Endocrine-Disrupting Activities of Flavones on Steroid Receptors: Structural Requirements and Synthesis of Novel Flavone with Improved Estrogenic Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Cell Lines
2.3. Cell Culture
2.4. Quantification of Reporter Gene Activity
2.5. Computational Modeling
2.6. Chemistry
3. Results
3.1. Flavonoid Antagonism of PR- and GR-Mediated Induction of Transcription
3.2. Flavonoid Antagonism of AR-Mediated Induction of Transcription
3.3. Flavonoids as ER Agonists
4. Discussion
5. Patent
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://www.dietaryguidelines.gov/sites/default/files/2024-12/Part%2520A_ExecutiveSummary_FINAL_508.pdf (accessed on 12 March 2025).
- Rana, A.; Samtiva, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Satija, A.; Hu, F.B. Plant based diets and cardiovascular health. Trends Cardiovasc. Med. 2018, 28, 437–441. [Google Scholar] [CrossRef]
- Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean diet, its components, and cardiovascular disease. Am. J. Med. 2015, 128, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Trautwein, E.A.; McKay, S. The role of specific components of a plant-based diet in management of dyslipidemia and the impact on cardiovascular risk. Nutrients 2020, 12, 2671. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.A.; Gallo, G.A.; Rodgers, C.D.; Warkentin, T.D.; Baerwald, A.R.; Chilibeck, P.D. Benefits of a plant-based diet and considerations for the athlete. Eur. J. Appl. Physiol. 2022, 122, 1163–1178. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Cao, H.; Huang, Q.; Xiao, J.; Teng, H. Absorption, metabolism and bioavailability of flavonoids: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 7730–7742. [Google Scholar] [CrossRef] [PubMed]
- DiLorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The role of bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Naeem, A.; Ming, Y.; Pengyi, H.; Jie, K.Y.; Yali, L.; Haiyan, Z.; Shuai, X.; Wenjing, L.; Ling, W.; Xia, Z.M.; et al. The fate of flavonoids after oral administration: A comprehensive overview of its bioavailability. Crit. Rev. Food Sci. Nutr. 2022, 62, 6169–6186. [Google Scholar] [CrossRef]
- Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002, 22, 19–34. [Google Scholar] [CrossRef]
- Linus Pauling Institute, Micronutrient Information Center, Oregon State University. Available online: https://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/flavonoids (accessed on 12 March 2025).
- Nordeen, S.K.; Bona, B.J.; Jones, D.N.; Lambert, J.R.; Jackson, T.A. Endocrine Disrupting Activities of the Flavonoid Nutraceuticals Luteolin and Quercetin. Horm. Canc. 2013, 4, 293–300. [Google Scholar] [CrossRef]
- Bennetts, H.W.; Underwood, E.J. The oestrogenic effects of subterranean clover (Trifolium subterraneum) Uterine maintenance in the ovariectomised ewe on clover grazing. Aust. J. Exp. Biol. Med. Sci. 1951, 29, 249–253. [Google Scholar] [CrossRef]
- Bennetts, H.W.; Underwood, E.J.; Shier, F.L. A specific breeding problem of sheep on subterranean clover pastures in Western Australia. Aust. Vet. J. 1946, 22, 2–12. [Google Scholar] [CrossRef]
