandran, V.; V, I.K.; Hr, K.K.; Tiwari, R.; Tiwari, G. Biochanin-A: A Bioactive Natural Product with Versatile Therapeutic Perspectives. Curr. Drug Res. Rev. 2022, 14, 225–238. [Google Scholar] [CrossRef]
- Sarfraz, A.; Javeed, M.; Shah, M.A.; Hussain, G.; Shafiq, N.; Sarfraz, I.; Riaz, A.; Sadiqa, A.; Zara, R.; Zafar, S.; et al. Biochanin A: A novel bioactive multifunctional compound from nature. Sci. Total Environ. 2020, 722, 137907. [Google Scholar] [CrossRef] [PubMed]
- Peterson, G.; Barnes, S. Genistein and biochanin A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation. Prostate 1993, 22, 335–345. [Google Scholar] [CrossRef]
Toluidine Blue O—MMP9 | ||||
CurPocket ID | Vina Score | Cavity Volume (ų) | Center (x, y, z) | Docking Size (x, y, z) |
C5 | −6.8 | 211 | −41, −29, 1 | 21, 21, 21 |
C2 | −6.2 | 495 | −36, −53, −14 | 21, 21, 21 |
C4 | −6.2 | 214 | −13, −46, −28 | 21, 21, 21 |
C1 | −6.1 | 583 | −20, −29, −13 | 21, 21, 21 |
C3 | −5.7 | 222 | −4, −59, −27 | 21, 21, 21 |
Toluidine Blue O—HBA1 | ||||
CurPocket ID | Vina score | Cavity volume (ų) | Center (x, y, z) | Docking size (x, y, z) |
C3 | −7.9 | 846 | −30, −41, 14 | 21, 21, 21 |
C5 | −7.9 | 710 | −22, −10, 19 | 21, 21, 21 |
C1 | −7.7 | 13258 | −22, −26, 5 | 35, 35, 35 |
C2 | −7.7 | 870 | −7, −20, 5 | 21, 21, 21 |
C4 | −7.7 | 787 | −38, −27, −2 | 21, 21, 21 |
UNII-768N7QO4KH—MMP9 | ||||
CurPocket ID | Vina score | Cavity Volume (ų) | Center (x, y, z) | Docking size (x, y, z) |
C2 | −8.9 | 495 | −36, −53, −14 | 35, 35, 35 |
C1 | −8 | 583 | −20, −29, −13 | 35, 35, 35 |
C4 | −7.7 | 214 | −13, −46, −28 | 35, 35, 35 |
C5 | −7.7 | 211 | −41, −29, 1 | 35, 35, 35 |
C3 | −6.7 | 222 | −4, −59, −27 | 35, 35, 35 |
Hoechst 33258—MMP9 | ||||
CurPocket ID | Vina score | Cavity Volume (ų) | Center (x, y, z) | Docking size (x, y, z) |
C1 | −9.7 | 583 | −20, −29, −13 | 28, 28, 28 |
C5 | −9.4 | 211 | −41, −29, 1 | 28, 28, 28 |
C2 | −8.7 | 495 | −36, −53, −14 | 28, 28, 28 |
C4 | −7.4 | 214 | −13, −46, −28 | 28, 28, 28 |
C3 | −7 | 222 | −4, −59, −27 | 28, 28, 28 |
biochanin A—MMP9 | ||||
CurPocket ID | Vina score | Cavity Volume (ų) | Center (x, y, z) | Docking size (x, y, z) |
C5 | −7.6 | 211 | −41, −29, 1 | 21, 21, 21 |
C1 | −6.8 | 583 | −20, −29, −13 | 21, 21, 21 |
C2 | −6.7 | 495 | −36, −53, −14 | 21, 21, 21 |
C4 | −6 | 214 | −13, −46, −28 | 21, 21, 21 |
C3 | −5.9 | 222 | −4, −59, −27 | 21, 21, 21 |
biochanin A—AGRN | ||||
CurPocket ID | Vina score | Cavity volume (ų) | Center (x, y, z) | Docking size (x, y, z) |
C5 | −6.8 | 128 | 24, 15, −11 | 21, 21, 21 |
C3 | −6.3 | 460 | −5, 31, 39 | 21, 21, 21 |
C2 | −6.1 | 494 | 14, 11, 23 | 21, 21, 21 |
