The Acute Effects of Varying Frequency and Pulse Width of Transcutaneous Auricular Vagus Nerve Stimulation on Heart Rate Variability in Healthy Adults: A Randomized Crossover Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
- Protocol 1: 10 Hz at 100 µs (10 Hz/100 μs);
- Protocol 2: 10 Hz at 250 µs (10 Hz/250 μs);
- Protocol 3: 10 Hz at 500 µs (10 Hz/500 μs);
- Protocol 4: 25 Hz at 100 µs (25 Hz/100 μs);
- Protocol 5: 25 Hz at 250 µs (25 Hz/250 μs);
- Protocol 6: 25 Hz at 500 µs (25 Hz/500 μs);
- Sham condition: no current was applied.
2.3. Transcutaneous Auricular Vagus Nerve Stimulation
2.4. ECG and Respiratory Data Acquisition
2.5. Data Processing and HRV Analysis
2.6. Safety and Tolerability
2.7. Statistical Analysis
- Null model: log(HRV_metric) ∼ 1+ period + (1 + period∣ID);
- Full model: log(HRV_metric) ∼ 1 + period + protocol:period + (1 + period∣ID);
3. Results
3.1. Study Participants
3.2. Effects of taVNS on SDNN and RMSSD (Primary Analysis)
3.3. Effects of taVNS on adj.SDNN and adj.RMSSD (Secondary Analysis)
3.4. Descriptive Statistics for HR and Respiratory Rate
3.5. Self-Reported Adverse Effects
4. Discussion
4.1. Effects of taVNS on SDNN
4.2. Effects of taVNS on RMSSD
4.3. Post-Stimulation Effects of taVNS
4.4. Effects of taVNS on Heart Period-Adjusted SDNN and RMSSD
4.5. Clinical Implications and Challenges
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malik, M.; Camm, A.J. Components of Heart Rate Variability—What They Really Mean and What We Really Measure. Am. J. Cardiol. 1993, 72, 821–822. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.; Camm, A.J.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart Rate Variability. Standards of Measurement, Physiological Interpretation, and Clinical Use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A Healthy Heart Is Not a Metronome: An Integrative Review of the Heart’s Anatomy and Heart Rate Variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef]
- McCraty, R.; Shaffer, F. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-Regulatory Capacity, and Health Risk. Glob. Adv. Health Med. 2015, 4, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Perna, G.; Riva, A.; Defillo, A.; Sangiorgio, E.; Nobile, M.; Caldirola, D. Heart Rate Variability: Can It Serve as a Marker of Mental Health Resilience?: Special Section on “Translational and Neuroscience Studies in Affective Disorders” Section Editor, Maria Nobile MD, PhD. J. Affect. Disord. 2020, 263, 754–761. [Google Scholar] [CrossRef]
- Agorastos, A.; Mansueto, A.C.; Hager, T.; Pappi, E.; Gardikioti, A.; Stiedl, O. Heart Rate Variability as a Translational Dynamic Biomarker of Altered Autonomic Function in Health and Psychiatric Disease. Biomedicines 2023, 11, 1591. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sammito, S.; Thielmann, B.; Böckelmann, I. Update: Factors Influencing Heart Rate Variability–a Narrative Review. Front. Physiol. 2024, 15, 1430458. [Google Scholar] [CrossRef]
