Genetic Polymorphisms on TNFA, TNFRSF1A, and TNFRSF1B Genes Predict the Effectiveness of Anti-TNF-α Treatment in Inflammatory Bowel Disease Patients
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients Recruitment and Data Collection
2.2. SNPs Selection, DNA Extraction, and Genotyping
2.3. Sample Size Calculation
2.4. Statistical Analysis
3. Results
3.1. Patients Characteristics
3.2. SNPs Associated with Clinical Effectiveness
3.3. SNPs Associated with Anti-TNF-α Treatment Discontinuation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.-F. Ulcerative Colitis. Lancet 2017, 389, 1756–1770. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.; Mehandru, S.; Colombel, J.-F.; Peyrin-Biroulet, L. Crohn’s Disease. Lancet 2017, 389, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, Z.; Liu, S.; Zhang, D. Global, Regional and National Burden of Inflammatory Bowel Disease in 204 Countries and Territories from 1990 to 2019: A Systematic Analysis Based on the Global Burden of Disease Study 2019. BMJ Open 2023, 13, e065186. [Google Scholar] [CrossRef] [PubMed]
- Alatab, S.; Sepanlou, S.G.; Ikuta, K.; Vahedi, H.; Bisignano, C.; Safiri, S.; Sadeghi, A.; Nixon, M.R.; Abdoli, A.; Abolhassani, H.; et al. The Global, Regional, and National Burden of Inflammatory Bowel Disease in 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 17–30. [Google Scholar] [CrossRef]
- Agrawal, M.; Jess, T. Implications of the Changing Epidemiology of Inflammatory Bowel Disease in a Changing World. United Eur. Gastroenterol. J. 2022, 10, 1113–1120. [Google Scholar] [CrossRef]
- Pallio, G.; Bitto, A.; Pizzino, G.; Galfo, F.; Irrera, N.; Squadrito, F.; Squadrito, G.; Pallio, S.; Anastasi, G.P.; Cutroneo, G.; et al. Adenosine Receptor Stimulation by Polydeoxyribonucleotide Improves Tissue Repair and Symptomology in Experimental Colitis. Front. Pharmacol. 2016, 7, 273. [Google Scholar] [CrossRef]
- Kozuch, P.L.; Hanauer, S.B. Treatment of Inflammatory Bowel Disease: A Review of Medical Therapy. World J. Gastroenterol. 2008, 14, 354. [Google Scholar] [CrossRef]
- Rutgeerts, P.; Geboes, K.; Vantrappen, G.; Beyls, J.; Kerremans, R.; Hiele, M. Predictability of the Postoperative Course of Crohn’s Disease. Gastroenterology 1990, 99, 956–963. [Google Scholar] [CrossRef]
- Kapizioni, C.; Desoki, R.; Lam, D.; Balendran, K.; Al-Sulais, E.; Subramanian, S.; Rimmer, J.E.; De La Revilla Negro, J.; Pavey, H.; Pele, L.; et al. Biologic Therapy for Inflammatory Bowel Disease: Real-World Comparative Effectiveness and Impact of Drug Sequencing in 13 222 Patients within the UK IBD BioResource. J. Crohn’s Colitis 2024, 18, 790–800. [Google Scholar] [CrossRef]
- Ungaro, R.C.; Aggarwal, S.; Topaloglu, O.; Lee, W.; Clark, R.; Colombel, J. Systematic Review and Meta-analysis: Efficacy and Safety of Early Biologic Treatment in Adult and Paediatric Patients with Crohn’s Disease. Aliment. Pharmacol. Ther. 2020, 51, 831–842. [Google Scholar] [CrossRef]