C4 | −5.8 | 291 | 19, 17, 20 | 21, 21, 21 |
C1 | −5.6 | 670 | 31, 12, 2 | 21, 21, 21 |
diphenhydramine—MMP9 | ||||
CurPocket ID | Vina score | Cavity volume (ų) | Center (x, y, z) | Docking size (x, y, z) |
C5 | −6.5 | 211 | −41, −29, 1 | 20, 20, 20 |
C2 | −5.7 | 495 | −36, −53, −14 | 20, 20, 20 |
C1 | −5.5 | 583 | −20, −29, −13 | 20, 20, 20 |
C4 | −5.5 | 214 | −13, −46, −28 | 20, 20, 20 |
C3 | −4.4 | 222 | −4, −59, −27 | 20, 20, 20 |
diphenhydramine—HBA1 | ||||
CurPocket ID | Vina score | Cavity volume (ų) | Center (x, y, z) | Docking size (x, y, z) |
C5 | −8 | 710 | −22, −10, 19 | 20, 20, 20 |
C2 | −7.5 | 870 | −7, −20, 5 | 20, 20, 20 |
C3 | −7.5 | 846 | −30, −41, 14 | 20, 20, 20 |
C4 | −7.4 | 787 | −38, −27, −2 | 20, 20, 20 |
C1 | −6 | 13258 | −22, −26, 5 | 35, 35, 35 |
UNII-768N7QO4KH—HBA1 | ||||
CurPocket ID | Vina score | Cavity volume (ų) | Center (x, y, z) | Docking size (x, y, z) |
C1 | −10.1 | 13258 | −22, −26, 5 | 35, 35, 35 |
C4 | −9 | 787 | −38, −27, −2 | 35, 35, 35 |
C5 | −8.2 | 710 | −22, −10, 19 | 35, 35, 35 |
C3 | −8.1 | 846 | −30, −41, 14 | 35, 35, 35 |
C2 | −8 | 870 | −7, −20, 5 | 35, 35, 35 |
Hoechst33258—HBA1 | ||||
CurPocket ID | Vina score | Cavity volume (ų) | Center (x, y, z) | Docking size (x, y, z) |
C5 | −10.2 | 710 | −22, −10, 19 | 28, 28, 28 |
C1 | −10 | 13258 | −22, −26, 5 | 35, 35, 35 |
C2 | −10 | 870 | −7, −20, 5 | 28, 28, 28 |
C3 | −9.8 | 846 | −30, −41, 14 | 28, 28, 28 |
C4 | −9.6 | 787 | −38, −27, −2 | 28, 28, 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, H.; Zhou, L.; Hu, Y.; Zhou, T. Machine Learning-Driven Identification of Exosome-Related Genes in Head and Neck Squamous Cell Carcinoma for Prognostic Evaluation and Drug Response Prediction. Biomedicines 2025, 13, 780. https://doi.org/10.3390/biomedicines13040780
Cai H, Zhou L, Hu Y, Zhou T. Machine Learning-Driven Identification of Exosome-Related Genes in Head and Neck Squamous Cell Carcinoma for Prognostic Evaluation and Drug Response Prediction. Biomedicines. 2025; 13(4):780. https://doi.org/10.3390/biomedicines13040780
Chicago/Turabian StyleCai, Hua, Liuqing Zhou, Yao Hu, and Tao Zhou. 2025. "Machine Learning-Driven Identification of Exosome-Related Genes in Head and Neck Squamous Cell Carcinoma for Prognostic Evaluation and Drug Response Prediction" Biomedicines 13, no. 4: 780. https://doi.org/10.3390/biomedicines13040780
APA StyleCai, H., Zhou, L., Hu, Y., & Zhou, T. (2025). Machine Learning-Driven Identification of Exosome-Related Genes in Head and Neck Squamous Cell Carcinoma for Prognostic Evaluation and Drug Response Prediction. Biomedicines, 13(4), 780. https://doi.org/10.3390/biomedicines13040780