Association Between Hypertension, Dipping Status, and ACE and AGTR1 Gene Polymorphisms in Adolescents with Type 1 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Analyses and Investigations
2.3. Genetic Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mauer, M.; Drummond, K. The early natural history of nephropathy in type 1 diabetes: I. Study design and baseline characteristics of the study participants. Diabetes 2002, 51, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
- Drummond, K.; Mauer, M.; International Diabetic Nephropathy Study Group. The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes 2002, 51, 1580–1587. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, T.V.; Prioletta, A.; Zuo, P.; Folli, F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus-related cardiovascular diseases. Curr. Pharm. Des. 2013, 19, 5695–5703. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Pyörälä, K.; Laakso, M.; Uusitupa, M. Diabetes and atherosclerosis: An epidemiologic view. Diabetes Metab. Rev. 1987, 3, 463–524. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.S.; Samuel, J.P.; Samuels, J.A. Prevalence of Hypertension in Children. Hypertension 2019, 73, 148–152. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rodriguez, B.L.; Dabelea, D.; Liese, A.D.; Fujimoto, W.; Waitzfelder, B.; Liu, L.; Bell, R.; Talton, J.; Snively, B.M.; Kershnar, A.; et al. Prevalence and correlates of elevated blood pressure in youth with diabetes mellitus: The SEARCH for diabetes in youth study. J. Pediatr. 2010, 157, 245–251.e1. [Google Scholar] [CrossRef] [PubMed]
- Margeirsdottir, H.D.; Larsen, J.R.; Brunborg, C.; Overby, N.C.; Dahl-Jørgensen, K.; Norwegian Study Group for Childhood Diabetes. High prevalence of cardiovascular risk factors in children and adolescents with type 1 diabetes: A population-based study. Diabetologia 2008, 51, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Schwab, K.O.; Doerfer, J.; Hecker, W.; Grulich-Henn, J.; Wiemann, D.; Kordonouri, O.; Beyer, P.; Holl, R.W.; DPV Initiative of the German Working Group for Pediatric Diabetology. Spectrum and prevalence of atherogenic risk factors in 27,358 children, adolescents, and young adults with type 1 diabetes: Cross-sectional data from the German diabetes documentation and quality management system (DPV). Diabetes Care 2006, 29, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Steigleder-Schweiger, C.; Rami-Merhar, B.; Waldhör, T.; Fröhlich-Reiterer, E.; Schwarz, I.; Fritsch, M.; Borkenstein, M.; Schober, E. Prevalence of cardiovascular risk factors in children and adolescents with type 1 diabetes in Austria. Eur. J. Pediatr. 2012, 171, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
