How Plant Polyhydroxy Flavonoids Can Hinder the Metabolism of Cytochrome 3A4
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. In Vitro Determination of CYP3A4 Activity
2.3. Docking Study of Flavonoids into CYP3A4
2.4. Statistical Analyses
3. Results
3.1. In Vitro Evaluation of CYP3A4 Activity
3.2. Interaction with the Active Site of CYP3A4 (Docking Studies)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMD | Amiodarone |
AMP | Amprenavir |
BCS | Baculosomes |
BFC | 7-benzyloxy-4-trifluoromethylcoumarin |
BOMCC | 7-benzyloxymethyloxy-3-cyanocoumarin |
BOMR | benzyloxy-methyl-resorufin |
CIMET | Cimetidine |
CYP3A4 | Cytochrome P450 3A4 |
CYP450 | Cytochrome P450 |
DAR | Darunavir |
DILT | Diltiazem |
DMSO | Dimetilsulfoxide |
Erythro | Erythromycin |
FLP | Felodipine |
FLUCON | Fluconazole |
HLM | Human liver microsomes |
HPLC | High Performance Liquid Chromatography |
INDIN | Indinavir |
KTZ | Ketoconazole |
MDZ | Midazolam |
MICON | Miconazole |
NADPH | Nicotinamide adenine dinucleotide phosphate |
NEFAZ | Nefazodone |
QNN | Quinine |
RLM | Rat liver microsomes |
RP-HPLC | Reversed-Phase High Performance Liquid Chromatography |
RPG | Repaglinide |
TST | Testosterone |
TZL | Triazolam |
UPLC | Ultra Performance Liquid Chromatography |
VERAP | Verapamil |
References
- Basheer, L.; Kerem, Z. Interactions between CYP3A4 and Dietary Polyphenols. Oxid. Med. Cell. Longev. 2015, 2015, 854015. [Google Scholar] [CrossRef] [PubMed]
- Kondza, M.; Bojic, M.; Tomic, I.; Males, Z.; Rezic, V.; Cavar, I. Characterization of the CYP3A4 Enzyme Inhibition Potential of Selected Flavonoids. Molecules 2021, 26, 3018. [Google Scholar] [CrossRef] [PubMed]
- Ung, Y.T.; Ong, C.E.; Pan, Y. Current High-Throughput Approaches of Screening Modulatory Effects of Xenobiotics on Cytochrome P450 (CYP) Enzymes. High-Throughput 2018, 7, 29. [Google Scholar] [CrossRef]
- Kimura, Y.; Ito, H.; Ohnishi, R.; Hatano, T. Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food Chem. Toxicol. 2010, 48, 429–435. [Google Scholar] [CrossRef]
- Li, Y.N.; Ning, J.; Wang, Y.; Wang, C.; Sun, C.P.; Huo, X.K.; Yu, Z.L.; Feng, L.; Zhang, B.J.; Tian, X.G.; et al. Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship (QSAR) analysis for predicting potential effects. Toxicol. Lett. 2018, 294, 27–36. [Google Scholar] [CrossRef]
- Mitrasinovic, P.M. On the inhibition of cytochrome P450 3A4 by structurally diversified flavonoids. J. Biomol. Struct. Dyn. 2022, 40, 9713–9723. [Google Scholar] [CrossRef]
- Kondza, M.; Rimac, H.; Males, Z.; Turcic, P.; Cavar, I.; Bojic, M. Inhibitory Effect of Acacetin, Apigenin, Chrysin and Pinocembrin on Human Cytochrome P450 3A4. Croat. Chem. Acta 2020, 93, 33–39. [Google Scholar] [CrossRef]
- Hakkola, J.; Hukkanen, J.; Turpeinen, M.; Pelkonen, O. Inhibition and induction of CYP enzymes in humans: An update. Arch. Toxicol. 2020, 94, 3671–3722. [Google Scholar] [CrossRef]