- Jarczok, M.N.; Weimer, K.; Braun, C.; Williams, D.P.; Thayer, J.F.; Gündel, H.O.; Balint, E.M. Heart rate variability in the prediction of mortality: A systematic review and meta-analysis of healthy and patient populations. Neurosci. Biobehav. Rev. 2022, 143, 104907. [Google Scholar] [CrossRef] [PubMed]
- Burlacu, A.; Brinza, C.; Popa, I.V.; Covic, A.; Floria, M. Influencing Cardiovascular Outcomes through Heart Rate Variability Modulation: A Systematic Review. Diagnostics 2021, 11, 2198. [Google Scholar] [CrossRef]
- Grässler, B.; Thielmann, B.; Böckelmann, I.; Hökelmann, A. Effects of Different Training Interventions on Heart Rate Variability and Cardiovascular Health and Risk Factors in Young and Middle-Aged Adults: A Systematic Review. Front. Physiol. 2021, 12, 657274. [Google Scholar] [CrossRef]
- El-Malahi, O.; Mohajeri, D.; Mincu, R.; Bäuerle, A.; Rothenaicher, K.; Knuschke, R.; Rammos, C.; Rassaf, T.; Lortz, J. Beneficial impacts of physical activity on heart rate variability: A systematic review and meta-analysis. PLoS ONE 2024, 19, e0299793. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Redgrave, J.; Day, D.; Leung, H.; Laud, P.J.; Ali, A.; Lindert, R.; Majid, A. Safety and Tolerability of Transcutaneous Vagus Nerve Stimulation in Humans; a Systematic Review. Brain Stimul. 2018, 11, 1225–1238. [Google Scholar] [CrossRef] [PubMed]
- Farmer, A.D.; Strzelczyk, A.; Finisguerra, A.; Gourine, A.V.; Gharabaghi, A.; Hasan, A.; Burger, A.M.; Jaramillo, A.M.; Mertens, A.; Majid, A.; et al. International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020). Front. Hum. Neurosci. 2021, 14, 568051. [Google Scholar] [CrossRef]
- Fan, S.; Yan, L.; Zhang, J.; Sun, Y.; Qian, Y.; Wang, M.; Yu, T. Transcutaneous Vagus Nerve Stimulation: A Bibliometric Study on Current Research Hotspots and Status. Front. Neurosci. 2024, 18, 1406135. [Google Scholar] [CrossRef]
- Carandina, A.; Rodrigues, G.D.; Di Francesco, P.; Filtz, A.; Bellocchi, C.; Furlan, L.; Carugo, S.; Montano, N.; Tobaldini, E. Effects of Transcutaneous Auricular Vagus Nerve Stimulation on Cardiovascular Autonomic Control in Health and Disease. Auton. Neurosci. 2021, 236, 102893. [Google Scholar] [CrossRef]
- Mercante, B.; Deriu, F.; Rangon, C.-M. Auricular Neuromodulation: The Emerging Concept beyond the Stimulation of Vagus and Trigeminal Nerves. Medicines 2018, 5, 10. [Google Scholar] [CrossRef]
- Ellrich, J. Transcutaneous Auricular Vagus Nerve Stimulation. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 2019, 36, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, Y.O. Concerning Auricular Vagal Nerve Stimulation: Occult Neural Networks. Front. Hum. Neurosci. 2019, 13, 421. [Google Scholar] [CrossRef]
- Butt, M.F.; Albusoda, A.; Farmer, A.D.; Aziz, Q. The Anatomical Basis for Transcutaneous Auricular Vagus Nerve Stimulation. J. Anat. 2020, 236, 588–611. [Google Scholar] [CrossRef]
- Neuhuber, W.L.; Berthoud, H.R. Functional Anatomy of the Vagus System: How Does the Polyvagal Theory Comply? Biol. Psychol. 2022, 174, 108425. [Google Scholar] [CrossRef]