- Vazeou, A.; Tittel, S.R.; Birkebaek, N.H.; Kordonouri, O.; Iotova, V.; Piccini, B.; Saboo, B.; Pundziute Lyckå, A.; Seget, S.; Maahs, D.M.; et al. The Importance of Office Blood Pressure Measurement Frequency and Methodology in Evaluating the Prevalence of Hypertension in Children and Adolescents with Type 1 Diabetes: The SWEET International Database. Diabetes Care 2022, 45, 1462–1471. [Google Scholar] [CrossRef] [PubMed]
- Basiratnia, M.; Abadi, S.F.; Amirhakimi, G.H.; Karamizadeh, Z.; Karamifar, H. Ambulatory blood pressure monitoring in children and adolescents with type-1 diabetes mellitus and its relation to diabetic control and microalbuminuria. Saudi J. Kidney Dis. Transpl. 2012, 23, 311–315. [Google Scholar] [PubMed]
- Lurbe, E.; Redon, J.; Kesani, A.; Pascual, J.M.; Tacons, J.; Alvarez, V.; Batlle, D. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N. Engl. J. Med. 2002, 347, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Leitão, C.B.; Canani, L.H.; Kramer, C.K.; Moehlecke, M.; Pinto, L.C.; Ricardo, E.D.; Pinotti, A.F.; Gross, J.L. Blood pressure means rather than nocturnal dipping pattern are related to complications in Type 2 diabetic patients. Diabet. Med. 2008, 25, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, T.; Staessen, J.A.; Wang, J.G.; Gasowski, J.; Nikitin, Y.; Ryabikov, A.; Fagard, R. Antihypertensive treatment modulates the association between the D/I ACE gene polymorphism and left ventricular hypertrophy: A meta-analysis. J. Hum. Hypertens. 2000, 14, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Seaquist, E.R.; Goetz, F.C.; Rich, S.; Barbosa, J. Familial clustering of diabetic kidney disease. N. Engl. J. Med. 1989, 320, 1161–1165. [Google Scholar] [CrossRef] [PubMed]
- Raile, K.; Galler, A.; Hofer, S.; Herbst, A.; Dunstheimer, D.; Busch, P.; Holl, R.W. Diabetic nephropathy in 27,805 children, adolescents, and adults with type 1 diabetes: Effect of diabetes duration, A1C, hypertension, dyslipidemia, diabetes onset, and sex. Diabetes Care 2007, 30, 2523–2528. [Google Scholar] [CrossRef]
- Wang, X.; Xu, X.; Su, S.; Snieder, H. Familial aggregation and childhood blood pressure. Curr. Hypertens. Rep. 2015, 17, 509. [Google Scholar] [CrossRef]
- Hubert, C.; Houot, A.M.; Corvol, P.; Soubrier, F. Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J. Biol. Chem. 1991, 266, 15377–15383. [Google Scholar] [CrossRef] [PubMed]
- Rigat, B.; Hubert, C.; Alhenc-Gelas, F.; Cambien, F.; Corvol, P.; Soubrier, F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Investig. 1990, 86, 1343–1346. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kagami, S.; Border, W.A.; Miller, D.E.; Noble, N.A. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J. Clin. Investig. 1994, 93, 2431–2437. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Unger, T.; Sandmann, S. Angiotensin receptor blocker selectivity at the AT1- and AT2-receptors: Conceptual and clinical effects. J. Renin Angiotensin Aldosterone Syst. 2000, 1 (Suppl. S2), S6–S9. