Does Artificial Intelligence Bring New Insights in Diagnosing Phlebological Diseases?—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definition of Scope and Objective
2.2. Study Protocol and Literature Research
2.3. Inclusion and Exclusion Criteria
- study methodology: studies must involve/analyze medical records from human subjects, including different types of imagistic materials (pathological results, ultrasound, magnetic resonance, photographic images, etc.);
- the abstract explicitly highlights the topic of AI involvement in assessing lower-limb veins;
- focus on venous disease diagnosis—research specifically needed to mention how AI was used in order to establish the diagnosis;
- only peer-reviewed articles published in English were included.
- non-human studies/papers, including in vitro or technical models, were excluded in order to maintain the focus on clinical outcomes in human patients;
- lack of specific outcomes: in order to ensure the focus of our study on the clinical applicability of AI models in phlebology, papers which presented only experimental models or did not provide specific outcomes for the AI model used were not included.
- the content focuses only on AI impact on arterial, abdominal veins or other cardiovascular diseases diagnosis: in order to maintain the focus of our review on phlebology, mixed papers which presented different AI models used in both vein and artery assessment, or in other vascular disease assessment (including arteries, abdominal large vessels, etc.) were excluded.
- the abstract does not cover AI involvement in venous disease diagnosis: in order to ensure that the analysis is strictly within the scope of this research, papers whose abstracts exhibited a complete absence of any reference to AI involvement in venous diseases were excluded;
- full paper not accessible: articles that looked relevant from the title and first information, but were not accessible, were excluded from this analysis;
- non-English papers were excluded from our analysis due to limitations in the authors’ language proficiency;
- duplicate papers, preprints, reviews, commentaries, and editorials: in order to maintain the reliability and credibility of the data included and analyzed in this review, grey literature was excluded.
2.4. Risk of Bias and Quality Assessment
2.5. Data Collection Process
3. Results
3.1. Key Studies on Artificial Intelligence Usage in Venous Pathology Diagnosis and Their Characteristics
3.2. Patient Populations and Study Volumes
3.3. Artificial Intelligence Impact on Venous Pathology Diagnosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costa, D.; Andreucci, M.; Ielapi, N.; Serraino, G.F.; Mastroroberto, P.; Bracale, U.M.; Serra, R. Molecular Determinants of Chronic Venous Disease: A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 1928. [Google Scholar] [CrossRef] [PubMed]
- Matei, S.C.; Matei, M.; Anghel, F.M.; Derban, M.D.; Olariu, A.; Olariu, S. Impact of statin treatment on patients diagnosed with chronic venous disease. Morphological analysis of the venous wall and clinical implications. Phlebology 2022, 37, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Khan, I.A.; Das, A.; Shah, H. Chronic venous disease. Part 1: Pathophysiology and clinical features. Clin. Exp. Dermatol. 2022, 47, 1228–1239. [Google Scholar] [CrossRef]