- Curnow, D.H.; Robinson, T.J.; Underwood, E.J. Oestrogenic action of extract of Subterranean clover L. var. Dwalgnup. Aust. J. Exp. Biol. Med. Sci. 1948, 26, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.M.; Horwitz, K.B.; Ryan, D.S.; McGuire, W.L. Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology 1978, 103, 1860–1867. [Google Scholar] [CrossRef]
- Livingston, A.L. Forage plant estrogens. J. Toxicol. Environ. Health 1978, 4, 301–324. [Google Scholar] [CrossRef]
- Verdeal, K.; Ryan, D.S. Naturally-occurring estrogens in plant foodstuffs: A review. J. Food Prot. 1979, 42, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Nishizaki, Y.; Ishimoto, Y.; Hotta, Y.; Hosoda, A.; Yoshikawa, H.; Akamatsu, M.; Tamura, H. Effect of flavonoids on androgen and glucocorticoid receptors based on in vitro reporter gene assay. Bioorg. Med. Chem. Lett. 2009, 19, 4706–4710. [Google Scholar] [CrossRef] [PubMed]
- Willemsen, P.; Scippo, M.-L.; Kausel, G.; Figueroa, J.; Maghuin-Rogister, G.; Martial, J.A.; Muller, M. Use of reporter cell lines for detection of endocrine-disrupter activity. Anal. Bioanal. Chem. 2004, 378, 655–663. [Google Scholar] [CrossRef]
- Tamura, H.; Yoshioka, M.; Hasegawa, M.; Hosoda, A.; Matsugi, M.; Akamatsu, M. The systematic structure-activity relationship to predict how flavones bind to human androgen receptor for their antagonistic activity. Bioorg. Med. Chem. 2013, 21, 2968–2974. [Google Scholar] [CrossRef]
- Toh, M.F.; Sohn, J.; Chen, S.N.; Yao, P.; Bolton, J.L.; Burdette, J.E. Biological characterization of non-steroidal progestins from botanicals used for women’s health. Steroids 2012, 77, 765–773. [Google Scholar] [CrossRef]
- Rosenberg, R.S.; Grass, L.; Jenkins, D.J.A.; Kendall, C.W.C.; Diamandis, E.P. Modulation of androgen and progesterone receptors by phytochemicals in breast cancer cell lines. Biochem. Biophys. Res. Commun. 1998, 248, 935–939. [Google Scholar] [CrossRef]
- Mafuvadze, B.; Benakanakere, I.; López-Perez, F.R.; Besch-Williford, C.; Ellersieck, M.R.; Hyder, S.M. Apigenin prevents development of medroxyprogesterone acetate-accelerated 7,12-dimethylbenz(a)anthracene-induced mammary tumors in Sprague–Dawley rats. Cancer Prev. Res. 2011, 4, 1316–1324. [Google Scholar] [CrossRef] [PubMed]
- Mafuvadze, B.; Liang, Y.; Besch-Williford, C.; Zhang, X.; Hyder, S.M. Apigenin induces apoptosis and blocks growth of medroxyprogesterone acetate-dependent BT-474 xenograft tumors. Horm. Cancer 2012, 3, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, D.; Albertini, A.; Zava, D. Progestin regulation of alkaline phosphatase in the human breast cancer cell line T47D. Cancer Res. 1991, 51, 4470–4475. [Google Scholar] [PubMed]
- Lambert, J.R.; Nordeen, S.K. Steroid-selective Initiation of Chromatin Remodeling and Transcriptional Activation of the Mouse Mammary Tumor Virus Promoter Is Controlled by the Site of Promoter Integration. J. Biol. Chem. 1998, 273, 32708–32714. [Google Scholar] [CrossRef]
- Axlund, S.D.; Yoo, B.H.; Rosen, R.B.; Schaack, J.; Kabos, P.; LaBarbera, D.V.; Sartorius, C.A. Progesterone-Inducible Cytokeratin 5-Positive Cells in Luminal Breast Cancer Exhibit Progenitor Properties. Horm. Cancer 2013, 4, 36–49. [Google Scholar] [CrossRef]