- Hua, K.; Cummings, M.; Bernatik, M.; Brinkhaus, B.; Usichenko, T.; Dietzel, J. Cardiovascular Effects of Auricular Stimulation -a Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Front. Neurosci. 2023, 17, 1227858. [Google Scholar] [CrossRef] [PubMed]
- Soltani, D.; Azizi, B.; Sima, S.; Tavakoli, K.; Mohammadi, N.; Vahabie, A.; Akbarzadeh-Sherbaf, K.; Farahani, A. A Systematic Review of the Effects of Transcutaneous Auricular Vagus Nerve Stimulation on Baroreflex Sensitivity and Heart Rate Variability in Healthy Subjects. Clin. Auton. Res. 2023, 33, 165–189. [Google Scholar] [CrossRef] [PubMed]
- Wolf, V.; Kühnel, A.; Teckentrup, V.; Koenig, J.; Kroemer, N.B. Does Transcutaneous Auricular Vagus Nerve Stimulation Affect Vagally Mediated Heart Rate Variability? A Living and Interactive Bayesian Meta-Analysis. Psychophysiology 2021, 58, e13933. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.Y.; Marduy, A.; de Melo, P.S.; Gianlorenco, A.C.; Kim, C.K.; Choi, H.; Song, J.J.; Fregni, F. Safety of Transcutaneous Auricular Vagus Nerve Stimulation (TaVNS): A Systematic Review and Meta-Analysis. Sci. Rep. 2022, 12, 22055. [Google Scholar] [CrossRef]
- Thompson, S.L.; O’Leary, G.H.; Austelle, C.W.; Gruber, E.; Kahn, A.T.; Manett, A.J.; Short, B.; Badran, B.W. A Review of Parameter Settings for Invasive and Non-invasive Vagus Nerve Stimulation (VNS) Applied in Neurological and Psychiatric Disorders. Front. Neurosci. 2021, 15, 709436. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Badran, B.W.; Mithoefer, O.J.; Summer, C.E.; LaBate, N.T.; Glusman, C.E.; Badran, A.W.; DeVries, W.H.; Summers, P.M.; Austelle, C.W.; McTeague, L.M.; et al. Short Trains of Transcutaneous Auricular Vagus Nerve Stimulation (TaVNS) Have Parameter-Specific Effects on Heart Rate. Brain Stimul. 2018, 11, 699–708. [Google Scholar] [CrossRef]
- Sclocco, R.; Garcia, R.G.; Kettner, N.W.; Fisher, H.P.; Makarovsky, M.; Stowell, J.A.; Goldstein, J.; Barbieri, R.; Napadow, V.; Hospital, G.; et al. Stimulus Frequency Modulates Brainstem Response to Respiratory-Gated Transcutaneous Auricular Vagus Nerve Stimulation. Brain Stimul. 2021, 13, 970–978. [Google Scholar] [CrossRef]
- Yokota, H.; Edama, M.; Hirabayashi, R.; Sekine, C.; Otsuru, N.; Saito, K.; Kojima, S.; Miyaguchi, S.; Onishi, H. Effects of Stimulus Frequency, Intensity, and Sex on the Autonomic Response to Transcutaneous Vagus Nerve Stimulation. Brain Sci. 2022, 12, 1038. [Google Scholar] [CrossRef]
- Gauthey, A.; Morra, S.; van de Borne, P.; Deriaz, D.; Maes, N.; le Polain de Waroux, J.B. Sympathetic Effect of Auricular Transcutaneous Vagus Nerve Stimulation on Healthy Subjects: A Crossover Controlled Clinical Trial Comparing Vagally Mediated and Active Control Stimulation Using Microneurography. Front. Physiol. 2020, 11, 599896. [Google Scholar] [CrossRef]
- Geng, D.; Liu, X.; Wang, Y.; Wang, J. The Effect of Transcutaneous Auricular Vagus Nerve Stimulation on HRV in Healthy Young People. PLoS ONE 2022, 17, e0263833. [Google Scholar] [CrossRef]