- Anuforo, A.; Evbayekha, E.; Agwuegbo, C.; Okafor, T.L.; Antia, A.; Adabale, O.; Ugoala, O.S.; Okorare, O.; Phagoora, J.; Alagbo, H.O.; et al. Superficial Venous Disease-An Updated Review. Ann. Vasc. Surg. 2024, 105, 106–124. [Google Scholar] [CrossRef] [PubMed]
- Gloviczki, P.; Lawrence, P.F.; Wasan, S.M.; Meissner, M.H.; Almeida, J.; Brown, K.R.; Bush, R.L.; Di Iorio, M.; Fish, J.; Fukaya, E.; et al. The 2023 Society for Vascular Surgery, American Venous Forum, and American Vein and Lymphatic Society clinical practice guidelines for the management of varicose veins of the lower extremities. Part II: Endorsed by the Society of Interventional Radiology and the Society for Vascular Medicine. J. Vasc. Surg. Venous Lymphat. Disord. 2024, 12, 101670, Erratum in J. Vasc. Surg. Venous Lymphat. Disord. 2024, 12, 101923. [Google Scholar] [CrossRef]
- Gibson, K.; Nicolini, P. Up to Date Guidance for the Clinical Management of Chronic Venous Disease. Eur. J. Vasc. Endovasc. Surg. 2022, 63, 179–180. [Google Scholar] [CrossRef]
- Tan, M.K.H.; Bootun, R.; Wang, R.; Onida, S.; Lane, T.; Davies, A.H. A systematic review of anatomical reflux patterns in primary chronic venous disease. J. Vasc. Surg. Venous Lymphat. Disord. 2024, 12, 101946. [Google Scholar] [CrossRef]
- Matei, S.C.; Radu-Teodorescu, D.; Murariu, M.S.; Dumitru, C.Ș.; Olariu, S. Cryostripping Versus Conventional Safenectomy in Chronic Venous Disease Treatment: A Single Center Retrospective Cohort Study. Chirurgia 2024, 119, 56–64. [Google Scholar] [CrossRef]
- Zerrouk, S.; Casoni, P.; Cervi, E.; Amirat, R.; Bousquet, G.; Leboeuf, C.; Janin, A.; Pamoukdjian, F. Ultrasound assessment is linked to histological vein wall thickness in chronic venous disease. Phlebology 2023, 38, 270–280. [Google Scholar] [CrossRef]
- Needleman, L.; Feld, R. Peripheral Venous Ultrasound. Radiol. Clin. N. Am. 2025, 63, 165–178. [Google Scholar] [CrossRef]
- Harris, M.; Lim, C.S. Chronic venous outflow obstruction: An important cause of chronic venous disease. Cleve Clin. J. Med. 2021, 88, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Matei, S.-C.; Dumitru, C.S.; Fakhry, A.M.; Ilijevski, N.; Pešić, S.; Petrović, J.; Crăiniceanu, Z.P.; Murariu, M.-S.; Olariu, S. Bacterial Species Involved in Venous Leg Ulcer Infections and Their Sensitivity to Antibiotherapy—An Alarm Signal Regarding the Seriousness of Chronic Venous Insufficiency C6 Stage and Its Need for Prompt Treatment. Microorganisms 2024, 12, 472. [Google Scholar] [CrossRef]
- Cwajda-Białasik, J.; Mościcka, P.; Jawień, A.; Szewczyk, M.T. Infrared thermography to prognose the venous leg ulcer healing process-preliminary results of a 12-week, prospective observational study. Wound Repair Regen. 2020, 28, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Gloviczki, P.; Lawrence, P.F.; Wasan, S.M.; Meissner, M.H.; Almeida, J.; Brown, K.R.; Bush, R.L.; Di Iorio, M.; Fish, J.; Fukaya, E.; et al. The 2022 Society for Vascular Surgery, American Venous Forum, and American Vein and Lymphatic Society clinical practice guidelines for the management of varicose veins of the lower extremities. Part, I. Duplex Scanning and Treatment of Superficial Truncal Reflux: Endorsed by the Society for Vascular Medicine and the International Union of Phlebology. J. Vasc. Surg. Venous Lymphat. Disord. 2023, 11, 231–261.e6, Erratum in J. Vasc. Surg. Venous Lymphat. Disord. 2024, 12, 101719. [Google Scholar] [CrossRef]