- Iacopetta, D.; Ceramella, J.; Catalano, A.; Scali, E.; Scumaci, D.; Pellegrino, M.; Aquaro, S.; Saturnino, C.; Sinicropi, M.S. Impact of Cytochrome P450 Enzymes on the Phase I Metabolism of Drugs. Appl. Sci. 2023, 13, 6045. [Google Scholar] [CrossRef]
- Carrascal-Laso, L.; Franco-Martín, M.A.; García-Berrocal, M.B.; Marcos-Vadillo, E.; Sanchez-Iglesias, S.; Lorenzo, C.; Sanchez-Martín, A.; Ramos-Gallego, I.; García-Salgado, M.J.; Isidoro-García, M. Application of a Pharmacogenetics-Based Precision Medicine Model (5SPM) to Psychotic Patients That Presented Poor Response to Neuroleptic Therapy. J. Pers. Med. 2020, 10, 289. [Google Scholar] [CrossRef]
- Fasinu, P.; Choonara, Y.E.; Khan, R.A.; Du Toit, L.C.; Kumar, P.; Ndesendo, V.M.K.; Pillay, V. Flavonoids and polymer derivatives as CYP3A4 inhibitors for improved oral drug bioavailability. J. Pharm. Sci. 2013, 102, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef]
- Kaushal, N.; Singh, M.; Sangwan, R.S. Flavonoids: Food associations, therapeutic mechanisms, metabolism and nanoformulations. Food Res. Int. 2022, 157, 111442. [Google Scholar] [CrossRef]
- Wach, A.; Pyrzynska, K.; Biesaga, M. Quercetin content in some food and herbal samples. Food Chem. 2007, 100, 699–704. [Google Scholar] [CrossRef]
- Zabaleta, M.E.; Forbes-Hernández, T.Y.; Simal-Gandara, J.; Quiles, J.L.; Cianciosi, D.; Bullon, B.; Giampieri, F.; Battino, M. Effect of polyphenols on HER2-positive breast cancer and related miRNAs: Epigenomic regulation. Food Res. Int. 2020, 137, 109623. [Google Scholar] [CrossRef] [PubMed]
- Billowria, K.; Ali, R.; Rangra, N.K.; Kumar, R.; Chawla, P.A. Bioactive Flavonoids: A Comprehensive Review on Pharmacokinetics and Analytical Aspects. Crit. Rev. Anal. Chem. 2024, 54, 1002–1016. [Google Scholar] [CrossRef]
- Yuan, D.; Guo, Y.J.; Pu, F.Y.; Yang, C.; Xiao, X.C.; Du, H.Z.; He, J.H.; Lu, S. Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective. Food Chem. 2024, 430, 137115. [Google Scholar] [CrossRef]
- Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity. Adv. Nutr. 2017, 8, 423–435. [Google Scholar] [CrossRef]
- Quintieri, L.; Palatini, P.; Nassi, A.; Ruzza, P.; Floreani, M. Flavonoids diosmetin and luteolin inhibit midazolam metabolism by human liver microsomes and recombinant CYP 3A4 and CYP3A5 enzymes. Biochem. Pharmacol. 2008, 75, 1426–1437. [Google Scholar] [CrossRef]
- Lu, W.J.; Ferlito, V.; Xu, C.; Flockhart, D.A.; Caccamese, S. Enantiomers of Naringenin as Pleiotropic, Stereoselective Inhibitors of Cytochrome P450 Isoforms. Chirality 2011, 23, 891–896. [Google Scholar] [CrossRef]
- Alotaibi, F. Naringenin alters the pharmacokinetics of ranolazine in part through the inhibition of cytochrome P450 (3A4) and P-glycoprotein. Future J. Pharm. Sci. 2023, 9, 23. [Google Scholar] [CrossRef]
- Benkovic, G.; Bojic, M.; Males, Z.; Tomic, S. Screening of flavonoid aglycons’ metabolism mediated by the human liver cytochromes P450. Acta Pharm. 2019, 69, 541–562. [Google Scholar] [CrossRef]