- Witte, J.S. Rare Genetic Variants and Treatment Response: Sample Size and Analysis Issues. Stat. Med. 2012, 31, 3041–3050. [Google Scholar] [CrossRef]
- McInnes, G.; Yee, S.W.; Pershad, Y.; Altman, R.B. Genomewide Association Studies in Pharmacogenomics. Clin. Pharmacol. Ther. 2021, 110, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Qasem, A.; Ramesh, S.; Naser, S.A. Genetic Polymorphisms in Tumour Necrosis Factor Receptors (TNFRSF1A/1B) Illustrate Differential Treatment Response to TNFα Inhibitors in Patients with Crohn’s Disease. BMJ Open Gastroenterol. 2019, 6, e000246. [Google Scholar] [CrossRef]
- Prieto-Pérez, R.; Almoguera, B.; Cabaleiro, T.; Hakonarson, H.; Abad-Santos, F. Association between Genetic Polymorphisms and Response to Anti-TNFs in Patients with Inflammatory Bowel Disease. Int. J. Mol. Sci. 2016, 17, 225. [Google Scholar] [CrossRef]
- López-Serrano, P.; Pérez-Calle, J.L.; Pérez-Fernández, M.T.; Fernández-Font, J.M.; Boixeda de Miguel, D.; Fernández-Rodríguez, C.M. Environmental Risk Factors in Inflammatory Bowel Diseases. Investigating the Hygiene Hypothesis: A Spanish Case–Control Study. Scand. J. Gastroenterol. 2010, 45, 1464–1471. [Google Scholar] [CrossRef] [PubMed]
- Muro, M. Immunogenetic Biomarkers in Inflammatory Bowel Diseases: Role of the IBD3 Region. World J. Gastroenterol. 2014, 20, 15037. [Google Scholar] [CrossRef] [PubMed]
- Pallio, G.; Irrera, N.; Bitto, A.; Mannino, F.; Minutoli, L.; Rottura, M.; Pallio, S.; Altavilla, D.; Alibrandi, A.; Marciano, M.C.; et al. Failure of Achieving Tacrolimus Target Blood Concentration Might Be Avoided by a Wide Genotyping of Transplanted Patients: Evidence from a Retrospective Study. J. Pers. Med. 2020, 10, 47. [Google Scholar] [CrossRef]
- Vermeire, S.; Louis, E.; Carbonez, A.; Assche, G.; Noman, M.; Belaiche, J.; Vos, M.; Gossum, A.; Pescatore, P.; Fiasse, R.; et al. Demographic and Clinical Parameters Influencing the Short-Term Outcome of Anti-Tumor Necrosis Factor (Infliximab) Treatment in Crohn’s Disease. Am. J. Gastroenterol. 2002, 97, 2357–2363. [Google Scholar] [CrossRef]
- Steenholdt, C.; Svenson, M.; Bendtzen, K.; Thomsen, O.Ø.; Brynskov, J.; Ainsworth, M.A. Severe Infusion Reactions to Infliximab: Aetiology, Immunogenicity and Risk Factors in Patients with Inflammatory Bowel Disease. Aliment. Pharmacol. Ther. 2011, 34, 51–58. [Google Scholar] [CrossRef]
- Steenholdt, C.; Bendtzen, K.; Brynskov, J.; Thomsen, O.Ø.; Ainsworth, M.A. Cut-off Levels and Diagnostic Accuracy of Infliximab Trough Levels and Anti-Infliximab Antibodies in Crohn’s Disease. Scand. J. Gastroenterol. 2011, 46, 310–318. [Google Scholar] [CrossRef]
- Arijs, I.; Quintens, R.; Van Lommel, L.; Van Steen, K.; De Hertogh, G.; Lemaire, K.; Schraenen, A.; Perrier, C.; Van Assche, G.; Vermeire, S.; et al. Predictive Value of Epithelial Gene Expression Profiles for Response to Infliximab in Crohn’s Disease. Inflamm. Bowel. Dis. 2010, 16, 2090–2098. [Google Scholar] [CrossRef] [PubMed]