- Medetalibeyoglu, A.; Velichko, Y.S.; Hart, E.M.; Bagci, U. Foundational artificial intelligence models and modern medical practice. BJR Artif. Intell. 2024, 2, ubae018. [Google Scholar] [CrossRef]
- Ogliari, F.R.; Traverso, A.; Barbieri, S.; Montagna, M.; Chiabrando, F.; Versino, E.; Bosco, A.; Lin, A.; Ferrara, R.; Oresti, S.; et al. Exploring machine learning tools in a retrospective case-study of patients with metastatic non-small cell lung cancer treated with first-line immunotherapy: A feasibility single-centre experience. Lung Cancer. 2024, 199, 108075. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer. 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Najjar, R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics 2023, 13, 2760. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.T.; Chen, L.; Yue, W.W.; Xu, H.X. Artificial intelligence in ultrasound. Eur. J. Radiol. 2021, 139, 109717. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, A.; Wang, Y.; Lim, R.Q.R.; Chen, W.; Yi, Z.; Wang, Z.; Zhang, Y.; Qian, Z.; Wang, G.; et al. An Artificial Intelligence Model for Vascularity Monitoring of Postoperative Flap. J. Craniofac. Surg. 2025, 10–97. [Google Scholar] [CrossRef]
- Lareyre, F.; Chaudhuri, A.; Behrendt, C.A.; Pouhin, A.; Teraa, M.; Boyle, J.R.; Tulamo, R.; Raffort, J. Artificial intelligence-based predictive models in vascular diseases. Semin. Vasc. Surg. 2023, 36, 440–447. [Google Scholar] [CrossRef]
- Wolk, S.; Kleemann, M.; Reeps, C. Künstliche Intelligenz in der Gefäßchirurgie und Gefäßmedizin [Artificial intelligence in vascular surgery and vascular medicine]. Chirurg 2020, 91, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Eisenberg, N.; Beaton, D.; Lee, D.S.; Aljabri, B.; Al-Omran, L.; Wijeysundera, D.N.; Rotstein, O.D.; Lindsay, T.F.; de Mestral, C.; et al. Using Machine Learning to Predict Outcomes Following Thoracic and Complex Endovascular Aortic Aneurysm Repair. J. Am. Heart Assoc. 2025, 14, e039221. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef] [PubMed]
- Burns, P.B.; Rohrich, R.J.; Chung, K.C. The levels of evidence and their role in evidence-based medicine. Plast. Reconstr. Surg. 2011, 128, 305–310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, Q.; Chen, W.; Pan, Y.; Yin, S.; Fu, Y.; Mei, J.; Xue, Z. An Automatic Classification Method on Chronic Venous Insufficiency Images. Sci. Rep. 2018, 8, 17952. [Google Scholar] [CrossRef]
- Levshinskii, V.; Galazis, C.; Losev, A.; Zamechnik, T.; Kharybina, T.; Vesnin, S.; Goryanin, I. Using AI and Passive medical Radiometry for diagnostics (MWR) of venous diseases. Comput. Methods Programs Biomed. 2021, 215, 106611. [Google Scholar] [CrossRef]