- Wilson, V.S.; Bobseine, K.; Gray, L.E., Jr. Development and characterization of a cell line that stably expresses an estrogen-responsive luciferase reporter for the detection of estrogen receptor agonist and antagonists. Toxicol. Sci. 2004, 81, 69–77. [Google Scholar] [CrossRef]
- Cherian, M.T.; Wilson, E.M.; Shapiro, D.J. A competitive inhibitor that reduces recruitment of androgen receptor to androgen-responsive genes. J. Biol. Chem. 2012, 287, 23368–23380. [Google Scholar] [CrossRef]
- Manas, E.S.; Xu, Z.B.; Unwalla, R.J.; Somers, W.S. Understanding the selectivity of genistein for human estrogen receptor-beta using X-ray crystallography and computational methods. Structure 2004, 12, 2197–2207. [Google Scholar] [CrossRef]
- Nordeen, S.K.; ML, M.L.M.; Bona, B.J. The coupling of multiple signal transduction pathways with steroid response mechanisms. Endocrinology 1994, 134, 1723–1732. [Google Scholar] [CrossRef]
- Nordeen, S.K. Potentiation of glucocorticoid-mediated induction of the mouse mammary tumor virus promoter in mammary carcinoma cells by activation of protein kinase C. Biochem. Biophys. Res. Commun. 1994, 198, 1183–1188. [Google Scholar] [CrossRef] [PubMed]
- Beck, C.A.; Weigel, N.L.; Moyer, M.L.; Nordeen, S.K.; Edwards, D.P. The progesterone antagonist RU486 acquires agonist activity upon stimulation of cAMP signaling pathways. Proc. Natl. Acad. Sci. USA 1993, 90, 4441–4445. [Google Scholar] [CrossRef]
- Nordeen, S.K.; Bona, B.J.; Moyer, M.L. Latent agonist activity of the steroid antagonist, RU486, is unmasked in cells treated with activators of protein kinase A. Mol. Endocrinol. 1993, 7, 731–742. [Google Scholar] [CrossRef]
- Katzenellenbogen, J.A. The 2010 Philip S. Portoghese Medicinal Chemistry Lectureship: Addressing the “core issue” in the design of estrogen receptor ligands. J. Med. Chem. 2011, 54, 5271–5282. [Google Scholar] [CrossRef] [PubMed]
- Branham, W.S.; Dial, S.L.; Moland, C.L.; Hass, B.S.; Blair, R.M.; Sheehan, D.M.; Hong, F.; Leming, S.; Weida, T.; Perkins, R.G. Phytoestrogens and Mycoestrogens. J. Nutr. 2002, 132, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Vladusic, E.A.; Hornby, A.E.; Guerra-Vladusic, F.K.; Lakins, J.; Lupu, R. Expression and regulation of estrogen receptor beta in human breast tumors and cell lines. Oncol. Rep. 2000, 7, 157–167. [Google Scholar] [CrossRef]
- Ström, A.J.; Hartman, J.; Foster, J.S.; Kietz, S.; Wimalasena, J.; Gustafsson, J.A. Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc. Natl. Acad. Sci. USA 2004, 101, 1566–1571. [Google Scholar] [CrossRef]
- Kuiper, G.G.; Carlsson, B.; Grandien, K.; Enmark, E.; Häggblad, J.; Nilsson, S.; Gustafsson, J.A. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997, 138, 863–870. [Google Scholar] [CrossRef]
- Gebhart, J.B.; Rickard, D.J.; Barrett, T.J.; Lesnick, T.G.; Webb, M.J.; Podratz, K.C.; Spelsberg, T.C. Expression of estrogen receptor isoforms alpha and beta messenger RNA in vaginal tissue of premenopausal and postmenopausal women. Am. J. Obstet. Gynecol. 2001, 185, 1325–1330, discussion 1330-1. [Google Scholar] [CrossRef]