- Salvador-Martín, S.; López-Cauce, B.; Nuñez, O.; Laserna-Mendieta, E.J.; García, M.I.; Lobato, E.; Abarca-Zabalía, J.; Sanjurjo-Saez, M.; Lucendo, A.J.; Marín-Jiménez, I.; et al. Genetic Predictors of Long-Term Response and Trough Levels of Infliximab in Crohn’s Disease. Pharmacol. Res. 2019, 149, 104478. [Google Scholar] [CrossRef] [PubMed]
- Medrano, L.M.; Taxonera, C.; Márquez, A.; Barreiro-de Acosta, M.; Gómez-García, M.; González-Artacho, C.; Pérez-Calle, J.L.; Bermejo, F.; Lopez-Sanromán, A.; Martín Arranz, M.D.; et al. Role of TNFRSF1B Polymorphisms in the Response of Crohn’s Disease Patients to Infliximab. Hum. Immunol. 2014, 75, 71–75. [Google Scholar] [CrossRef]
- Netz, U.; Carter, J.V.; Eichenberger, M.R.; Dryden, G.W.; Pan, J.; Rai, S.N.; Galandiuk, S. Genetic Polymorphisms Predict Response to Anti-Tumor Necrosis Factor Treatment in Crohn’s Disease. World J. Gastroenterol. 2017, 23, 4958. [Google Scholar] [CrossRef]
- López-Hernández, R.; Valdés, M.; Campillo, J.A.; Martínez-Garcia, P.; Salama, H.; Salgado, G.; Boix, F.; Moya-Quiles, M.R.; Minguela, A.; Sánchez-Torres, A.; et al. Genetic Polymorphisms of Tumour Necrosis Factor Alpha (TNF-α) Promoter Gene and Response to TNF-α Inhibitors in Spanish Patients with Inflammatory Bowel Disease. Int. J. Immunogenet. 2014, 41, 63–68. [Google Scholar] [CrossRef]
- Curci, D.; Lucafò, M.; Cifù, A.; Fabris, M.; Bramuzzo, M.; Martelossi, S.; Franca, R.; Decorti, G.; Stocco, G. Pharmacogenetic Variants of Infliximab Response in Young Patients with Inflammatory Bowel Disease. Clin. Transl. Sci. 2021, 14, 2184–2192. [Google Scholar] [CrossRef] [PubMed]
- Papamichael, K.; Gazouli, M.; Karakoidas, C.; Panayotou, I.; Roma-Giannikou, E.; Mantzaris, G.J. Association of TNF and FcγRΙΙΙA Gene Polymorphisms with Differential Response to Infliximab in a Greek Cohort of Crohn’s Disease Patients. Ann. Gastroenterol. 2011, 24, 35–40. [Google Scholar]
- Duricova, D.; Pedersen, N.; Lenicek, M.; Hradsky, O.; Bronsky, J.; Adamcova, M.; Elkjaer, M.; Andersen, P.S.; Vitek, L.; Larsen, K.; et al. Infliximab Dependency in Children with Crohn’s Disease. Aliment. Pharmacol. Ther. 2009, 29, 792–799. [Google Scholar] [CrossRef]
- Louis, E.; Vermeire, S.; Rutgeerts, P.; De Vos, M.; Van Gossum, A.; Pescatore, P.; Fiasse, R.; Pelckmans, P.; Reynaert, H.; D’Haens, G.; et al. A Positive Response to Infliximab in Crohn Disease: Association with a Higher Systemic Inflammation before Treatment but Not with -308 TNF Gene Polymorphism. Scand. J. Gastroenterol. 2002, 37, 818–824. [Google Scholar] [CrossRef]
- Matsuoka, K.; Hamada, S.; Shimizu, M.; Nanki, K.; Mizuno, S.; Kiyohara, H.; Arai, M.; Sugimoto, S.; Iwao, Y.; Ogata, H.; et al. Factors Predicting the Therapeutic Response to Infliximab during Maintenance Therapy in Japanese Patients with Crohn’s Disease. PLoS ONE 2018, 13, e0204632. [Google Scholar] [CrossRef]