- Kainz, B.; Heinrich, M.P.; Makropoulos, A.; Oppenheimer, J.; Mandegaran, R.; Sankar, S.; Deane, C.; Mischkewitz, S.; Al-Noor, F.; Rawdin, A.C.; et al. Non-invasive diagnosis of deep vein thrombosis from ultrasound imaging with machine learning. NPJ Digit Med. 2021, 4, 137. [Google Scholar] [CrossRef]
- Ragg, J. Artificial Intelligence in the Research of Origins of Vein Insufficiency. J. Vasc. Surg. Venous Lymphat. Disord. 2021, 10, 543–544. [Google Scholar] [CrossRef]
- Atreyapurapu, V.; Vyakaranam, M.; Atreya, S.; Gupta, P.; Atturu, G. Assessment of Anatomical Changes in Advanced Chronic Venous Insufficiency Using Artificial Intelligence) and Machine Learning Techniques. J. Vasc. Surg. Venous Lymphat. Disord. 2022, 10, 571–572. [Google Scholar] [CrossRef]
- Barulina, M.; Sanbaev, A.; Okunkov, S.; Ulitin, I.; Okoneshnikov, I. Deep Learning Approaches to Automatic Chronic Venous Disease Classification. Mathematics 2022, 10, 3571. [Google Scholar] [CrossRef]
- Krishnan, N.; Muthu, P. Detection of chronic venous insufficiency condition using transfer learning with convolutional neural networks based on thermal images. Biomed. Eng. Appl. Basis Commun. 2023, 36, 2350030. [Google Scholar] [CrossRef]
- Krishnan, N.; Muthu, P. CVINet: A deep learning based model for thediagnosis of chronic venous insufficiency in lowerextremity using infrared thermal images. Int. J. Imaging Syst. Technol. 2024, 34, e23004. [Google Scholar] [CrossRef]
- Zolotukhin, I.A.; Kvasnikov, B.B.; Linnik, O.Z.H.; Shiyakhmetov, S.B.; Butova, K.G. Artificial Intelligence Based Application Accuracy in Diagnostics of C1-C2 Chronic Venous Disease. J. Venous Disord. 2024, 18, 132–138. [Google Scholar] [CrossRef]
- Matei, S.-C.; Matei, M.; Anghel, F.M.; Murariu, M.-S.; Olariu, S. Cryostripping—A Safe and Efficient Alternative Procedure in Chronic Venous Disease Treatment. J. Clin. Med. 2022, 11, 5028. [Google Scholar] [CrossRef]
- Petrascu, F.-M.; Matei, S.-C.; Margan, M.-M.; Ungureanu, A.-M.; Olteanu, G.-E.; Murariu, M.-S.; Olariu, S.; Marian, C. The Impact of Inflammatory Markers and Obesity in Chronic Venous Disease. Biomedicines 2024, 12, 2524. [Google Scholar] [CrossRef]
- Matei, S.-C.; Dumitru, C.Ș.; Oprițoiu, A.-I.; Marian, L.; Murariu, M.-S.; Olariu, S. Female Gonadal Venous Insufficiency in a Clinical Presentation Which Suggested an Acute Abdomen—A Case Report and Literature Review. Medicina 2023, 59, 884. [Google Scholar] [CrossRef] [PubMed]
- Matei, S.C.; Matei, M.; Anghel, F.M.; Carabenciov, E.; Murariu, M.S.; Olariu, S. Utility of routine laboratory tests in the assessment of chronic venous disease progression in female patients. Exp. Ther. Med. 2022, 24, 571. [Google Scholar] [CrossRef]
- Sriranjani, T.; Kumar, K.P.S.; Thiruksha, G. Varicose Vein Detection and Real-Time Integration using Faster R-CNN Algorithm. Available online: https://ieeexplore.ieee.org/document/10527750 (accessed on 24 January 2025).
- Butova, X.; Shayakhmetov, S.; Fedin, M.; Zolotukhin, I.; Gianesini, S. Artificial Intelligence Evidence-Based Current Status and Potential for Lower Limb Vascular Management. J. Pers. Med. 2021, 11, 1280. [Google Scholar] [CrossRef]
- Available online: https://www.medifind.com/articles/clinical-trial/447816898 (accessed on 28 January 2025).