- Ekroos, M.; Sjögren, T. Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc. Natl. Acad. Sci. USA 2006, 103, 13682–13687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhou, W.J.; Li, D.H. A descent modified Polak-Ribiere-Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 2006, 26, 629–640. [Google Scholar] [CrossRef]
- Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput.-Aided Mol. Des. 2010, 24, 417–422. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Qian, J.C.; Li, Y.H.; Zhang, X.D.; Chen, D.X.; Han, M.M.; Xu, T.; Chen, B.B.; Hu, G.X.; Li, J.W. Herbacetin Broadly Blocks the Activities of CYP450s by Different Inhibitory Mechanisms. Planta Med. 2022, 88, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Meng, M.; Li, X.; Zhang, X.W.; Sun, B. Baicalein inhibits the pharmacokinetics of simvastatin in rats via regulating the activity of CYP3A4. Pharm. Biol. 2021, 59, 880–883. [Google Scholar] [CrossRef]
- Cho, Y.A.; Choi, J.S.; Burm, J.P. Effects of the antioxidant baicalein on the pharmacokinetics of nimodipine in rats: A possible role of P-glycoprotein and CYP3A4 inhibition by baicalein. Pharmacol. Rep. 2011, 63, 1066–1073. [Google Scholar] [CrossRef]
- Tsujimoto, M.; Horie, M.; Honda, H.; Takara, K.; Nishiguchi, K. The Structure-Activity Correlation on the Inhibitory Effects of Flavonoids on Cytochrome P450 3A Activity. Biol. Pharm. Bull. 2009, 32, 671–676. [Google Scholar] [CrossRef]
- Brahmi, Z.; Niwa, H.; Yamasato, M.; Shigeto, S.; Kusakari, Y.; Sugaya, K.; Onose, J.; Abe, N. Effective Cytochrome P450 (CYP) Inhibitor Isolated from Thyme (Thymus saturoides) Purchased from a Japanese Market. Biosci. Biotechnol. Biochem. 2011, 75, 2237–2239. [Google Scholar] [CrossRef]
- Kim, J.M.; Seo, S.W.; Han, D.G.; Yun, H.; Yoon, I.S. Assessment of Metabolic Interaction between Repaglinide and Quercetin via Mixed Inhibition in the Liver: In Vitro and In Vivo. Pharmaceutics 2021, 13, 782. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, H.; Jana, S. Evaluation of Inhibitory Effects of Caffeic acid and Quercetin on Human Liver Cytochrome P450 Activities. Phytother. Res. 2014, 28, 1873–1878. [Google Scholar] [CrossRef]
- Ho, P.C.; Saville, D.J.; Wanwimolruk, S. Inhibition of human CYP3A4 activity by grapefruit flavonoids, furanocoumarins and related compounds. J. Pharm. Pharm. Sci. 2001, 4, 217–227. [Google Scholar]
- von Moltke, L.L.; Weemhoff, J.L.; Bedir, E.; Khan, I.A.; Harmatz, J.S.; Goldman, P.; Greenblatt, D.J. Inhibition of human cytochromes P450 by components of Ginkgo biloba. J. Pharm. Pharmacol. 2004, 56, 1039–1044. [Google Scholar] [CrossRef]
- Gaudineau, C.; Beckerman, R.; Welbourn, S.; Auclair, K. Inhibition of human P450 enzymes by multiple constituents of the Ginkgo biloba extract. Biochem. Biophys. Res. Commun. 2004, 318, 1072–1078. [Google Scholar] [CrossRef]
- Lee, J.; Beers, J.L.; Geffert, R.M.; Jackson, K.D. A Review of CYP-Mediated Drug Interactions: Mechanisms and In Vitro Drug-Drug Interaction Assessment. Biomolecules 2024, 14, 99. [Google Scholar] [CrossRef] [PubMed]
