Methodology Development for Investigating Pathophysiological [18F]-FDG Muscle Uptake in Patients with Rheumatic Musculoskeletal Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Approval and Informed Consent
2.2. Participants
2.3. Image Analysis
2.3.1. PET/CT Imaging
2.3.2. Qualitative Assessment
2.3.3. Quantitative Analysis
2.4. Statistics
3. Results
3.1. Patient and Control Characteristics
3.2. Qualitative Assessment of [18F]-FDG Muscle Uptake
3.3. Quantitative Analysis of [18F]-FDG Muscle Uptake
3.4. Fixed vs. Hotspot VOI
3.5. Comparison of Quantitative Uptake in the RMD Groups and Controls
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steinz, M.M.; Persson, M.; Aresh, B.; Olsson, K.; Cheng, A.J.; Ahlstrand, E.; Lilja, M.; Lundberg, T.R.; Rullman, E.; Möller, K.Ä.; et al. Oxidative hotspots on actin promote skeletal muscle weakness in rheumatoid arthritis. JCI Insight 2019, 4, e126347. [Google Scholar] [CrossRef] [PubMed]
- Ekdahl, C.; Broman, G. Muscle strength, endurance, and aerobic capacity in rheumatoid arthritis: A comparative study with healthy subjects. Ann. Rheum. Dis. 1992, 51, 35–40. [Google Scholar] [CrossRef]
- Schillings, M.L.; Kalkman, J.S.; Janssen, H.M.; van Engelen, B.G.; Bleijenberg, G.; Zwarts, M.J. Experienced and physiological fatigue in neuromuscular disorders. Clin. Neurophysiol. 2007, 118, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Bennell, K.L.; Wrigley, T.V.; Hunt, M.A.; Lim, B.W.; Hinman, R.S. Update on the role of muscle in the genesis and management of knee osteoarthritis. Rheum. Dis. Clin N. Am. 2013, 39, 145–176. [Google Scholar] [CrossRef]
- Klak, A.; Raciborski, F.; Samel-Kowalik, P. Social implications of rheumatic diseases. Reumatologia 2016, 54, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Salaffi, F.; Di Carlo, M.; Carotti, M.; Farah, S.; Ciapetti, A.; Gutierrez, M. The impact of different rheumatic diseases on health-related quality of life: A comparison with a selected sample of healthy individuals using SF-36 questionnaire, EQ-5D and SF-6D utility values. Acta Biomed. 2019, 89, 541–557. [Google Scholar] [PubMed]
- Rheumatology EAoAf. RMD Definition 2023. Available online: http://www.eular.org/rmd-definition (accessed on 14 September 2022).
- Danieli, M.G.; Antonelli, E.; Piga, M.A.; Cozzi, M.F.; Allegra, A.; Gangemi, S. Oxidative stress, mitochondrial dysfunction, and respiratory chain enzyme defects in inflammatory myopathies. Autoimmun. Rev. 2023, 22, 103308. [Google Scholar] [CrossRef] [PubMed]
- Uutela, T.I.; Kautiainen, H.J.; Hakkinen, A.H. Decreasing muscle performance associated with increasing disease activity in patients with rheumatoid arthritis. PLoS ONE 2018, 13, e0194917. [Google Scholar] [CrossRef] [PubMed]
- van den Noort, J.C.; van der Leeden, M.; Stapper, G.; Wirth, W.; Maas, M.; Roorda, L.D.; Lems, W.F.; Dekker, J.; van der Esch, M. Muscle weakness is associated with non-contractile muscle tissue of the vastus medialis muscle in knee osteoarthritis. BMC Musculoskelet. Disord. 2022, 23, 91. [Google Scholar] [CrossRef]
- Loureiro, A.; Mills, P.M.; Barrett, R.S. Muscle weakness in hip osteoarthritis: A systematic review. Arthritis Care Res. 2013, 65, 340–352. [Google Scholar] [CrossRef]