- Athavale, A.; Baier, J.; Ross, E.; Fukaya, E. The potential of chatbots in chronic venous disease patient management. JVS Vasc. Insights 2023, 1, 100019. [Google Scholar] [CrossRef]
- Alexiou, V.G.; Sumpio, B.E.; Vassiliou, A.; Kakkos, S.K.; Geroulakos, G. Artificial Intelligence in Diagnosing and Managing Vascular Surgery Patients: An Experimental Study Using the GPT-4 Model. Ann. Vasc. Surg. 2025, 111, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gu, Y.; Huang, L.; Liu, S.; Chen, Q.; Yang, Y.; Hong, G.; Ning, W. Construction of machine learning diagnostic models for cardiovascular pan-disease based on blood routine and biochemical detection data. Cardiovasc. Diabetol. 2024, 23, 351. [Google Scholar] [CrossRef] [PubMed]
- Karahan, O.; Yavuz, C.; Kankilic, N.; Demirtas, S.; Tezcan, O.; Caliskan, A.; Mavitas, B. Simple blood tests as predictive markers of disease severity and clinical condition in patients with venous insufficiency. Blood Coagul. Fibrinolysis. 2016, 27, 684–690. [Google Scholar] [CrossRef]
- Dicle, O. Artificial intelligence in diagnostic ultrasonography. Diagn. Interv. Radiol. 2023, 29, 40–45. [Google Scholar] [CrossRef]
- Paraskevas, K.I.; Saba, L.; Suri, J.S. Applications of Artificial Intelligence in Vascular Diseases. Angiology 2022, 73, 597–598. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Mattiuzzi, C.; Favaloro, E.J. Artificial intelligence in the pre-analytical phase: State-of-the art and future perspectives. J. Med. Biochem. 2024, 43, 1. [Google Scholar] [CrossRef]
- De Rosa, L.; L’Abbate, S.; Kusmic, C.; Faita, F. Applications of Deep Learning Algorithms to Ultrasound Imaging Analysis in Preclinical Studies on In Vivo Animals. Life 2023, 13, 1759. [Google Scholar] [CrossRef]
- Available online: https://phlebologynews.com/2023/03/27/the-future-of-phlebology-treatments-how-artificial-intelligence-is-revolutionizing-patient-care/ (accessed on 8 February 2025).
- Available online: https://www.linkedin.com/pulse/role-ai-treating-varicose-veins-cvi-jagdeep-chawla-jaa1c/ (accessed on 8 February 2025).
- Wang, Q.; Yuan, L.; Ding, X.; Zhou, Z. Prediction and Diagnosis of Venous Thromboembolism Using Artificial Intelligence Approaches: A Systematic Review and Meta-Analysis. Clin. Appl. Thromb. Hemost. 2021, 27, 10760296211021162. [Google Scholar] [CrossRef]
- Lam, B.D.; Dodge, L.E.; Zerbey, S.; Robertson, W.; Rosovsky, R.P.; Lake, L.; Datta, S.; Elavakanar, P.; Adamski, A.; Reyes, N.; et al. The potential use of artificial intelligence for venous thromboembolism prophylaxis and management: Clinician and healthcare informatician perspectives. Sci. Rep. 2024, 14, 12010. [Google Scholar] [CrossRef]
- Available online: https://woundsinternational.com/wp-content/uploads/2024/10/WINT-15-3_21-27_Mangion_AI.pdf (accessed on 8 February 2025).
- Brata, V.D.; Incze, V.; Ismaiel, A.; Turtoi, D.C.; Grad, S.; Popovici, R.; Duse, T.A.; Surdea-Blaga, T.; Padureanu, A.M.; David, L.; et al. Applications of Artificial Intelligence-Based Systems in the Management of Esophageal Varices. J. Pers. Med. 2024, 14, 1012. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, A.-M.; Matei, S.-C.; Malita, D. Controversies in the Application of AI in Radiology—Is There Medico-Legal Support? Aspects from Romanian Practice. Diagnostics 2025, 15, 230. [Google Scholar] [CrossRef] [PubMed]
- Al Kuwaiti, A.; Nazer, K.; Al-Reedy, A.; Al-Shehri, S.; Al-Muhanna, A.; Subbarayalu, A.V.; Al Muhanna, D.; Al-Muhanna, F.A. A Review of the Role of Artificial Intelligence in Healthcare. J. Pers. Med. 2023, 13, 951. [Google Scholar] [CrossRef] [PubMed]