- Bren, U.; Oostenbrink, C. Cytochrome P450 3A4 Inhibition by Ketoconazole: Tackling the Problem of Ligand Cooperativity Using Molecular Dynamics Simulations and Free-Energy Calculations. J. Chem. Inf. Model. 2012, 52, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Basheer, L.; Schultz, K.; Kerem, Z. Inhibition of cytochrome P450 3A by acetoxylated analogues of resveratrol in in vitro and in silico models. Sci. Rep. 2016, 6, 31557. [Google Scholar] [CrossRef]
- Subhani, S.; Jamil, K. Molecular docking of chemotherapeutic agents to CYP3A4 in non-small cell lung cancer. Biomed. Pharmacother. 2015, 73, 65–74. [Google Scholar] [CrossRef]
- Kiani, Y.S.; Ranaghan, K.E.; Jabeen, I.; Mulholland, A.J. Molecular Dynamics Simulation Framework to Probe the Binding Hypothesis of CYP3A4 Inhibitors. Int. J. Mol. Sci. 2019, 20, 4468. [Google Scholar] [CrossRef]
- Maréchal, J.D.; Yu, J.L.; Brown, S.; Kapelioukh, I.; Rankin, E.M.; Wolf, C.R.; Roberts, G.C.K.; Paine, M.J.I.; Sutcliffe, M.J. In silico and in vitro screening for inhibition of cytochrome P450CYP3A4 by comedications commonly used by patients with cancer. Drug Metab. Dispos. 2006, 34, 534–538. [Google Scholar] [CrossRef]
- Samuels, E.R.; Sevrioukova, I. Inhibition of Human CYP3A4 by Rationally Designed Ritonavir-Like Compounds: Impact and Interplay of the Side Group Functionalities. Mol. Pharm. 2018, 15, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Samuels, E.R.; Sevrioukova, I.F. Interaction of CYP3A4 with Rationally Designed Ritonavir Analogues: Impact of Steric Constraints Imposed on the Heme-Ligating Group and the End-Pyridine Attachment. Int. J. Mol. Sci. 2022, 23, 7291. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Ananthula, S.; Shah, P.; Lavin, E.S.; Sikora, A. Identification of the binding residues on CYP3A4 to Naringin using Protein Modelling and Docking. J. Biol. Chem. 2024, 300, S78. [Google Scholar] [CrossRef]
- Handa, K.; Nakagome, I.; Yamaotsu, N.; Gouda, H.; Hirono, S. Three-dimensional Quantitative Structure-Activity Relationship Analysis of Inhibitors of Human and Rat Cytochrome P4503A Enzymes. Drug Metab. Pharmacokinet. 2013, 28, 345–355. [Google Scholar] [CrossRef]
- Li, H.F.; Tang, Y.Y.; Wei, W.P.; Yin, C.C.; Tang, F.S. Effects of saikosaponin-d on CYP3A4 in HepaRG cell and protein-ligand docking study. Basic Clin. Pharmacol. Toxicol. 2021, 128, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Angelov, B.; Mateev, E.; Georgieva, M.; Tzankova, V.; Kondeva-Burdina, M. In vitro effects and in silico analysis of newly synthetized pyrrole derivatives on the activity of different isoforms of Cytochrome P450 CYP1A2, CYP2D6 and CYP3A4. Pharmacia 2022, 69, 1013–1017. [Google Scholar] [CrossRef]
- Bors, W.; Heller, W.; Michel, C.; Saran, M. Flavonoids as antioxidants-Determination of radical-scavenging efficiences. Methods Enzymol. 1990, 186, 343–355. [Google Scholar] [CrossRef]