- Chen, G.D.; Oliver, R.H.; Leung, B.S.; Lin, L.Y.; Yeh, J. Estrogen receptor alpha and beta expression in the vaginal walls and uterosacral ligaments of premenopausal and postmenopausal women. Fertil. Steril. 1999, 71, 1099–1102. [Google Scholar] [CrossRef]
Flavonoid | % Inhibition of PR Induction | % Inhibition of GR Induction | ||||||
---|---|---|---|---|---|---|---|---|
4 µM | 8 µM | 4 µM | 8 µM | |||||
LUC | AP | LUC | AP | LUC | AP | LUC | AP | |
4′-hydroxyflavone | −62 | 31 | −81 | 49 | −43 | 49 | −49 | 49 |
5-hydroxyflavone | −23 | 26 | 45 | 61 | −9 | 38 | −30 | 12 |
5,7-dihydroxyflavone 1 | 71 | 78 | 90 | 89 | 0 | 22 | −6 | 38 |
5,4′-dihydroxyflavone | −12 | 23 | 80 | 74 | 13 | 34 | 13 | 33 |
6,4′-dihydroxyflavone | −147 | 39 | −103 | 37 | −44 | 26 | −82 | 39 |
7,4′-dihydroxyflavone | −16 | 41 | −49 | 55 | −92 | 47 | −38 | 64 |
3′,4′-dihydroxyflavone | −64 | 8 | −14 | 27 | −2 | −15 | −6 | 38 |
5,7,4′-trihydroxyflavone 2 | 86 | 90 | 88 | 98 * | 6 | −19 | 35 | 49 * |
5,7,4′-trihydroxyflavanone 3 | 52 | 43 | 98 | 90 | 15 | 8 | 19 | 7 |
5,3′,4′-trihydroxyflavone | −7 | 46 | 55 | 65 | −16 | 27 | −24 | 40 |
7,3′,4′-trihydroxyflavone | −11 | 13 | −10 | 39 | −117 | 21 | −87 | 36 |
5,7,3′,4′-tetrahydroxyflavone 4 | 76 | 82 | 95 | 95 | −8 | 33 | −3 | 55 |
5,7,3′,4′-tetrahydroxyflavanone 5 | 3 | 8 | 23 | 40 | 5 | 4 | 18 | −4 |
5,7,3′-triOH, 4′methoxyflavanone 6 | −6 | 8 | 16 | 28 | nd | 1 | 15 | 51 |
3,5,7,3′,4′-pentahydroxyflavone 7 | 47 | 52 | 78 | 79 | 35 | −3 | 47 | −19 |
5,7,3′4′,5′-pentahydroxyflavone | −97 | 12 | −19 | 45 | 5 | −19 | −25 | 46 |
flavone | −66 | 10 | −107 | 40 | 4 | 13 | −24 | 34 |
5,7,4′-trihydroxyisoflavone 8 | −96 | 49 | −208 | 32 | −7 | 22 | nd | nd |
7,4′-dihydroxyisoflavone 9 | −13 | 41 | −126 | 38 | nd | nd | −52 | 5 |
7,4′-dihydroxyisoflavan 10 | nd | nd | −88 | 42 | nd | nd | nd | nd |
% Inhibition of AR-Mediated Gene Induction | ||
---|---|---|
Flavonoid | 1 µM | 4 µM |
4′-hydroxyflavone | 29 | 65 |
5-hydroxyflavone | 72 | 96 |
5,7-dihydroxyflavone 1 | −13 | 46 |
5,4′-dihydroxyflavone | 77 | 97 |
6,4′-dihydroxyflavone | 43 | 54 |
7,4′-dihydroxyflavone | −18 | −20 |
3′,4′-dihydroxyflavone | 40 | 75 |
5,7,4′-trihydroxyflavone 2 | 12 | 74 |
5,7,4′-trihydroxyflavanone 3 | −17 | 9 |
5,3′,4′-trihydroxyflavone | 29 | 91 |
7,3′,4′-trihydroxyflavone | −6 | 11 |
5,7,3′,4′-tetrahydroxyflavone 4 | −20 | 67 |
5,7,3′,4′-tetrahydroxyflavanone 5 | 13 | 24 |
5,7,3′-triOH, 4′methoxyflavanone 6 | −28 | −30 |
3,5,7,3′,4′-pentahydroxyflavone 7 | 28 | 72 |
5,7,3′4′,5′-pentahdroxyflavone | −8 | 24 |
flavone | −12 | 55 |
4′-hydroxyflavanone | −8 | 0 |
6-hydroxyflavanone | −8 | 22 |
3,6-dihydroxyflavone | 35 | 52 |
3,4′-dihydroxyflavone | 3 | 27 |
5,4′-methoxyflavone | 4 | 53 |
5-methoxy,4′-hydroxyflavone | −4 | 34 |
6-methoxy,4′-hydroxyflavone | 27 | 49 |
6-hydroxy,4′-methoxyflavone | 32 | 39 |
3,6,4′-trihydroxyflavone | 53 | 71 |
3,7,4′-trihydroxyflavone | −6 | 39 |
3-hydroxy, 6,4′-dimethoxyflavone | −17 | 41 |
5,7,4′-trihydroxyisoflavone 8 | 55 | 22 |
7,4′-dihydroxyisoflavone 9 | nd | 24 |
7,4′-dihydroxyisoflavan 10 | nd | 22 |
% ER Induction | ||
---|---|---|