- Richter, E.A.; Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 2013, 93, 993–1017. [Google Scholar] [CrossRef]
- Doehner, W.; Turhan, G.; Leyva, F.; Rauchhaus, M.; Sandek, A.; Jankowska, E.A.; von Haehling, S.; Anker, S.D. Skeletal muscle weakness is related to insulin resistance in patients with chronic heart failure. ESC Heart Fail. 2015, 2, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, M.; Spriet, L.L. Skeletal muscle energy metabolism during exercise. Nat Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Hanaoka, B.Y.; Ithurburn, M.P.; Rigsbee, C.A.; Bridges, S.L.; Jr Moellering, D.R.; Gower, B.; Bamman, M. Chronic Inflammation in Rheumatoid Arthritis and Mediators of Skeletal Muscle Pathology and Physical Impairment: A Review. Arthritis Care Res. 2019, 71, 173–177. [Google Scholar] [CrossRef]
- Moellering, D.R.; Smith-Johnston, K.; Kelley, C.; Sammy, M.J.; Benedict, J.; Brock, G.; Johnson, J.; Baskin, K.K.; Jarjour, W.N.; Belury, M.A.; et al. Association between skeletal muscle mitochondrial dysfunction and insulin resistance in patients with rheumatoid arthritis: A case-control study. Arthritis Res. Ther. 2023, 25, 85. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Hu, Q.; Meng, S.; Zhang, Q.; Wang, T.; Liu, C.; Liu, D.; Jiang, Z.; Hong, X. Metabolic profiling of patients with different idiopathic inflammatory myopathy subtypes reveals potential biomarkers in plasma. Clin. Exp. Med. 2023, 23, 3417–3429. [Google Scholar] [CrossRef]
- Wu, X.; Fan, X.; Crawford, R.; Xiao, Y.; Prasadam, I. The Metabolic Landscape in Osteoarthritis. Aging Dis. 2022, 13, 1166–1182. [Google Scholar] [CrossRef] [PubMed]
- Huffman, K.M.; Jessee, R.; Andonian, B.; Davis, B.N.; Narowski, R.; Huebner, J.L.; Kraus, V.B.; McCracken, J.; Gilmore, B.F.; Tune, K.N.; et al. Molecular alterations in skeletal muscle in rheumatoid arthritis are related to disease activity, physical inactivity, and disability. Arthritis Res. Ther. 2017, 19, 12. [Google Scholar] [CrossRef] [PubMed]
- Andonian, B.J.; Johannemann, A.; Hubal, M.J.; Pober, D.M.; Koss, A.; Kraus, W.E.; Bartlett, D.B.; Huffman, K.M. Altered skeletal muscle metabolic pathways, age, systemic inflammation, and low cardiorespiratory fitness associate with improvements in disease activity following high-intensity interval training in persons with rheumatoid arthritis. Arthritis Res. Ther. 2021, 23, 187. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Guo, J.; Liu, Y.; Li, W.; Lu, D. Glycolysis: An emerging regulator of osteoarthritis. Front. Immunol. 2023, 14, 1327852. [Google Scholar] [CrossRef] [PubMed]
- Tchetina, E.V.; Markova, G.A.; Sharapova, E.P. Insulin Resistance in Osteoarthritis: Similar Mechanisms to Type 2 Diabetes Mellitus. J. Nutr. Metab. 2020, 2020, 4143802. [Google Scholar] [CrossRef]
- Owada, T.; Maezawa, R.; Kurasawa, K.; Okada, H.; Arai, S.; Fukuda, T. Detection of inflammatory lesions by f-18 fluorodeoxyglucose positron emission tomography in patients with polymyositis and dermatomyositis. J. Rheumatol. 2012, 39, 1659–1665. [Google Scholar] [CrossRef]