- Maestri, R.; Pinna, G.D.; Robbi, E.; Cogliati, C.; Bartoli, A.; Gambino, G.; Rengo, G.; Montano, N.; La Rovere, M.T. Impact of Optimized Transcutaneous Auricular Vagus Nerve Stimulation on Cardiac Autonomic Profile in Healthy Subjects and Heart Failure Patients. Physiol. Meas. 2024, 45, 075007. [Google Scholar] [CrossRef] [PubMed]
- Clancy, J.A.; Mary, D.A.; Witte, K.K.; Greenwood, J.P.; Deuchars, S.A.; Deuchars, J. Non-Invasive Vagus Nerve Stimulation in Healthy Humans Reduces Sympathetic Nerve Activity. Brain Stimul. 2014, 7, 871–877. [Google Scholar] [CrossRef]
- Frangos, E.; Ellrich, J.; Komisaruk, B.R. Non-Invasive Access to the Vagus Nerve Central Projections via Electrical Stimulation of the External Ear: FMRI Evidence in Humans. Brain Stimul. 2015, 8, 624–636. [Google Scholar] [CrossRef] [PubMed]
- Antonino, D.; Teixeira, A.L.; Maia-Lopes, P.M.; Souza, M.C.; Sabino-Carvalho, J.L.; Murray, A.R.; Deuchars, J.; Vianna, L.C. Non-Invasive Vagus Nerve Stimulation Acutely Improves Spontaneous Cardiac Baroreflex Sensitivity in Healthy Young Men: A Randomized Placebo-Controlled Trial. Brain Stimul. 2017, 10, 875–881. [Google Scholar] [CrossRef]
- Gancheva, S.; Bierwagen, A.; Markgraf, D.F.; Bönhof, G.J.; Murphy, K.G.; Hatziagelaki, E.; Lundbom, J.; Ziegler, D.; Roden, M. Constant Hepatic ATP Concentrations during Prolonged Fasting and Absence of Effects of Cerbomed Nemos® on Parasympathetic Tone and Hepatic Energy Metabolism. Mol. Metab. 2018, 7, 71–79. [Google Scholar] [CrossRef]
- De Couck, M.; Cserjesi, R.; Caers, R.; Zijlstra, W.P.; Widjaja, D.; Wolf, N.; Luminet, O.; Ellrich, J.; Gidron, Y. Effects of Short and Prolonged Transcutaneous Vagus Nerve Stimulation on Heart Rate Variability in Healthy Subjects. Auton. Neurosci. Basic Clin. 2017, 203, 88–96. [Google Scholar] [CrossRef]
- Borges, U.; Laborde, S.; Raab, M. Influence of Transcutaneous Vagus Nerve Stimulation on Cardiac Vagal Activity: Not Different from Sham Stimulation and No Effect of Stimulation Intensity. PLoS ONE 2019, 14, e0223848. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Rodríguez-Liñares, L.; Méndez, A.J.; Lado, M.J.; Olivieri, D.N.; Vila, X.A.; Gómez-Conde, I. An Open Source Tool for Heart Rate Variability Spectral Analysis. Comput. Methods Programs Biomed. 2011, 103, 39–50. [Google Scholar] [CrossRef]
- De Geus, E.J.C.; Gianaros, P.J.; Brindle, R.C.; Jennings, J.R.; Berntson, G.G. Should Heart Rate Variability Be “Corrected” for Heart Rate? Biological, Quantitative, and Interpretive Considerations. Psychophysiology 2019, 56, e13287. [Google Scholar] [CrossRef]
- Gomes, P.; Margaritoff, P.; da Silva, H.P. pyHRV: Development and evaluation of an open-source python toolbox for heart rate variability (HRV). In Proceedings of the International Conference on Electrical, Electronic and Computing Engineering (IcETRAN), Silver Lake, Serbia, 3–6 June 2019; pp. 822–828. Available online: https://cir.nii.ac.jp/crid/1370865816794355985 (accessed on 29 January 2025).