- Mustapic, D.S.; Debeljak, Z.; Males, Z.; Bojic, M. The Inhibitory Effect of Flavonoid Aglycones on the Metabolic Activity of CYP3A4 Enzyme. Molecules 2018, 23, 2553. [Google Scholar] [CrossRef]
- Nkhili, E.; Loonis, M.; Mihai, S.; El Hajji, H.; Dangles, O. Reactivity of food phenols with iron and copper ions: Binding, dioxygen activation and oxidation mechanisms. Food Funct. 2014, 5, 1186–1202. [Google Scholar] [CrossRef]
- Perron, N.R.; Wang, H.C.; DeGuire, S.N.; Jenkins, M.; Lawson, M.; Brumaghim, J.L. Kinetics of iron oxidation upon polyphenol binding. Dalton Trans. 2010, 39, 9982–9987. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Li, L.; Zhao, S.Y.; Fan, X.Q.; Zhang, J.; Hu, M.W.; Chen, Y.H.; Sun, Y.H.; Wang, B.L.; Jin, J.; et al. Heterotropic activation of flavonoids on cytochrome P450 3A4: A case example of alleviating dronedarone-induced cytotoxicity. Toxicol. Lett. 2020, 319, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Kejík, Z.; Kaplánek, R.; Masarík, M.; Babula, P.; Matkowski, A.; Filipensky, P.; Veselá, K.; Gburek, J.; Sykora, D.; Martásek, P.; et al. Iron Complexes of Flavonoids-Antioxidant Capacity and Beyond. Int. J. Mol. Sci. 2021, 22, 646. [Google Scholar] [CrossRef]
- Bijlsma, J.; de Bruijn, W.J.C.; Velikov, K.P.; Vincken, J.P. Unravelling discolouration caused by iron-flavonoid interactions: Complexation, oxidation, and formation of networks. Food Chem. 2022, 370, 131292. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Cao, H.; Huang, Q.; Xiao, J.B.; Teng, H. Absorption, metabolism and bioavailability of flavonoids: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 7730–7742. [Google Scholar] [CrossRef]
- Viskupicvá, J.; Ondrejovic, M.; Sturdík, E. Bioavailability and metabolism of flavonoids. J. Food Nutr. Res. 2008, 47, 151–162. [Google Scholar]
- Schrag, M.L.; Wienkers, L.C. Covalent alteration of the CYP3A4 active site: Evidence for multiple substrate binding domains. Arch. Biochem. Biophys. 2001, 391, 49–55. [Google Scholar] [CrossRef]
- Yim, S.K.; Kim, K.; Chun, S.; Oh, T.; Jung, W.; Jung, K.; Yun, C.H. Screening of Human CYP1A2 and CYP3A4 Inhibitors from Seaweed In Silico and In Vitro. Mar. Drugs 2020, 18, 603. [Google Scholar] [CrossRef]
- Yano, J.K.; Wester, M.R.; Schoch, G.A.; Griffin, K.J.; Stout, C.D.; Johnson, E.F. The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-Å resolution. J. Biol. Chem. 2004, 279, 38091–38094. [Google Scholar] [CrossRef]
- Teixeira, V.H.; Ribeiro, V.; Martel, P.J. Analysis of binding modes of ligands to multiple conformations of CYP3A4. Biochim. Biophys. Acta 2010, 1804, 2036–2045. [Google Scholar] [CrossRef] [PubMed]
- Sevrioukova, I.F.; Poulos, T.L. Understanding the mechanism of cytochrome P450 3A4: Recent advances and remaining problems. Dalton Trans. 2013, 42, 3116–3126. [Google Scholar] [CrossRef]
- Zhou, S.F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr. Drug Metab. 2008, 9, 310–322. [Google Scholar] [CrossRef]