Flavonoid | 1 µM | 4 µM |
4′-hydroxyflavone | 12 | 130 |
5-hydroxyflavone | 0 | 4 |
5,7-dihydroxyflavone 1 | 1 | 17 |
5,4′-dihydroxyflavone | 53 | 138 |
6,4′-dihydroxyflavone | 119 | 192 |
7,4′-dihydroxyflavone | 86 | 140 |
3′,4′-dihydroxyflavone | 0 | 13 |
5,7,4′-trihydroxyflavone 2 | 62 | 161 |
5,7,4′-trihydroxyflavanone 3 | 48 | 93 |
5,3′,4′-trihydroxyflavone | 0 | 13 |
7,3′,4′-trihydroxyflavone | 0 | 30 |
5,7,3′,4′-tetrahydroxyflavone 4 | 3 | 80 |
5,7,3′,4′-tetrahydroxyflavanone 5 | 0 | 20 |
5,7,3′-triOH, 4′methoxyflavanone 6 | 10 | 6 |
3,5,7,3′,4′-pentahydroxyflavone 7 | 3 | 12 |
5,7,3′4′,5′-pentahdroxyflavone | 0 | −1 |
flavone | 1 | 3 |
4′-hydroxyflavanone | 12 | 109 |
6-hydroxyflavanone | 15 | 111 |
3,6-dihydroxyflavone | 55 | 94 |
3,4′-dihydroxyflavone | 13 | 125 |
5,4′-methoxyflavone | 1 | 31 |
5-methoxy, 4′-hydroxyflavone | −2 | 10 |
6-methoxy, 4′-hydroxyflavone | 129 | 167 |
6-hydroxy, 4′-methoxyflavone | 63 | 131 |
3,6,4′-trihydroxyflavone | 102 | 108 |
3,7,4′-trihydroxyflavone | 86 | 114 |
3-hydroxy, 6,4′-dimethoxyflavone | 2 | 3 |
5,7,4′-trihydroxyisoflavone 8 | 125 | 180 |
7,4′-dihydroxyisoflavone 9 | 125 | nd |
7,4′-dihydroxyisoflavan 10 | 96 | 84 |
Estrogen Receptor Ligand | Binding Mode | Predicted Binding Energy (kcal/mol) | |
---|---|---|---|
ERα | ERβ | ||
6,4′-dihydroxyflavone | expected | −32.48 | −27.24 |
flipped | −30.97 | −24.83 | |
3,6,4′-trihydroxyflavone | expected | −37.85 | −30.04 |
flipped | −30.89 | −23.51 | |
3-methyl,6,4′-dihydroxyflavone | expected | −9.31 | −17.12 |
flipped | −18.16 | −16.65 | |
3-fluoro,6,4′-dihydroxyflavone | expected | −36.22 | −29.45 |
flipped | −33.81 | −26.46 | |
genistein (5,7,4′-trihydroxyisoflavone) | expected | −34.62 | −30.29 |
flipped | −27.36 | −29.01 | |
17β-estradiol | expected | −54.01 | −41.35 |
flipped | 5.74 | −1.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nordeen, S.K.; Kumar, V.; Bona, B.J.; Batson, J.D.; Backos, D.S.; Wempe, M.F. Endocrine-Disrupting Activities of Flavones on Steroid Receptors: Structural Requirements and Synthesis of Novel Flavone with Improved Estrogenic Activity. Biomedicines 2025, 13, 748. https://doi.org/10.3390/biomedicines13030748
Nordeen SK, Kumar V, Bona BJ, Batson JD, Backos DS, Wempe MF. Endocrine-Disrupting Activities of Flavones on Steroid Receptors: Structural Requirements and Synthesis of Novel Flavone with Improved Estrogenic Activity. Biomedicines. 2025; 13(3):748. https://doi.org/10.3390/biomedicines13030748
Chicago/Turabian StyleNordeen, Steven K., Vijay Kumar, Betty J. Bona, Joshua D. Batson, Donald S. Backos, and Michael F. Wempe. 2025. "Endocrine-Disrupting Activities of Flavones on Steroid Receptors: Structural Requirements and Synthesis of Novel Flavone with Improved Estrogenic Activity" Biomedicines 13, no. 3: 748. https://doi.org/10.3390/biomedicines13030748
APA StyleNordeen, S. K., Kumar, V., Bona, B. J., Batson, J. D., Backos, D. S., & Wempe, M. F. (2025). Endocrine-Disrupting Activities of Flavones on Steroid Receptors: Structural Requirements and Synthesis of Novel Flavone with Improved Estrogenic Activity. Biomedicines, 13(3), 748. https://doi.org/10.3390/biomedicines13030748