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.A.; Scholey, J.W. The impact of renin-angiotensin system polymorphisms on physiological and pathophysiological processes in humans. Curr. Opin. Nephrol. Hypertens. 2004, 13, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Agachan, B.; Isbir, T.; Yilmaz, H.; Akoglu, E. Angiotensin converting enzyme I/D, angiotensinogen T174M-M235T and angiotensin II type 1 receptor A1166C gene polymorphisms in Turkish hypertensive patients. Exp. Mol. Med. 2003, 35, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Di Pasquale, P.; Cannizzaro, S.; Paterna, S. Does angiotensin-converting enzyme gene polymorphism affect blood pressure? Findings after 6 years of follow-up in healthy subjects. Eur. J. Heart Fail. 2004, 6, 11–16. [Google Scholar] [CrossRef]
- Butler, R.; Morris, A.D.; Burchell, B.; Struthers, A.D. DD angiotensin-converting enzyme gene polymorphism is associated with endothelial dysfunction in normal humans. Hypertension 1999, 33, 1164–1168. [Google Scholar] [CrossRef]
- Kovacevic, S.; Zdravkovic, V.; Blagojevic, J.; Djordjevic, S.; Miolski, J.; Gasic, V.; Jelovac, M.; Ugrin, M.; Pavlovic, S.; Jesic, M. Association of variants in AGTR1, ACE, MTHFR genes with microalbuminuria and risk factors for the onset of diabetic nephropathy in adolescents with type 1 diabetes in the population of Serbia. PLoS ONE 2024, 19, e0312489. [Google Scholar] [CrossRef]
- Chatterjee, M.; Speiser, P.W.; Pellizzarri, M.; Carey, D.E.; Fort, P.; Kreitzer, P.M.; Frank, G.R. Poor glycemic control is associated with abnormal changes in 24-hour ambulatory blood pressure in children and adolescents with type 1 diabetes mellitus. J. Pediatr. Endocrinol. Metab. 2009, 22, 1061–1067. [Google Scholar] [CrossRef]
- Holl, R.W.; Pavlovic, M.; Heinze, E.; Thon, A. Circadian blood pressure during the early course of type 1 diabetes. Analysis of 1,011 ambulatory blood pressure recordings in 354 adolescents and young adults. Diabetes Care 1999, 22, 1151–1157. [Google Scholar] [CrossRef]
- Schultz, C.J.; Neil, H.A.; Dalton, R.N.; Konopelska Bahu, T.; Dunger, D.B.; Oxford Regional Prospective Study Group. Blood pressure does not rise before the onset of microalbuminuria in children followed from diagnosis of type 1 diabetes. Oxford Regional Prospective Study Group. Diabetes Care 2001, 24, 555–560. [Google Scholar] [CrossRef]
- Simonetti, G.D.; Rizzi, M.; Donadini, R.; Bianchetti, M.G. Effects of antihypertensive drugs on blood pressure and proteinuria in childhood. J. Hypertens. 2007, 25, 2370–2376. [Google Scholar] [CrossRef] [PubMed]