- Beck, T.C.; Beck, K.R.; Morningstar, J.; Benjamin, M.M.; Norris, R.A. Descriptors of Cytochrome Inhibitors and Useful Machine Learning Based Methods for the Design of Safer Drugs. Pharmaceuticals 2021, 14, 472. [Google Scholar] [CrossRef]
- Xu, X.-y.; Chen, J.; Chen, Z.-x.; Zhang, Z.-y.; Jin, L.-h.; Luo, J.-c.; Zhong, Y.-s.; Zhou, Q.; Qian, J.-c. CYP3A4 activity variations can lead to stratified metabolism of abemaciclib. Int. J. Biol. Macromol. 2025, 304, 140836. [Google Scholar] [CrossRef] [PubMed]
- Samuels, E.R.; Sevrioukova, I.F. Evaluation of Larger Side-Group Functionalities and the Side/End-Group Interplay in Ritonavir-Like Inhibitors of CYP3A4. Chem. Biol. Drug Des. 2025, 105, e70043. [Google Scholar] [CrossRef] [PubMed]
- Alsfouk, A.A.; Faris, A.; Cacciatore, I.; Alnajjar, R. Development of novel CDK9 and CYP3A4 inhibitors for cancer therapy through field and computational approaches. Front. Chem. 2024, 12, 1473398. [Google Scholar] [CrossRef]
- Haridas, S.; Keerthiga, R.; Yogalaxshmi, M.; Anju, K.; Shoba, G.; Sumita, A.; Kumaran, R. Molecular Docking Studies on Binding Sites, Interactions and Stability of Globular Protein, Ovalbumin (OVA) with 4-Dicyanomethylene-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCDAP) Dye in presence of various Flavonoids of Psidium guajava. J. Chem. Health Risks 2024, 14, 858–878. [Google Scholar]
- Yogalaxshmi, M.; Keerthiga, R.; Haridas, S.; Sumita, A.; Shoba, G. Molecular Docking Studies on the Binding Interaction and Stability of Ovalbumin with 4-Dicyanomethylene-2,6-Dimethyl-4H-Pyran (DDPYRA) Dye in the Presence of Flavonoids. J. Chem. Health Risks 2024, 14, 292–314. [Google Scholar]
- Rajagopalan, V.; Keerthiga, R.; Vinod, S.M.; Sangeetha, M.S.; Yogesh, H.K.; Selvan, B.P.P.; Lavanya, B.; Gopalakrishnan, A.; Vasanthi, R.; Tamizhdurai, P.; et al. Exploring the Binding Stability and Sub Domains of Bovine Serum Albumin (BSA) In the Presence of Phenolic Derivatives of Benzoic Acids and Cinnamic Acids Through Molecular Docking Approach. J. Chem. Health Risks 2024, 14, 505–1529. [Google Scholar]
- Du, Y.T.; Wang, M.Z.; Li, Y.; Cui, J.J.; Lian, D.; Zhang, X.; Qu, Z.H.; Li, L. Structural interaction relationship of six edible flavonoids with CYP3A4 based on spectroscopic and computer simulation. J. Mol. Struct. 2025, 1328, 141297. [Google Scholar] [CrossRef]
- Tao, Y.Z.; Fan, Y.Y.; Wang, M.Z.; Wang, S.Q.; Cui, J.J.; Lian, D.; Lu, S.N.; Li, L. Comparative study of the interaction mechanism of astilbin, isoastilbin, and neoastilbin with CYP3A4. Luminescence 2023, 38, 1654–1667. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.H.; Birangal, S.; Shenoy, G.G.; Rao, M.H.; Kadari, S.; Wankhede, A.; Rastogi, H.; Sharma, T.; Pinjari, J.; Channabasavaiah, J.P. Molecular dynamics simulation and in vitro evaluation of herb-drug interactions involving dietary polyphenols and CDK inhibitors in breast cancer chemotherapy. Phytother. Res. 2022, 36, 3988–4001. [Google Scholar] [CrossRef]
- Wang, S.Q.; Wang, M.Z.; Cui, J.J.; Lian, D.; Li, L. Inhibition Effect of Okanin Toward Human Cytochrome P450 3A4 and 2D6 with Multi-spectroscopic Studies and Molecular Docking. J. Fluoresc. 2024, 34, 203–212. [Google Scholar] [CrossRef]