- Larabi, A.; Barnich, N.; Nguyen, H.T.T. New Insights into the Interplay between Autophagy, Gut Microbiota and Inflammatory Responses in IBD. Autophagy 2020, 16, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Matsukura, H.; Ikeda, S.; Yoshimura, N.; Takazoe, M.; Muramatsu, M. Genetic Polymorphisms of Tumour Necrosis Factor Receptor Superfamily 1A and 1B Affect Responses to Infliximab in Japanese Patients with Crohn’s Disease. Aliment. Pharmacol. Ther. 2008, 27, 765–770. [Google Scholar] [CrossRef]
- Pierik, M.; Vermeire, S.; Steen, K.V.; Joossens, S.; Claessens, G.; Vlietinck, R.; Rutgeerts, P. Tumour Necrosis Factor-α Receptor 1 and 2 Polymorphisms in Inflammatory Bowel Disease and Their Association with Response to Infliximab. Aliment. Pharmacol. Ther. 2004, 20, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Mascheretti, S.; Hampe, J.; Kühbacher, T.; Herfarth, H.; Krawczak, M.; Fölsch, U.R.; Schreiber, S. Pharmacogenetic Investigation of the TNF/TNF-Receptor System in Patients with Chronic Active Crohn’s Disease Treated with Infliximab. Pharmacogenom. J. 2002, 2, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, J.R.; Potter, C.; Hyrich, K.L.; Barton, A.; Worthington, J.; Isaacs, J.D.; Morgan, A.W.; Wilson, A.G. Association of the Tumour Necrosis Factor-308 Variant with Differential Response to Anti-TNF Agents in the Treatment of Rheumatoid Arthritis. Hum. Mol. Genet. 2008, 17, 3532–3538. [Google Scholar] [CrossRef]
- Lee, Y.H.; Ji, J.D.; Bae, S.; Song, G.G. Associations Between Tumor Necrosis Factor-α (TNF-α) −308 and −238 G/A Polymorphisms and Shared Epitope Status and Responsiveness to TNF-α Blockers in Rheumatoid Arthritis: A Metaanalysis Update. J. Rheumatol. 2010, 37, 740–746. [Google Scholar] [CrossRef]
- Bank, S.; Andersen, P.S.; Burisch, J.; Pedersen, N.; Roug, S.; Galsgaard, J.; Turino, S.Y.; Brodersen, J.B.; Rashid, S.; Rasmussen, B.K.; et al. Associations between Functional Polymorphisms in the NFκB Signaling Pathway and Response to Anti-TNF Treatment in Danish Patients with Inflammatory Bowel Disease. Pharmacogenom. J. 2014, 14, 526–534. [Google Scholar] [CrossRef]
- Dideberg, V.; Théâtre, E.; Farnir, F.; Vermeire, S.; Rutgeerts, P.; De Vos, M.; Belaiche, J.; Franchimont, D.; Van Gossum, A.; Louis, E.; et al. The TNF/ADAM 17 System: Implication of an ADAM 17 Haplotype in the Clinical Response to Infliximab in Crohn’s Disease. Pharmacogenet. Genom. 2006, 16, 727–734. [Google Scholar] [CrossRef]
- Salvador-Martín, S.; Bossacoma, F.; Pujol-Muncunill, G.; Navas-López, V.M.; Gallego-Fernández, C.; Viada, J.; Muñoz-Codoceo, R.; Magallares, L.; Martínez-Ojinaga, E.; Moreno-Álvarez, A.; et al. Genetic Predictors of Long-term Response to Antitumor Necrosis Factor Agents in Pediatric Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 508–515. [Google Scholar] [CrossRef]