- Kario Kario, K.; Kanai, N.; Nishiuma, S.; Fujii, T.; Saito, K.; Matsuo, T.; Matsuo, M.; Shimada, K. Hypertensive nephropathy and the gene for angiotensin-converting enzyme. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Zee, R.Y.; Lou, Y.K.; Griffiths, L.R.; Morris, B.J. Association of a polymorphism of the angiotensin I-converting enzyme gene with essential hypertension. Biochem. Biophys. Res. Commun. 1992, 184, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Osono, E.; Kurihara, S.; Hayama, N.; Sakurai, Y.; Ohwada, K.; Onoda, N.; Takeuchi, M.; Tomizawa, T.; Komaba, Y.; Hashimoto, K.; et al. Insertion/deletion polymorphism in intron 16 of the ACE gene and left ventricular hypertrophy in patients with end-stage renal disease. Am. J. Kidney Dis. 1998, 32, 725–730. [Google Scholar] [CrossRef]
- Palmer, B.R.; Pilbrow, A.P.; Yandle, T.G.; Frampton, C.M.; Richards, A.M.; Nicholls, M.G.; Cameron, V.A. Angiotensin-converting enzyme gene polymorphism interacts with left ventricular ejection fraction and brain natriuretic peptide levels to predict mortality after myocardial infarction. J. Am. Coll. Cardiol. 2003, 41, 729–736. [Google Scholar] [CrossRef]
- Barnas, U.; Schmidt, A.; Illievich, A.; Kiener, H.P.; Rabensteiner, D.; Kaider, A.; Prager, R.; Abrahamian, H.; Irsigler, K.; Mayer, G. Evaluation of risk factors for the development of nephropathy in patients with IDDM: Insertion/deletion angiotensin-converting enzyme gene polymorphism, hypertension and metabolic control. Diabetologia 1997, 40, 327–331. [Google Scholar] [CrossRef]
- Tsai, C.T.; Fallin, D.; Chiang, F.T.; Hwang, J.J.; Lai, L.P.; Hsu, K.L.; Tseng, C.D.; Liau, C.S.; Tseng, Y.Z. Angiotensinogen gene haplotype and hypertension: Interaction with ACE gene I allele. Hypertension 2003, 41, 9–15. [Google Scholar] [CrossRef]
- Başar, Y.; Salmayenli, N.; Aksoy, M.; Seçkin, S.; Aydin, M.; Ozkök, E. ACE gene polymorphism in peripheral vascular disease. Horm. Metab. Res. 2007, 39, 534–537. [Google Scholar] [CrossRef]
- Hingorani, A.D.; Jia, H.; Stevens, P.A.; Hopper, R.; Dickerson, J.E.; Brown, M.J. Renin-angiotensin system gene polymorphisms influence blood pressure and the response to angiotensin converting enzyme inhibition. J. Hypertens. 1995, 13 Pt 2, 1602–1609. [Google Scholar] [CrossRef] [PubMed]
- Marre, M.; Bernadet, P.; Gallois, Y.; Savagner, F.; Guyene, T.T.; Hallab, M.; Cambien, F.; Passa, P.; Alhenc-Gelas, F. Relationships between angiotensin I converting enzyme gene polymorphism, plasma levels, and diabetic retinal and renal complications. Diabetes 1994, 43, 384–388. [Google Scholar] [CrossRef]
- Thomas, G.N.; Tomlinson, B.; Chan, J.C.; Sanderson, J.E.; Cockram, C.S.; Critchley, J.A. Renin-angiotensin system gene polymorphisms, blood pressure, dyslipidemia, and diabetes in Hong Kong Chinese: A significant association of tne ACE insertion/deletion polymorphism with type 2 diabetes. Diabetes Care 2001, 24, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, M.; Reile, M.; Haeberle, U.; Schwarz, K.; Heinze, E.; Teller, W.; Lang, D.; Holl, R.W. Angiotensin I-converting enzyme-gene-polymorphism: Relationship to albumin excretion and blood pressure in pediatric patients with type-I-diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 1997, 105, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Popov, V.; Fomicheva, E.; Kovalev, J.; Schwartz, E. Absence of association between the angiotensin-converting enzyme gene polymorphism and borderline hypertension in men of St Petersburg, Russia. J. Hum. Hypertens. 1996, 10, 557–559. [Google Scholar] [PubMed]