- Shityakov, S.; Broscheit, J.; Roewer, N.; Förster, C. Three-dimensional quantitative structure-activity relationship and docking studies on a series of anthocyanin derivatives as cytochrome P450 3A4 inhibitors. Mol. Immunol. 2013, 56, 305. [Google Scholar] [CrossRef]
- Shi, X.B.; Zhang, G.; Ge, G.B.; Guo, Z.; Song, Y.G.; Su, D.; Shan, L.N. In Vitro Metabolism of Auriculasin and Its Inhibitory Effects on Human Cytochrome P450 and UDP-Glucuronosyltransferase Enzymes. Chem. Res. Toxicol. 2019, 32, 2125–2134. [Google Scholar] [CrossRef]
- Shimada, T.; Tanaka, K.; Takenaka, S.; Murayama, N.; Martin, M.V.; Foroozesh, M.K.; Yamazaki, H.; Guengerich, F.P.; Komori, M. Structure-Function Relationships of Inhibition of Human Cytochromes P450 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 Flavonoid Derivatives. Chem. Res. Toxicol. 2010, 23, 1921–1935. [Google Scholar] [CrossRef] [PubMed]
- Da, C.; Kireev, D. Structural Protein-Ligand Interaction Fingerprints (SPLIF) for Structure-Based Virtual Screening: Method and Benchmark Study. J. Chem Inf. Model. 2014, 54, 2555–2561. [Google Scholar] [CrossRef]
- Godamudunage, M.P.; Grech, A.M.; Scott, E.E. Comparison of Antifungal Azole Interactions with Adult Cytochrome P450 3A4 versus Neonatal Cytochrome P450 3A7. Drug Metab. Dispos. 2018, 46, 1329–1337. [Google Scholar] [CrossRef]
Compound | Ring A | Ring B | CYP3A4 Inhibition (%) (50 µmol/L) | IC50 (µmol/L) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R5 | R6 | R7 | R8 | R2’ | R3’ | R4’ | R5’ | |||
Flavone | H | H | H | - | - | H | H | - | −179 ± 73 | - |
Chrysin | OH | H | OH | - | - | H | H | - | 28 ± 17 | - |
Apigenin | OH | H | OH | - | - | H | OH | - | 23 ± 8 | - |
Baicalein | OH | OH | OH | - | - | H | H | - | 72 ± 11 | 15 ± 5 |
Luteolin | OH | H | OH | - | - | OH | OH | - | 69 ± 7 | 31 ± 10 |
Scutellarein | OH | OH | OH | - | - | H | OH | - | 76 ± 7 | 19 ± 7 |
Galangin | OH | H | OH | H | H | H | H | H | 4 ± 9 | - |
Resokaempferol | H | H | OH | H | H | H | OH | H | 38 ± 7 | - |
Kaempferol | OH | H | OH | H | H | H | OH | H | 24 ± 8 | - |
Fisetin | H | H | OH | H | H | H | OH | OH | 30 ± 13 | - |
Quercetin | OH | H | OH | H | H | OH | OH | H | 48 ± 9 | 23 ± 5 |
Morin | OH | H | OH | H | OH | H | OH | H | 38 ± 11 | - |
Herbacetin | OH | H | OH | OH | H | H | OH | H | 77 ± 6 | 32 ± 8 |
Myricetin | OH | H | OH | H | H | OH | OH | OH | 32 ± 12 | - |
Gossypetin | OH | H | OH | OH | H | OH | OH | H | 65 ± 7 | 40 ± 8 |
Naringenin | - | - | - | - | - | - | - | - | −11 ± 5 | - |
Ketoconazole (positive control) | - | - | - | - | - | - | - | - | - | 1.1 ± 0.4 |
Flavonoid | IC50 (μmol/L) | Substrate | Enzyme | Positive Control | Technique | Ref. |
---|---|---|---|---|---|---|
Baicalein | 12.03 | TST | RLM | HPLC | [28] | |
9.2 | BFC | BCS | KTZ | Fluorescence | [29] | |
7.56–26.35 | different substrates | HLM | Fluorescence | [5] | ||