- Makowski, D.; Pham, T.; Lau, Z.J.; Brammer, J.C.; Lespinasse, F.; Pham, H.; Schölzel, C.; Chen, S.H.A. NeuroKit2: A Python Toolbox for Neurophysiological Signal Processing. Behav. Res. Methods 2021, 53, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Žunkovič, B.; Kejžar, N.; Bajrović, F.F. Standard Heart Rate Variability Parameters-Their Within-Session Stability, Reliability, and Sample Size Required to Detect the Minimal Clinically Important Effect. J. Clin. Med. 2023, 12, 3118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pinna, G.D.; Maestri, R.; Torunski, A.; Danilowicz-Szymanowicz, L.; Szwoch, M.; La Rovere, M.T.; Raczak, G. Heart Rate Variability Measures: A Fresh Look at Reliability. Clin. Sci. 2007, 113, 131–140. [Google Scholar] [CrossRef]
- Forte, G.; Favieri, F.; Leemhuis, E.; De Martino, M.L.; Giannini, A.M.; De Gennaro, L.; Casagrande, M.; Pazzaglia, M. Ear Your Heart: Transcutaneous Auricular Vagus Nerve Stimulation on Heart Rate Variability in Healthy Young Participants. PeerJ 2022, 10, e14447. [Google Scholar] [CrossRef]
- Keute, M.; Machetanz, K.; Berelidze, L.; Guggenberger, R.; Gharabaghi, A. Neuro-Cardiac Coupling Predicts Transcutaneous Auricular Vagus Nerve Stimulation Effects. Brain Stimul. 2021, 14, 209–216. [Google Scholar] [CrossRef]
- Peterlin, J.; Kejžar, N.; Blagus, R. Correct Specification of Design Matrices in Linear Mixed Effects Models: Tests with Graphical Representation. Test 2023, 32, 184–210. [Google Scholar] [CrossRef]
- Murray, A.R.; Atkinson, L.; Mahadi, M.K.; Deuchars, S.A.; Deuchars, J. The Strange Case of the Ear and the Heart: The Auricular Vagus Nerve and Its Influence on Cardiac Control. Auton. Neurosci. Basic Clin. 2016, 199, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Hansen, A.L.; Saus-Rose, E.; Johnsen, B.H. Heart Rate Variability, Prefrontal Neural Function, and Cognitive Performance: The Neurovisceral Integration Perspective on Self-Regulation, Adaptation, and Health. Ann. Behav. Med. 2009, 37, 141–153. [Google Scholar] [CrossRef]
- Buell, E.P.; Loerwald, K.W.; Engineer, C.T.; Borland, M.S.; Buell, J.M.; Kelly, C.A.; Khan, I.I.; Hays, S.A.; Kilgard, M.P. Cortical Map Plasticity as a Function of Vagus Nerve Stimulation Rate. Brain Stimul. 2018, 11, 1218–1224. [Google Scholar] [CrossRef]
- Buell, E.P.; Borland, M.S.; Loerwald, K.W.; Chandler, C.; Hays, S.A.; Engineer, C.T.; Kilgard, M.P. Vagus Nerve Stimulation Rate and Duration Determine Whether Sensory Pairing Produces Neural Plasticity. Neuroscience 2019, 406, 290–299. [Google Scholar] [CrossRef]
- Machetanz, K.; Berelidze, L.; Guggenberger, R.; Gharabaghi, A. Transcutaneous Auricular Vagus Nerve Stimulation and Heart Rate Variability: Analysis of Parameters and Targets. Auton. Neurosci. Basic Clin. 2021, 236, 102894. [Google Scholar] [CrossRef] [PubMed]
- Kaniusas, E.; Kampusch, S.; Tittgemeyer, M.; Panetsos, F.; Gines, R.F.; Papa, M.; Kiss, A.; Podesser, B.; Cassara, A.M.; Tanghe, E.; et al. Current Directions in the Auricular Vagus Nerve Stimulation I—A Physiological Perspective. Front. Neurosci. 2019, 13, 854. [Google Scholar] [CrossRef]