- Chiang, F.T.; Lai, Z.P.; Chern, T.H.; Tseng, C.D.; Hsu, K.L.; Lo, H.M.; Tseng, Y.Z. Lack of association of the angiotensin converting enzyme polymorphism with essential hypertension in a Chinese population. Am. J. Hypertens. 1997, 10, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Crisan, D.; Carr, J. Angiotensin I-converting enzyme: Genotype and disease associations. J. Mol. Diagn. 2000, 2, 105–115. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miller, J.A.; Thai, K.; Scholey, J.W. Angiotensin II type 1 receptor gene polymorphism and the response to hyperglycemia in early type 1 diabetes. Diabetes 2000, 49, 1585–1589. [Google Scholar] [CrossRef]
- Zeng, Y.; Jiang, Y.; Huang, Z.; Li, K.; Zhou, Y. Association between AGTR1 (c.1166 A>C) Polymorphisms and Kidney Injury in Hypertension. Front. Biosci. (Landmark Ed.). 2023, 28, 146. [Google Scholar] [CrossRef]
- Möllsten, A.; Vionnet, N.; Forsblom, C.; Parkkonen, M.; Tarnow, L.; Hadjadj, S.; Marre, M.; Parving, H.H.; Groop, P.H. A polymorphism in the angiotensin II type 1 receptor gene has different effects on the risk of diabetic nephropathy in men and women. Mol. Genet. Metab. 2011, 103, 66–70. [Google Scholar] [CrossRef]
- Möllsten, A.; Kockum, I.; Svensson, M.; Rudberg, S.; Ugarph-Morawski, A.; Brismar, K.; Eriksson, J.W.; Dahlquist, G. The effect of polymorphisms in the renin-angiotensin-aldosterone system on diabetic nephropathy risk. J. Diabetes Complicat. 2008, 22, 377–383. [Google Scholar] [CrossRef]
- Deja, G.; Borowiec, M.; Fendler, W.; Pietrzak, I.; Szadkowska, A.; Machnica, L.; Polanska, J.; Mlynarski, W.; Jarosz-Chobot, P. Non-dipping and arterial hypertension depend on clinical factors rather than on genetic variability of ACE and RGS2 genes in patients with type 1 diabetes. Acta Diabetol. 2014, 51, 633–640. [Google Scholar] [CrossRef]
Gene | ACE | AGTR1 |
---|---|---|
rs number | rs1799752 | rs5186 |
Genome version | ENST00000290866.10 | ENST00000349243.8 |
Genotype | (Insertion) c.2306-105_2306-104insTTTTTTTTTTTGAGACGGAGTCTCGCTCTGTCGCCCATACAGTCACTTTT (Deletion) c.2306-105_2306-104del | c.*86A>C |
Chromosomal position | Chromosome 17:63488530-63488543 (forward strand) | Chromosome 3:148742201 (forward strand) |
Total (n = 118) | Hypertension Status | Dipping Status | |||||
---|---|---|---|---|---|---|---|
HT (+) N 15 (13%) | HT (−) N 103 (87%) | p | Non-Dippers N 54 (46%) | Dippers N 64 (54%) | p | ||
Female n (%) | 54 (45.8) | 11 (73.3) | 43 (41.7) | 0.022 | 23 (42.6) | 31 (48.4) | 0.525 |
Male n (%) | 64 (54.2) | 4 (26.7) | 60 (58.3) | 31 (57.4) | 33 (51.6) | ||