9.60 ± 1.18 | TST | HLM | KTZ | HPLC-UV | [30] | |
15 ± 5 | BOMR | BCS | KTZ | Fluorescence | This work | |
Luteolin | 57.1 ± 16.1 | BOMCC | ERYT | Fluorescence | [31] | |
6.8 | TST | HLM | KTZ | RP-HPLC | [4] | |
4.62 ± 1.26 | TST | HLM | KTZ | HPLC-UV | [30] | |
31.2 ± 10.4 | BOMR | BCS | KTZ | Fluorescence | This work | |
Herbacetin | <10 | HLM | UPLC-MS/MS | [27] | ||
31.5 ± 8.0 | BOMR | BCS | KTZ | Fluorescence | This work | |
Quercetin | 16.7 ± 2.6; 3.03 ± 1.84 | RPG | RLM; HLM | KTZ | HPLC | [32] |
28.0 ± 5.2 | BOMCC | BCS | Erythro | Fluorescence | [31] | |
4.3 ± 0.04 | MDZ | HLM | KTZ | LC-MS/MS | [33] | |
208.65 | FLP | HLM | VPM | UPLC | [11] | |
82 and 41 | QNN | HLM | RP-HPLC | [34] | ||
4.1 ± 0.4 | TZL | HLM | KTZ | HPLC | [35] | |
22.1 | TST | HLM | KTZ | RP-HPLC | [4] | |
5.74 ± 1.16 | TST | HLM | KTZ | HPLC-UV | [30] | |
22.8 ± 5.2 | BOMR | BCS | KTZ | Fluorescence | This work | |
Gossypetin | 40.1 ± 7.7 | BOMR | BCS | KTZ | Fluorescence | This work |
Scutellarein | 19.1 ± 7.1 | BOMR | BCS | KTZ | Fluorescence | This work |
Binding Energy (kcal/mol) and Ring System Closer to Heme (Ring) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pose Nr 1 | Pose Nr 2 | Pose Nr 3 | Pose Nr 4 | Pose Nr 5 | Pose Nr 6 | Pose Nr 7 | Pose Nr 8 | Pose Nr 9 | |||||||||||||||||||
Baicalein | −8.40 | B | −7.90 | B | −7.80 | AC | −7.80 | AC | −7.80 | AC | −7.60 | AC | −7.60 | B | −7.40 | B | −7.30 | AC | |||||||||
Herbacetin | −8.00 | AC | −7.60 | AC | −7.50 | B | −7.50 | AC | −7.40 | B | −7.20 | AC | −7.20 | B | −7.00 | B | −7.00 | B | |||||||||
Luteolin | −8.80 | AC | −8.70 | AC | −8.60 | B | −8.20 | B | −7.90 | AC | −7.90 | AC | −7.70 | B | −7.70 | B | −7.30 | AC | |||||||||
Binding Energy (kcal/mol) for Some Selected Antifungal and Antiviral Drugs | |||||||||||||||||||||||||||
AMD | AMP | CIMET | DAR | DILT | FLUCON | INDIN | KTZ | MICON | NEFAZ | VERAP | |||||||||||||||||
Controls | −8.6 | −8.5 | −6.2 | −9.2 | −7.7 | −7.3 | −10.9 | −10.8 | −8.2 | −8.2 | −7.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, C.S.P.; Freitas, M.; Palmeira, A.; Fernandes, E.; Araújo, A.N. How Plant Polyhydroxy Flavonoids Can Hinder the Metabolism of Cytochrome 3A4. Biomedicines 2025, 13, 655. https://doi.org/10.3390/biomedicines13030655
Vieira CSP, Freitas M, Palmeira A, Fernandes E, Araújo AN. How Plant Polyhydroxy Flavonoids Can Hinder the Metabolism of Cytochrome 3A4. Biomedicines. 2025; 13(3):655. https://doi.org/10.3390/biomedicines13030655
Chicago/Turabian StyleVieira, Carina S. P., Marisa Freitas, Andreia Palmeira, Eduarda Fernandes, and Alberto N. Araújo. 2025. "How Plant Polyhydroxy Flavonoids Can Hinder the Metabolism of Cytochrome 3A4" Biomedicines 13, no. 3: 655. https://doi.org/10.3390/biomedicines13030655
APA StyleVieira, C. S. P., Freitas, M., Palmeira, A., Fernandes, E., & Araújo, A. N. (2025). How Plant Polyhydroxy Flavonoids Can Hinder the Metabolism of Cytochrome 3A4. Biomedicines, 13(3), 655. https://doi.org/10.3390/biomedicines13030655