- Tanaka, S.; Ikeda, K.; Uchiyama, K.; Iwamoto, T.; Sanayama, Y.; Okubo, A.; Nakagomi, D.; Takahashi, K.; Yokota, M.; Suto, A.; et al. [18F]FDG uptake in proximal muscles assessed by PET/CT reflects both global and local muscular inflammation and provides useful information in the management of patients with polymyositis/dermatomyositis. Rheumatology 2013, 52, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zuo, X.; Luo, H.; Zhu, H. The altered metabolism profile in pathogenesis of idiopathic inflammatory myopathies. Semin. Arthritis Rheum. 2020, 50, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Vaidyanathan, S.; Patel, C.N.; Scarsbrook, A.F.; Chowdhury, F.U. FDG PET/CT in infection and inflammation--current and emerging clinical applications. Clin. Radiol. 2015, 70, 787–800. [Google Scholar] [CrossRef]
- Tateyama, M.; Fujihara, K.; Misu, T.; Arai, A.; Kaneta, T.; Aoki, M. Clinical values of FDG PET in polymyositis and dermatomyositis syndromes: Imaging of skeletal muscle inflammation. BMJ Open 2015, 5, e006763. [Google Scholar] [CrossRef]
- Parida, G.K.; Roy, S.G.; Kumar, R. FDG-PET/CT in Skeletal Muscle: Pitfalls and Pathologies. Semin. Nucl. Med. 2017, 47, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Agca, R.; Blanken, A.B.; van Sijl, A.M.; Smulders, Y.M.; Voskuyl, A.E.; van der Laken, C.; Boellaard, R.; Nurmohamed, M.T. Arterial wall inflammation is increased in rheumatoid arthritis compared with osteoarthritis, as a marker of early atherosclerosis. Rheumatology 2021, 60, 3360–3368. [Google Scholar] [CrossRef]
- Arnett, F.C.; Edworthy, S.M.; Bloch, D.A.; McShane, D.J.; Fries, J.F.; Cooper, N.S.; Healey, L.A.; Kaplan, S.R.; Liang, M.H.; Luthra, H.S.; et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988, 31, 315–324. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 2010, 69, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Altman, R.; Asch, E.; Bloch, D.; Bole, G.; Borenstein, D.; Brandt, K.; Christy, W.; Cooke, T.D.; Greenwald, R.; Hochberg, M.; et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986, 29, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2. 0. Eur. J. Nucl. Med. Mol. Imaging. 2015, 42, 328–354. [Google Scholar] [CrossRef]
- Boellaard, R. Quantitative oncology molecular analysis suite: ACCURATE. J. Nucl. Med. 2018, 59 (Suppl. S1), 1753. [Google Scholar]
- Broens, B.; Nossent, E.J.; Meijboom, L.J.; Zwezerijnen, G.J.C.; Spierings, J.; de Vries-Bouwstra, J.K.; van Laar, J.M.; van der Laken, C.J.; Voskuyl, A.E. Quantitative 18F-FDG PET-CT can assess presence and extent of interstitial lung disease in early severe diffuse cutaneous systemic sclerosis. Arthritis Res. Ther. 2024, 26, 219. [Google Scholar] [CrossRef] [PubMed]
- Eertink, J.J.; Zwezerijnen, G.J.C.; Cysouw, M.C.F.; Wiegers, S.E.; Pfaehler, E.A.G.; Lugtenburg, P.J.; van der Holt, B.; Hoekstra, O.S.; de Vet, H.C.; Zijlstra, J.M.; et al. Comparing lesion and feature selections to predict progression in newly diagnosed DLBCL patients with FDG PET/CT radiomics features. Eur. J. Nucl. Med. Mol. Imaging. 2022, 49, 4642–4651. [Google Scholar] [CrossRef]
- Baraliakos, X.; de Jongh, J.; Poddubnyy, D.; Zwezerijnen, G.J.C.; Hemke, R.; Glatt, S.; Shaw, S.; Ionescu, L.; el Baghdady, A.; Mann, J.; et al. Impact of bimekizumab and certolizumab pegol on efficacy, safety and osteoblastic activity in radiographic axial spondyloarthritis: Results from a phase IIa, multicentre, randomised, double-blind, exploratory study with PET-CT imaging. Ther. Adv. Musculoskelet. Dis. 2024, 16, 1759720X241293944. [Google Scholar] [CrossRef] [PubMed]