Age (years) * | 15.5 ± 2.3 | 15.5 ± 2.6 | 14.3 ± 2.3 | 0.077 | 14.3 ± 2.2 | 14.6 ± 2.5 | 0.568 |
Diabetes duration (years) * | 5.5 ± 3.4 | 6.9 ± 3.3 | 5.3 ± 3.4 | 0.052 | 5.5 ± 3.5 | 5.4 ± 3.3 | 0.856 |
BMI (kg/m2) * | 20.5 ± 3.0 | 22.0 ± 3.5 | 20.3 ± 2.9 | 0.022 | 20.0 ± 2.9 | 20.5 ± 3.2 | 0.368 |
HbA1c % † | 7.9 (5.6–13.3) | 9.0 (6.7–11.7) | 7.7 (5.6–13.3) | 0.001 | 8.1 (5.8–12.6) | 7.8 (5.6–13.3) | 0.136 |
Total cholesterol † | 4.6 (2.0–7.9) | 5.1 (3.0–7.9) | 4.7 (2.0–7.7) | 0.129 | 4.7 (3.3–7.9) | 4.8 (2.0–7.7) | 0.825 |
LDL cholesterol † | 2.4 (0.5–6.2) | 2.7 (1.7–6.2) | 2.4 (0.5–5.1) | 0.112 | 2.4 (0.5–5.1) | 2.5 (1.1–6.2) | 0.630 |
HDL cholesterol * | 1.8 ± 0.4 | 1.6 ± 0.4 | 1.8 ± 0.4 | 0.130 | 1.8 ± 0.4 | 1.7 ± 0.4 | 0.591 |
Triglyceride † | 0.7 (0.2–10.6) | 1.1 (0.3–5.8) | 0.7 (0.2–10.6) | 0.040 | 0.8 (0.4–5.8) | 0.7 (0.2–10.6) | 0.638 |
Insulin dose/kg * | 0.8 ± 0.3 | 1.0 ± 0.3 | 0.8 ± 0.3 | 0.005 | 0.8 ± 0.2 | 0.8 ± 0.3 | 0.456 |
CSII n (%) | 25 (21.2) | 4 (26.7) | 21 (20.4) | 0.532 | 13 (24.1) | 12 (18.8) | 0.201 |
MDI n (%) | 93 (78.8) | 11 (73.3) | 82 (79.6) | 41 (75.9) | 52 (81.2) | ||
Microalbuminuria † | 0.8 (0.05–10.5) | 0.8 (0.4–10.5) | 0.8 (0.05–8.2) | 0.332 | 0.8 (0.05–10.5) | 0.8 (0.1–8.5) | 0.459 |
Family history of CVD, n (%) | 25 (21.2) | 3 (20.0) | 22 (21.4) | 0.904 | 12 (22.2) | 13 (20.3) | 0.800 |
Proteinuria † (24 h urine) | 0.1 (0.01–1.2) | 0.1 (0.03–0.3) | 0.1 (0.01–1.2) | 0.948 | 0.1 (0.01–1.2) | 0.1 (0.02–0.4) | 0.514 |
Creatinine clearance † | 112.9 (35.0–236.1) | 112.3 (35.0–139.9) | 113.0 (39.0–236.1) | 0.249 | 114.8 (41.7–217.9) | 112.5 (35.0–236.1) | 0.831 |
sBP (mmHg) † | 113.0 (85.0–132.0) | 123.0 (118.0–132.0) | 112.0 (85.0–130.0) | 0.001 | 112.0 (85.0–132.0) | 115.0 (102.0–127.0) | 0.053 |
dBP (mmHg) † | 68.0 (51.0–85.0) | 78.0 (61.0–85.0) | 67.0 (51.0–80.0) | 0.001 | 63.0 (51.0–80.0) | 70.0 (56.0–85.0) | <0.001 |
MAP * | 79.0 ± 6.2 | 80.1 ± 8.5 | 78.9 ± 5.8 | 0.398 | 80.4 ± 6.0 | 77.6 ± 6.1 | 0.012 |
Diabetic nephropathy n (%) | 15 (12.7) | 3 (20.0) | 12 (11.7) | 0.364 | 10 (18.5) | 5 (7.8) | 0.082 |
Dippers n (%) | 64 (54.2) | 10 (66.7) | 54 (52.4) | 0.301 | NA | NA | NA |
Non-dippers n (%) | 54 (45.8) | 5 (33.3) | 49 (47.6) |
Univariate Logistic Regression | Multivariate Logistic Regression | |||
---|---|---|---|---|
OR | 95% CI | OR | 95% CI | |
Female sex | 3.84 | 1.14–12.86 | ||
BMI | 1.22 | 1.02–1.45 | 1.32 | 1.07–1.64 |
HbA1c | 1.89 | 1.28–2.80 | 2.24 | 1.39–3.61 |
Triglyceride | 1.31 | 0.98–1.76 | ||
Insulin dose/kg | 14.47 | 2.01–104.38 | 26.43 | 2.64–264.90 |
Total N = 118 | HT + | HT − | p-Value | Non-Dippers | Dippers | p-Value | |
---|---|---|---|---|---|---|---|
DD | 20 (16.9) | 2 (13.3) | 18 (17.5) | 0.625 | 7 (13.0) | 13 (20.3) | 0.369 |
II | 33 (28.0) | 3 (20.0) | 30 (29.1) | 18 (33.3) | 15 (23.4) | ||
ID | 65 (55.1) | 10 (66.7) | 55 (53.4) | 29 (53.7) | 36 (56.3) |