- Membrive-Jiménez, C.; Pérez-Ramírez, C.; Arias-Santiago, S.; Richetta, A.G.; Ottini, L.; Pineda-Lancheros, L.E.; Ramírez-Tortosa, M.d.C.; Jiménez-Morales, A. Impact of Functional Polymorphisms on Drug Survival of Biological Therapies in Patients with Moderate-to-Severe Psoriasis. Int. J. Mol. Sci. 2023, 24, 8703. [Google Scholar] [CrossRef]
Variable | Total | SFR | Non-SFR | p-Value |
---|---|---|---|---|
Patients | 72 | 43 | 29 | |
Age (IQR); years | 38 (28–51) | 37 (26–52) | 38 (29–52) | 0.913 |
Gender (M) | 47 (65.3%) | 29 (67.4%) | 18 (62.1%) | 0.639 |
Diseases | ||||
CD | 40 (55.6%) | 21 (48.8%) | 19 (65.5%) | 0.162 |
UC | 32 (44.4%) | 22 (51.2%) | 10 (34.5%) | |
Type of anti-TNF | ||||
Infliximab | 43 (59.7%) | 29 (67.4%) | 14 (48.3%) | 0.104 |
Adalimumab | 29 (40.3%) | 14 (32.6%) | 15 (51.7%) | |
Baseline clinical activity | ||||
HBI/PMS (IQR) | 3 (1–5) | 2 (1–5) | 3 (1–5) | 0.772 |
Steroid therapy | 49 (68.1%) | 27 (62.8%) | 22 (75.9%) | 0.243 |
Gene | rs Number | Genotype Frequency | Allele Frequency | HWE | |||
---|---|---|---|---|---|---|---|
1 | 2 | ||||||
TNF-α | rs1800629 | G/G | G/A | A/A | G | A | |
74 (89.2%) | 8 (9.6%) | 1 (1.2%) | 156 (94.0%) | 10 (6.0%) | 0.13 | ||
TNF-α | rs361525 | G/G | G/A | A/A | G | A | |
48 (57.8%) | 22 (26.5%) | 13 (15.7%) | 118 (71.1%) | 48 (28.9%) | <0.01 | ||
TNF-α | rs1799724 | C/C | C/T | T/T | C | T | |
64 (77.1%) | 14 (16.9%) | 5 (6.0%) | 142 (85.5%) | 24 (14.5%) | 0.85 | ||
TNFRSF1A | rs767455 | T/T | T/C | C/C | T | C | |
25 (30.1%) | 41 (49.4%) | 17 (20.5%) | 91 (54.8%) | 75 (45.2%) | 0.80 | ||
TNFRSF1B | rs1061622 | T/T | T/G | G/G | T | G | |
52 (62.7%) | 29 (34.9%) | 2 (2.4%) | 133 (80.1%) | 33 (19.9%) | 0.67 | ||
TNFRSF1B | rs1061624 | G/G | A/G | A/A | G | A | |
9 (10.8%) | 56 (67.5%) | 18 (21.7%) | 74 (44.6%) | 92 (55.4%) | 0.16 | ||
TNFRSF1B | rs3397 | T/T | C/T | C/C | T | C | |
33 (39.8%) | 37 (44.6%) | 13 (15.7%) | 103 (62.0) | 63 (38.0) | 0.92 | ||
TNFRSF1B | rs976881 | C/C | T/C | T/T | C | T | |
38 (45.8%) | 30 (36.1%) | 15 (18.1%) | 106 (63.9) | 60 (36.1) | 0.61 |
SNP | Genotype | Total | SFR | Non-SFR | p-Value |
---|---|---|---|---|---|
rs3397 | WT | 29 (40.3%) | 14 (32.6%) | 15 (51.7%) | 0.104 |
HOMO | 6 (8.3%) | 4 (9.3%) | 2 (6.9%) | - | |
HETE | 31 (43.1%) | 21 (48.8%) | 10 (34.5%) | 0.228 | |
rs361525 | WT | 39 (54.2%) | 27 (62.8%) | 12 (41.4%) | 0.074 |
HOMO | 12 (16.7%) | 5 (11.6%) | 7 (24.1%) | 0.162 | |
HETE | 19 (26.4%) | 10 (23.3%) | 9 (31.0%) | 0.463 | |
rs1800629 | WT | 66 (91.7%) | 42 (97.7%) | 24 (82.8%) | 0.025 |
HOMO | 1 (1.4%) | 0 (0.0%) | 1 (3.4%) | - | |
HETE | 5 (6.9%) | 1 (2.3%) | 4 (13.8%) | - | |
rs767455 | WT | 21 (29.2%) | 14 (32.6%) | 7 (24.1%) | 0.441 |
HOMO | 15 (20.8%) | 6 (14.0%) | 9 (31.0%) | 0.080 | |
HETE | 36 (50.0%) | 23 (53.5%) | 13 (44.8%) | 0.471 | |
rs1061622 | WT | 44 (61.1%) | 27 (62.8%) | 17 (58.6%) | 0.722 |