- Yeung, H.W.; Grewal, R.K.; Gonen, M.; Schoder, H.; Larson, S.M. Patterns of 18F-FDG uptake in adipose tissue and muscle: A potential source of false-positives for PET. J. Nucl. Med. 2003, 44, 1789–1796. [Google Scholar]
- Adams, M.C.; Turkington, T.G.; Wilson, J.M.; Wong, T.Z. A systematic review of the factors affecting accuracy of SUV measurements. AJR Am. J. Roentgenol. 2010, 195, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Karunanithi, S.; Soundararajan, R.; Sharma, P.; Naswa, N.; Bal, C.; Kumar, R. Spectrum of Physiologic and Pathologic Skeletal Muscle 18F-FDG Uptake on PET/CT. AJR Am J Roentgenol. 2015, 205, W141–W149. [Google Scholar] [CrossRef]
- Metcalfe, A.J.; Andersson, M.L.; Goodfellow, R.; Thorstensson, C.A. Is knee osteoarthritis a symmetrical disease? Analysis of a 12 year prospective cohort study. BMC Musculoskelet. Disord. 2012, 13, 153. [Google Scholar] [CrossRef]
- Hotta, M.; Minamimoto, R.; Kaneko, H.; Yamashita, H. Fluorodeoxyglucose PET/CT of Arthritis in Rheumatic Diseases: A Pictorial Review. Radiographics 2020, 40, 223–240. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Fedotovskaya, O.; Cheng, A.J.; Cornachione, A.S.; Minozzo, F.C.; Aulin, C.; Fridén, C.; Turesson, C.; Andersson, D.C.; Glenmark, B.; et al. Nitrosative modifications of the Ca2+ release complex and actin underlie arthritis-induced muscle weakness. Ann. Rheum. Dis. 2015, 74, 1907–1914. [Google Scholar] [CrossRef] [PubMed]
- Hirata, K.; Tamaki, N. Quantitative FDG PET Assessment for Oncology Therapy. Cancers 2021, 13, 869. [Google Scholar] [CrossRef] [PubMed]
- de Groot, M.; Patel, N.; Manavaki, R.; Janiczek, R.L.; Bergstrom, M.; Ostor, A.; Gerlag, D.; Roberts, A.; Graves, M.J.; Karkera, Y.; et al. Quantifying disease activity in rheumatoid arthritis with the TSPO PET ligand 18F-GE-180 and comparison with 18F-FDG and DCE-MRI. EJNMMI Res. 2019, 9, 113. [Google Scholar] [CrossRef]
- Lensen, K.D.F.; van Sijl, A.M.; Voskuyl, A.E.; van der Laken, C.J.; Heymans, M.W.; Comans, E.F.I.; Nurmohamed, M.T.; Smulders, Y.M.; Boellaard, R. Variability in quantitative analysis of atherosclerotic plaque inflammation using 18F-FDG PET/CT. PLoS ONE 2017, 12, e0181847. [Google Scholar] [CrossRef]
- Kikinis, R.; Pieper, S. 3D Slicer as a tool for interactive brain tumor segmentation. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 6982–6984. [Google Scholar]
- Sadaghiani, M.S.; Rowe, S.P.; Sheikhbahaei, S. Applications of artificial intelligence in oncologic 18F-FDG PET/CT imaging: A systematic review. Ann. Transl. Med. 2021, 9, 823. [Google Scholar] [CrossRef] [PubMed]
Ctrl (n = 8) | RA (n = 11) | OA (n = 10) | IIM (n = 10) | |
---|---|---|---|---|
Demographic | ||||
Age, median [IQR], years | 61.5 [34.8] | 60.9 [18.9] | 60.1 [9.9] | 52.0 [30.0] |
Sex (M/F), n (% male) | 4/4 (50%) | 4/7 (36.4%) | 2/8 (20%) | 3/7 (30%) |
Anthropometric | ||||
Height, median [IQR], m | 1.76 [0.11] | 1.67 [0.13] | 1.71 [0.09] | 1.68 [0.3] |
Weight, median [IQR], kg | 69.0 [32.3] | 66.0 [18.0] | 83.5 [41.5] | 78.7 [35.6] |
BMI, median [IQR], kg·m−2 | 23.0 [8.0] | 24.8 [5.2] | 27.9 [13.3] | 26.9 [7.0] |