DD | DI | II | p | |
---|---|---|---|---|
sBP, mmHg Daytime | 113.8 ± 9.8 | 112.9 ± 9.0 | 111.7 ± 6.3 | >0.05 |
dBP, mmHg Daytime | 67.6 ± 6.5 | 67.80 ± 6.8 | 67.4 ± 6.7 | |
Daytime MAP | 78.8 ± 8.6 | 79.5 ± 6.0 | 77.6 ± 4.9 | |
sBP, mmHg Nighttime | 105.5 ± 7.3 | 105.2 ± 8.93 | 105.2 ± 6.6 | |
dBP, mmHg Nighttime | 62.7 ± 7.2 | 62.0 ± 7.4 | 61.3 ± 6.4 | |
Nighttime MAP | 75.5 ± 8.1 | 74.6 ± 6.8 | 71.5 ± 11.5 | |
% fall sBP | 11.1 ± 4.7 | 9.4 ± 4.7 | 8.8 ± 4.9 | |
% fall dBP | 11.6 ± 5.9 | 11.5 ± 5.4 | 11.2 ± 5.6 | |
MAP | 10.1 ± 5.0 | 9.9 ± 5.0 | 9.4 ± 4.9 |
Total N = 118 | HT + | HT − | p-Value | Non-Dippers | Dippers | p-Value | |
---|---|---|---|---|---|---|---|
AA | 60 (50.8) | 6 (40.0) | 54 (52.4) | 0.608 | 27 (50.0) | 33 (51.6) | 0.976 |
AC | 49 (41.5) | 8 (53.3) | 41 (39.8) | 23 (42.6) | 26 (40.6) | ||
CC | 9 (7.6) | 1 (6.7) | 8 (7.8) | 4 (7.4) | 5 (7.8) |
AA | AC | CC | p | |
---|---|---|---|---|
sBP, mmHg Daytime | 112.2 ± 8.5 | 113.0 ± 8.3 | 114.9 ± 9.2 | >0.05 |
dBP, mmHg Daytime | 67.6 ± 6.8 | 68.0 ± 6.8 | 66.7 ± 6.4 | |
MAP Daytime | 78.7 ± 5.9 | 79.0 ± 6.7 | 81.0 ± 5.8 | |
sBP, mmHg Nighttime | 105.4 ± 8.0 | 105.3 ± 8.3 | 104.4 ± 6.9 | |
dBP, mmHg Nighttime | 62.6 ± 6.8 | 61.4 ± 7.7 | 60.2 ± 5.0 | |
MAP Nighttime | 73.1 ± 10.2 | 74.1 ± 6.6 | 78.1 ± 5.9 | |
% fall sBP | 9.1 ± 5.0 | 10.2 ± 4.7 | 7.9 ± 3.9 | |
% fall dBP | 10.4 ± 5.3 | 13.1 ± 5.4 | 9.4 ± 5.4 | 0.017 |
MAP | 9.5 ± 5.0 | 10.5 ± 4.8 | 7.9 ± 5.3 | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovacevic, S.; Jesic, M.; Zdravkovic, V.; Djordjevic, S.; Miolski, J.; Gasic, V.; Jelovac, M.; Ugrin, M.; Pavlovic, S.; Subosic, B. Association Between Hypertension, Dipping Status, and ACE and AGTR1 Gene Polymorphisms in Adolescents with Type 1 Diabetes. Biomedicines 2025, 13, 615. https://doi.org/10.3390/biomedicines13030615
Kovacevic S, Jesic M, Zdravkovic V, Djordjevic S, Miolski J, Gasic V, Jelovac M, Ugrin M, Pavlovic S, Subosic B. Association Between Hypertension, Dipping Status, and ACE and AGTR1 Gene Polymorphisms in Adolescents with Type 1 Diabetes. Biomedicines. 2025; 13(3):615. https://doi.org/10.3390/biomedicines13030615
Chicago/Turabian StyleKovacevic, Smiljka, Maja Jesic, Vera Zdravkovic, Stefan Djordjevic, Jelena Miolski, Vladimir Gasic, Marina Jelovac, Milena Ugrin, Sonja Pavlovic, and Branko Subosic. 2025. "Association Between Hypertension, Dipping Status, and ACE and AGTR1 Gene Polymorphisms in Adolescents with Type 1 Diabetes" Biomedicines 13, no. 3: 615. https://doi.org/10.3390/biomedicines13030615
APA StyleKovacevic, S., Jesic, M., Zdravkovic, V., Djordjevic, S., Miolski, J., Gasic, V., Jelovac, M., Ugrin, M., Pavlovic, S., & Subosic, B. (2025). Association Between Hypertension, Dipping Status, and ACE and AGTR1 Gene Polymorphisms in Adolescents with Type 1 Diabetes. Biomedicines, 13(3), 615. https://doi.org/10.3390/biomedicines13030615