HOMO | 1 (1.4%) | 0 (0.0%) | 1 (3.4%) | - | |
HETE | 27 (37.5%) | 16 (37.2%) | 11 (37.9%) | 0.951 | |
rs1799724 | WT | 56 (77.8%) | 31 (72.1%) | 25 (86.2%) | 0.158 |
HOMO | 5 (6.9%) | 4 (9.3%) | 1 (3.4%) | - | |
HETE | 11 (15.3%) | 8 (18.6%) | 3 (10.3%) | 0.339 | |
rs1061624 | WT | 8 (11.1%) | 3 (7.0%) | 5 (17.2%) | 0.174 |
HOMO | 17 (23.6%) | 14 (32.6%) | 3 (10.3%) | 0.029 | |
HETE | 47 (65.3%) | 26 (60.5%) | 21 (72.4%) | 0.296 | |
rs976881 | WT | 34 (47.2%) | 18 (41.9%) | 16 (55.2%) | 0.267 |
HOMO | 11 (15.3%) | 5 (11.6%) | 6 (20.7%) | 0.295 | |
HETE | 27 (36.5%) | 20 (46.5%) | 7 (24.1%) | 0.054 |
Characteristics | Univariate OR (95% CI) | p-Value | Multivariate OR (95% CI) | p-Value |
---|---|---|---|---|
Age | 1.00 (0.97–1.23) | 0.914 | 1.00 (0.96–1.04) | 0.988 |
Gender (M) | 1.27 (0.47–3.39) | 0.639 | 0.52 (0.14–1.94) | 0.326 |
Diseases | ||||
RCU | ref | ref | ||
MC | 0.50 (0.19–1.33) | 0.165 | 0.57 (0.11–2.84) | 0.491 |
Drugs | ||||
INF | ref | ref | ||
ADA | 0.45 (0.17–1.19) | 0.107 | 0.37 (0.12–1.18) | 0.094 |
Baseline | ||||
HBI/PMS | 1.04 (0.93–1.16) | 0.490 | 1.10 (0.96–1.27) | 0.178 |
Steroid therapy | 0.54 (0.19–1.54) | 0.246 | 0.86 (0.15–4.80) | 0.864 |
SNPs | ||||
rs3397 | ||||
WT | ref | ref | ||
HOMO | 2.14 (0.53–8.72) | 0.287 | 0.43 (0.05–3.68) | 0.444 |
HETE | 2.25 (0.79–6.42) | 0.129 | 0.85 (0.16–4.49) | 0.843 |
rs361525 | ||||
WT | ref | ref | ||
HOMO | 0.33 (0.09–1.25) | 0.102 | 0.14 (0.03–0.69) | 0.016 |
HETE | 0.52 (0.17–1.57) | 0.245 | 0.38 (0.10–1.43) | 0.152 |
rs1800629 | ||||
WT | ref | ref | ||
HOMO | - | - | ||
HETE | 0.14 (0.02–1.35) | 0.090 | 0.09 (0.01–1.00) | 0.050 |
rs767455 | ||||
WT | ref | ref | ||
HOMO | 0.33 (0.08–1.32) | 0.117 | 0.10 (0.02–0.60) | 0.012 |
HETE | 0.89 (0.29–2.75) | 0.832 | 0.78 (0.21–2.83) | 0.699 |
rs1061622 | ||||
WT | ref | ref | ||
HOMO | - | - | ||
HETE | 0.92 (0.34–2.44) | 0.860 | 0.85 (0.24–3.07) | 0.803 |
rs1799724 | ||||
WT | ref | ref | ||
HOMO | 3.23 (0.34–30.72) | 0.308 | 21.96 (0.86–558.87) | 0.061 |
HETE | 2.15 (0.52–8.97) | 0.293 | 3.39 (0.63–18.34) | 0.16 |
rs1061624 | ||||
WT | ref | ref | ||
HOMO | 7.78 (1.17–51.9) | 0.034 | 5.90 (0.59–58.87) | 0.130 |
HETE | 2.06 (0.44–9.65) | 0.357 | 2.02 (0.30–13.74) | 0.472 |
rs976881 | ||||
WT | ref | ref | ||
HOMO | 0.74 (0.19–2.90) | 0.666 | 1.30 (0.17–9.88) | 0.801 |
HETE | 2.54 (0.85–7.58) | 0.095 | 2.45 (0.45–13.22) | 0.298 |
Characteristic | Completers | Discontinuers | p-Value |
---|---|---|---|
Age (IQR), years | 37.5 (28.3–51.5) | 38.5 (22.4–53.0) | 0.737 |
Gender (M) | 47 (65.3%) | 6 (54.5%) | 0.490 |
Diseases | |||
RU | 32 (44.4%) | 6 (54.5%) | 0.531 |
CD | 40 (55.6%) | 5 (45.5%) | |
Drugs | |||
INF | 43 (59.7%) | 8 (72.7%) | 0.409 |
ADA | 29 (40.3%) | 3 (27.3%) | |
Baseline | |||
HBI/PMS (IQR) | 3 (1–5) | 5 (1–7) | 0.212 |
Steroid therapy | 49 (68.1%) | 7 (63.6%) | 0.771 |
SNPs | |||
rs3397 | |||
WT | 29 (40.3%) | 4 (36.4%) | 0.739 |