- Helmers, S.L.; Begnaud, J.; Cowley, A.; Corwin, H.M.; Edwards, J.C.; Holder, D.L.; Kostov, H.; Larsson, P.G.; Levisohn, P.M.; De Menezes, M.S.; et al. Application of a Computational Model of Vagus Nerve Stimulation. Acta Neurol. Scand. 2012, 126, 336–343. [Google Scholar] [CrossRef]
- Kline, D.D. Plasticity in Glutamatergic NTS Neurotransmission. Respir. Physiol. Neurobiol. 2008, 164, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Cacioppo, J.T.; Berntson, G.G.; Binkley, P.F.; Quigley, K.S.; Uchino, B.N.; Fieldstone, A. Autonomic Cardiac Control. II. Noninvasive Indices and Basal Response as Revealed by Autonomic Blockades. Psychophysiology 1994, 31, 586–598. [Google Scholar] [CrossRef]
- Perini, R.; Veicsteinas, A. Heart Rate Variability and Autonomic Activity at Rest and during Exercise in Various Physiological Conditions. Eur. J. Appl. Physiol. 2003, 90, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Martinmäki, K.; Rusko, H.; Kooistra, L.; Kettunen, J.; Saalasti, S. Intraindividual Validation of Heart Rate Variability Indexes to Measure Vagal Effects on Hearts. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, 640–647. [Google Scholar] [CrossRef]
- Buchheit, M.; Al Haddad, H.; Laursen, P.B.; Ahmaidi, S. Effect of Body Posture on Postexercise Parasympathetic Reactivation in Men. Exp. Physiol. 2009, 94, 795–804. [Google Scholar] [CrossRef]
- Lamb, D.G.; Porges, E.C.; Lewis, G.F.; Williamson, J.B. Non-Invasive Vagal Nerve Stimulation Effects on Hyperarousal and Autonomic State in Patients with Posttraumatic Stress Disorder and History of Mild Traumatic Brain Injury: Preliminary Evidence. Front. Med. 2017, 4, 124. [Google Scholar] [CrossRef]
- Cheng, C.; Xue, X.; Jiao, Y.; Du, M.; Zhang, M.; Zeng, X.; Sun, J.-B.; Qin, W.; Deng, H.; Yang, X.-J. Can Earlobe Stimulation Serve as a Sham for Transcutaneous Auricular Vagus Stimulation? Evidence from an Alertness Study Following Sleep Deprivation. Psychophysiology 2025, 62, e14744. [Google Scholar] [CrossRef]
- Daniali, H.; Flaten, M.A. Placebo Analgesia, Nocebo Hyperalgesia, and the Cardiovascular System: A Qualitative Systematic Review. Front. Physiol. 2020, 11, 549807. [Google Scholar] [CrossRef] [PubMed]
- Borges, U.; Pfannenstiel, M.; Tsukahara, J.; Laborde, S.; Klatt, S.; Raab, M. Transcutaneous Vagus Nerve Stimulation via Tragus or Cymba Conchae: Are Its Psychophysiological Effects Dependent on the Stimulation Area? Int. J. Psychophysiol. 2021, 161, 64–75. [Google Scholar] [CrossRef]
- Shen, L.-L.; Sun, J.-B.; Yang, X.-J.; Deng, H.; Qin, W.; Du, M.-Y.; Meng, L.-X.; Li, N.; Guo, X.-Y.; Qiao, W.-Z.; et al. Reassessment of the Effect of Transcutaneous Auricular Vagus Nerve Stimulation Using a Novel Burst Paradigm on Cardiac Autonomic Function in Healthy Young Adults. Neuromodulation 2022, 25, 433–442. [Google Scholar] [CrossRef]
- Shao, R.; Man, I.S.C.; Lee, T.M.C. The Effect of Slow-Paced Breathing on Cardiovascular and Emotion Functions: A Meta-Analysis and Systematic Review. Mindfulness 2024, 15, 1–18. [Google Scholar] [CrossRef]
- Gianlorenço, A.C.; Pacheco-Barrios, K.; Daibes, M.; Camargo, L.; Choi, H.; Song, J.J.; Fregni, F. Age as an Effect Modifier of the Effects of Transcutaneous Auricular Vagus Nerve Stimulation (TaVNS) on Heart Rate Variability in Healthy Subjects. J. Clin. Med. 2024, 13, 4267. [Google Scholar] [CrossRef]