Disease Activity | ||||
DAS28-ESR (0–10), mean (±SD) | - | 5.1 (±0.6) | - | - |
ESR, median [IQR], mm·h−1 | - | 16.0 [24] | 6.0 [10] | 57.0 [75] |
CRP, median [IQR], mg·L−1 | - | 4.0 [8.0] | 1.0 [2.0] | 28.0 [38.9] |
Disease duration, median [IQR], months | - | 7.0 [18] | 109.0 [94] | 1.0 [55] |
Diabetes mellitus, n (%) | 0 | 3 (27.3%) | 2 (20%) | 0 |
Medication | ||||
sDMARDs, n (%) | 6 (54.5%) | 0 | 1 (10%) | |
MTX only, n (%) | 4 (36.4%) | - | 2 (20%) | |
MTX + SSZ, n (%) | 1 (9.1%) | - | - | |
MTX + HCQ, n (%) | 1 (9.1%) | - | - | |
Analgesics, n (%) | 6 (54.5%) | 0 | 1 (10%) | |
Prednisone, n (%) | 3 (27.3%) | 0 | 5 (50%) | |
IVIG, n (%) | 0 | 0 | 3 (30%) | |
Anti-hypertensives, n (%) | 4 (36.4%) | 6 (60%) | 1 (10%) | |
Statins, n (%) | 3 (27.3%) | 3 (30%) | 0 |
Control | RA | OA | IMM | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Muscle/Muscle Group | Homo-Genous | Hetero-Genous | Homo-Genous | Hetero-Genous | Homo- Genous | Hetero-Genous | Homo-Genous | Hetero-Genous | Homo-Genous | Hetero-Genous |
Quadriceps R | 2 | 6 | 0 | 11 | 0 | 10 | 0 | 10 | 2 | 37 |
Quadriceps L | 3 | 5 | 0 | 11 | 0 | 10 | 0 | 10 | 3 | 36 |
Hamstrings R | 1 | 7 | 0 | 11 | 0 | 10 | 0 | 10 | 1 | 38 |
Hamstrings L | 2 | 6 | 0 | 11 | 0 | 10 | 3 | 7 | 5 | 34 |
Triceps R | 7 | 1 | 6 | 5 | 5 | 5 | 4 | 6 | 22 | 17 |
Triceps L | 6 | 2 | 9 | 2 | 6 | 4 | 2 | 7 | 23 | 15 |
Biceps R | 7 | 1 | 3 | 8 | 5 | 5 | 4 | 6 | 19 | 20 |
Biceps L | 7 | 1 | 5 | 6 | 7 | 3 | 1 | 8 | 20 | 18 |
Psoas R | 7 | 1 | 2 | 9 | 3 | 7 | 4 | 6 | 16 | 23 |
Psoas L | 7 | 1 | 4 | 7 | 4 | 6 | 5 | 5 | 20 | 19 |
Deltoid R | 7 | 1 | 2 | 9 | 2 | 8 | 3 | 7 | 14 | 25 |
Deltoid L | 6 | 2 | 2 | 9 | 3 | 7 | 2 | 8 | 13 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobejana, M.; Al Beiramani, M.; Zwezerijnen, G.J.C.; van der Kooi, A.; Raaphorst, J.; Meskers, C.G.M.; van der Esch, M.; van der Laken, C.J.; Steinz, M.M. Methodology Development for Investigating Pathophysiological [18F]-FDG Muscle Uptake in Patients with Rheumatic Musculoskeletal Diseases. Biomedicines 2025, 13, 465. https://doi.org/10.3390/biomedicines13020465
Sobejana M, Al Beiramani M, Zwezerijnen GJC, van der Kooi A, Raaphorst J, Meskers CGM, van der Esch M, van der Laken CJ, Steinz MM. Methodology Development for Investigating Pathophysiological [18F]-FDG Muscle Uptake in Patients with Rheumatic Musculoskeletal Diseases. Biomedicines. 2025; 13(2):465. https://doi.org/10.3390/biomedicines13020465
Chicago/Turabian StyleSobejana, Maia, Mustafa Al Beiramani, Gerben J. C. Zwezerijnen, Anneke van der Kooi, Joost Raaphorst, Carel G. M. Meskers, Martin van der Esch, Conny J. van der Laken, and Maarten M. Steinz. 2025. "Methodology Development for Investigating Pathophysiological [18F]-FDG Muscle Uptake in Patients with Rheumatic Musculoskeletal Diseases" Biomedicines 13, no. 2: 465. https://doi.org/10.3390/biomedicines13020465
APA StyleSobejana, M., Al Beiramani, M., Zwezerijnen, G. J. C., van der Kooi, A., Raaphorst, J., Meskers, C. G. M., van der Esch, M., van der Laken, C. J., & Steinz, M. M. (2025). Methodology Development for Investigating Pathophysiological [18F]-FDG Muscle Uptake in Patients with Rheumatic Musculoskeletal Diseases. Biomedicines, 13(2), 465. https://doi.org/10.3390/biomedicines13020465