- Najjar, R. Digital Frontiers in Healthcare: Integrating mHealth, AI, and Radiology for Future Medical Diagnostics; Biomedical Engineering; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Rockenschaub, P.; Hilbert, A.; Kossen, T.; Elbers, P.; von Dincklage, F.; Madai, V.I.; Frey, D. The Impact of Multi-Institution Datasets on the Generalizability of Machine Learning Prediction Models in the ICU. Crit. Care Med. 2024, 52, 1710–1721. [Google Scholar] [CrossRef]
- Sourlos, N.; Vliegenthart, R.; Santinha, J.; Klontzas, M.E.; Cuocolo, R.; Huisman, M.; van Ooijen, P. Recommendations for the creation of benchmark datasets for reproducible artificial intelligence in radiology. Insights Imaging 2024, 15, 248. [Google Scholar] [CrossRef]
Study | Author’s Country of Affiliation | Year | Study Design | Topic |
---|---|---|---|---|
Shi Q et al. [27] | China | 2018 | Observational | Automatic classification method for chronic venous insufficiency images |
Levshinskii et al. [28] | Russia, UK, Japan | 2021 | Prospective | AI and passive medical radiometry usage for venous disease diagnostics |
Kainz et al. [29] | UK, Germany, Canada | 2021 | Prospective | Machine learning usage in ultrasound deep vein thrombosis diagnosis. |
Ragg [30] | Germany | 2021 | Observational | AI involvement in venous insufficiency assessment |
Atreyapurapu et al. [31] | India | 2022 | Observational | Assessment of anatomical changes in advanced chronic venous insufficiency by using AI and machine learning techniques. |
Barulina et al. [32] | Russia, Kazakhstan | 2022 | Prospective | Deep learning approaches to automatic chronic venous disease classification |
Krishnan et al. [33] | India | 2023 | Observational | Chronic venous disease diagnosis by using transfer learning with convolutional neural networks based on thermal images |
Krishnan et al. [34] | India | 2024 | Prospective | A deep learning based model for the diagnosis of chronic venous insufficiency in lower extremity using infrared thermal images |
Zolotukhin et al. [35] | Russia | 2024 | Prospective | AI-based application accuracy in early stages of chronic venous disease diagnostics |
Study | EBM Level | Grade of Recommendation |
---|---|---|
Shi Q et al. [27] | Level III | Grade B |
Levshinskii et al. [28] | Level II | Grade B |
Kainz et al. [29] | Level II | Grade B |
Ragg [30] | Level III | Grade B |
Atreyapurapu et al. [31] | Level III | Grade B |
Barulina et al. [32] | Level II | Grade B |
Krishnan et al. [33] | Level III | Grade B |
Krishnan et al. [34] | Level II | Grade B |
Zolotukhin et al. [35] | Level II | Grade B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matei, S.-C.; Olariu, S.; Ungureanu, A.-M.; Malita, D.; Petrașcu, F.M. Does Artificial Intelligence Bring New Insights in Diagnosing Phlebological Diseases?—A Systematic Review. Biomedicines 2025, 13, 776. https://doi.org/10.3390/biomedicines13040776
Matei S-C, Olariu S, Ungureanu A-M, Malita D, Petrașcu FM. Does Artificial Intelligence Bring New Insights in Diagnosing Phlebological Diseases?—A Systematic Review. Biomedicines. 2025; 13(4):776. https://doi.org/10.3390/biomedicines13040776
Chicago/Turabian StyleMatei, Sergiu-Ciprian, Sorin Olariu, Ana-Maria Ungureanu, Daniel Malita, and Flavia Medana Petrașcu. 2025. "Does Artificial Intelligence Bring New Insights in Diagnosing Phlebological Diseases?—A Systematic Review" Biomedicines 13, no. 4: 776. https://doi.org/10.3390/biomedicines13040776
APA StyleMatei, S.-C., Olariu, S., Ungureanu, A.-M., Malita, D., & Petrașcu, F. M. (2025). Does Artificial Intelligence Bring New Insights in Diagnosing Phlebological Diseases?—A Systematic Review. Biomedicines, 13(4), 776. https://doi.org/10.3390/biomedicines13040776