- Jensen, M.K.; Andersen, S.S.; Andersen, S.S.; Liboriussen, C.H.; Kristensen, S.; Jochumsen, M. Modulating Heart Rate Variability through Deep Breathing Exercises and Transcutaneous Auricular Vagus Nerve Stimulation: A Study in Healthy Participants and in Patients with Rheumatoid Arthritis or Systemic Lupus Erythematosus. Sensors 2022, 22, 7884. [Google Scholar] [CrossRef]
- Bretherton, B.; Atkinson, L.; Murray, A.; Clancy, J.; Deuchars, S.; Deuchars, J. Effects of Transcutaneous Vagus Nerve Stimulation in Individuals Aged 55 Years or above: Potential Benefits of Daily Stimulation. Aging 2019, 11, 4836–4857. [Google Scholar] [CrossRef] [PubMed]
- Borgmann, D.; Rigoux, L.; Kuzmanovic, B.; Edwin Thanarajah, S.; Münte, T.F.; Fenselau, H.; Tittgemeyer, M. Technical Note: Modulation of FMRI Brainstem Responses by Transcutaneous Vagus Nerve Stimulation. Neuroimage 2021, 244, 118566. [Google Scholar] [CrossRef]
- Hays, S.A.; Rennaker, R.L.; Kilgard, M.P. Targeting Plasticity with Vagus Nerve Stimulation to Treat Neurological Disease. Prog. Brain Res. 2013, 207, 275–299. [Google Scholar] [CrossRef]
- Wheat, A.L.; Larkin, K.T. Biofeedback of Heart Rate Variability and Related Physiology: A Critical Review. Appl. Psychophysiol. Biofeedback 2010, 35, 229–242. [Google Scholar] [CrossRef]
- Quintana, D.S.; Heathers, J.A.J. Considerations in the Assessment of Heart Rate Variability in Biobehavioral Research. Front. Psychol. 2014, 5, 805. [Google Scholar] [CrossRef] [PubMed]
PROTOCOL | Adjusted p Values (Likelihood Ratio Tests) | |
---|---|---|
log(SDNN) | log(RMSSD) | |
1 (10 Hz/100 µs) | 0.324 | 0.258 |
2 (10 Hz/250 µs) | 0.001 | 0.478 |
3 (10 Hz/500 µs) | 0.007 | 0.478 |
4 (25 Hz/100 µs) | 0.005 | 1.000 |
5 (25 Hz/250 µs) | 0.062 | 1.000 |
6 (25 Hz/500 µs) | 0.062 | 0.423 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanackov, P.; Peterlin, J.; Derlink, M.; Kovačič, U.; Kejžar, N.; Bajrović, F.F. The Acute Effects of Varying Frequency and Pulse Width of Transcutaneous Auricular Vagus Nerve Stimulation on Heart Rate Variability in Healthy Adults: A Randomized Crossover Controlled Trial. Biomedicines 2025, 13, 700. https://doi.org/10.3390/biomedicines13030700
Atanackov P, Peterlin J, Derlink M, Kovačič U, Kejžar N, Bajrović FF. The Acute Effects of Varying Frequency and Pulse Width of Transcutaneous Auricular Vagus Nerve Stimulation on Heart Rate Variability in Healthy Adults: A Randomized Crossover Controlled Trial. Biomedicines. 2025; 13(3):700. https://doi.org/10.3390/biomedicines13030700
Chicago/Turabian StyleAtanackov, Peter, Jakob Peterlin, Maja Derlink, Uroš Kovačič, Nataša Kejžar, and Fajko F. Bajrović. 2025. "The Acute Effects of Varying Frequency and Pulse Width of Transcutaneous Auricular Vagus Nerve Stimulation on Heart Rate Variability in Healthy Adults: A Randomized Crossover Controlled Trial" Biomedicines 13, no. 3: 700. https://doi.org/10.3390/biomedicines13030700
APA StyleAtanackov, P., Peterlin, J., Derlink, M., Kovačič, U., Kejžar, N., & Bajrović, F. F. (2025). The Acute Effects of Varying Frequency and Pulse Width of Transcutaneous Auricular Vagus Nerve Stimulation on Heart Rate Variability in Healthy Adults: A Randomized Crossover Controlled Trial. Biomedicines, 13(3), 700. https://doi.org/10.3390/biomedicines13030700