HOMO | 6 (8.3%) | 1 (9.1%) | - |
HETE | 31 (43.1%) | 6 (54.5%) | 0.475 |
rs361525 | |||
WT | 39 (54.2%) | 7 (41.4%) | 0.556 |
HOMO | 12 (16.7%) | 1 (24.1%) | - |
HETE | 19 (26.4%) | 3 (31.0%) | 0.951 |
rs1800629 | |||
WT | 66 (91.7%) | 8 (72.7%) | 0.060 |
HOMO | 1 (1.4%) | 0 (0.0%) | - |
HETE | 5 (6.9%) | 3 (27.3%) | 0.033 |
rs767455 | |||
WT | 21 (29.2%) | 4 (36.4%) | 0.628 |
HOMO | 15 (20.8%) | 2 (18.2%) | - |
HETE | 36 (50.0%) | 5 (45.5%) | 0.779 |
rs1061622 | |||
WT | 44 (61.1%) | 8 (72.7%) | 0.458 |
HOMO | 1 (1.4%) | 1 (9.1%) | - |
HETE | 27 (37.5%) | 2 (18.2%) | - |
rs1799724 | |||
WT | 56 (77.8%) | 8 (72.7%) | 0.710 |
HOMO | 5 (6.9%) | 0 (0.0%) | - |
HETE | 11 (15.3%) | 3 (27.3%) | 0.322 |
rs1061624 | |||
WT | 8 (11.1%) | 1 (9.1%) | - |
HOMO | 17 (23.6%) | 1 (9.1%) | - |
HETE | 47 (65.3%) | 9 (81.8%) | 0.275 |
rs976881 | |||
WT | 34 (47.2%) | 4 (36.4%) | 0.501 |
HOMO | 11 (15.3%) | 4 (36.4%) | 0.091 |
HETE | 27 (37.5%) | 3 (27.3%) | 0.511 |
Gene | rs Number | Genotype | Clinical Implications | p-Value |
---|---|---|---|---|
TNF-α | rs1800629 | G/A and A/A | Increased risk of discontinuing biologics | 0.047 |
TNF-α | rs361525 | A/A | Reduced probability of achieving SFR | 0.016 |
TNFRSF1A | rs767455 | C/C | Reduced probability of achieving SFR | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rottura, M.; Pirrotta, I.; Giorgi, D.A.; Irrera, N.; Arcoraci, V.; Mannino, F.; Campisi, R.; Bivacqua, C.; Patanè, L.; Costantino, G.; et al. Genetic Polymorphisms on TNFA, TNFRSF1A, and TNFRSF1B Genes Predict the Effectiveness of Anti-TNF-α Treatment in Inflammatory Bowel Disease Patients. Biomedicines 2025, 13, 669. https://doi.org/10.3390/biomedicines13030669
Rottura M, Pirrotta I, Giorgi DA, Irrera N, Arcoraci V, Mannino F, Campisi R, Bivacqua C, Patanè L, Costantino G, et al. Genetic Polymorphisms on TNFA, TNFRSF1A, and TNFRSF1B Genes Predict the Effectiveness of Anti-TNF-α Treatment in Inflammatory Bowel Disease Patients. Biomedicines. 2025; 13(3):669. https://doi.org/10.3390/biomedicines13030669
Chicago/Turabian StyleRottura, Michelangelo, Igor Pirrotta, Domenico Antonio Giorgi, Natasha Irrera, Vincenzo Arcoraci, Federica Mannino, Rosario Campisi, Chiara Bivacqua, Laura Patanè, Giuseppe Costantino, and et al. 2025. "Genetic Polymorphisms on TNFA, TNFRSF1A, and TNFRSF1B Genes Predict the Effectiveness of Anti-TNF-α Treatment in Inflammatory Bowel Disease Patients" Biomedicines 13, no. 3: 669. https://doi.org/10.3390/biomedicines13030669
APA StyleRottura, M., Pirrotta, I., Giorgi, D. A., Irrera, N., Arcoraci, V., Mannino, F., Campisi, R., Bivacqua, C., Patanè, L., Costantino, G., Pallio, S., Fries, W., Viola, A., & Pallio, G. (2025). Genetic Polymorphisms on TNFA, TNFRSF1A, and TNFRSF1B Genes Predict the Effectiveness of Anti-TNF-α Treatment in Inflammatory Bowel Disease Patients. Biomedicines, 13(3), 669. https://doi.org/10.3390/biomedicines13030669