Diagnostic Performance of Serum Mac-2-Binding Protein Glycosylation Isomer as a Fibrosis Biomarker in Non-Obese and Obese Patients with MASLD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Laboratory Analyses
2.3. Imaging Studies for Liver Stiffness and Steatosis
2.4. DNA Extraction and SNP Genotyping
2.5. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Diagnostic Performance of VCTE and Serum Biomarkers
3.3. The Performance of M2BPGi in Assessing Fibrosis Stages
3.4. Relationship Between M2BPGi Levels and Clinical Parameters
3.5. Performance of VCTE and Serum Biomarkers According to Age and BMI
3.6. Distributions of SNPs According to Fibrosis Stages
3.7. Factors Predicted Significant Fibrosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MASLD | Metabolic dysfunction-associated steatotic liver disease |
NAFLD | Non-alcoholic fatty liver disease |
CLD | Chronic liver disease |
HCC | Hepatocellular carcinoma |
M2BPGi | Serum mac-2-binding protein glycosylation isomer |
APRI | Aspartate aminotransferase/platelet ratio index |
BMI | Body mass index |
MRE | Magnetic resonance elastography |
VCTE | Vibration-controlled transient elastography |
MRI-PDFF | Magnetic resonance imaging-proton density fat fraction |
NFS | Non-alcoholic fatty liver disease fibrosis score |
AUROCs | Area under the receiver operator curves |
COI | Cut-off index |
PPV | Positive predictive value |
NPV | Negative predictive value |
OR | Odds ratio |
CI | Confidence interval |
References
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef] [PubMed]
- Simon, T.G.; Roelstraete, B.; Hagstrom, H.; Sundstrom, J.; Ludvigsson, J.F. Non-alcoholic fatty liver disease and incident major adverse cardiovascular events: Results from a nationwide histology cohort. Gut 2022, 71, 1867–1875. [Google Scholar] [CrossRef] [PubMed]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.; Caussy, C.; Imajo, K.; Chen, J.; Singh, S.; Kaulback, K.; Le, M.D.; Hooker, J.; Tu, X.; Bettencourt, R.; et al. Magnetic Resonance vs Transient Elastography Analysis of Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Pooled Analysis of Individual Participants. Clin. Gastroenterol. Hepatol. 2019, 17, 630–637.e638. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Cen, L.; Lai, J.; Zhang, Z.; Pan, J.; Zhao, F.; Yu, C.; Li, Y.; Chen, C.; Chen, W.; et al. A meta-analysis on the diagnostic performance of magnetic resonance imaging and transient elastography in nonalcoholic fatty liver disease. Eur. J. Clin. Investig. 2021, 51, e13446. [Google Scholar] [CrossRef]
- Wattacheril, J.J.; Abdelmalek, M.F.; Lim, J.K.; Sanyal, A.J. AGA Clinical Practice Update on the Role of Noninvasive Biomarkers in the Evaluation and Management of Nonalcoholic Fatty Liver Disease: Expert Review. Gastroenterology 2023, 165, 1080–1088. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.K.; Petta, S.; Noureddin, M.; Goh, G.B.B.; Wong, V.W. Diagnosis and non-invasive assessment of MASLD in type 2 diabetes and obesity. Aliment. Pharmacol. Ther. 2024, 59 (Suppl. S1), S23–S40. [Google Scholar] [CrossRef]
- Shirabe, K.; Bekki, Y.; Gantumur, D.; Araki, K.; Ishii, N.; Kuno, A.; Narimatsu, H.; Mizokami, M. Mac-2 binding protein glycan isomer (M2BPGi) is a new serum biomarker for assessing liver fibrosis: More than a biomarker of liver fibrosis. J. Gastroenterol. 2018, 53, 819–826. [Google Scholar] [CrossRef]
- Kamada, Y.; Ono, M.; Hyogo, H.; Fujii, H.; Sumida, Y.; Yamada, M.; Mori, K.; Tanaka, S.; Maekawa, T.; Ebisutani, Y.; et al. Use of Mac-2 binding protein as a biomarker for nonalcoholic fatty liver disease diagnosis. Hepatol. Commun. 2017, 1, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Abe, M.; Miyake, T.; Kuno, A.; Imai, Y.; Sawai, Y.; Hino, K.; Hara, Y.; Hige, S.; Sakamoto, M.; Yamada, G.; et al. Association between Wisteria floribunda agglutinin-positive Mac-2 binding protein and the fibrosis stage of non-alcoholic fatty liver disease. J. Gastroenterol. 2015, 50, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Atsukawa, M.; Tsubota, A.; Okubo, T.; Arai, T.; Nakagawa, A.; Itokawa, N.; Kondo, C.; Kato, K.; Hatori, T.; Hano, H.; et al. Serum Wisteria floribunda agglutinin-positive Mac-2 binding protein more reliably distinguishes liver fibrosis stages in non-alcoholic fatty liver disease than serum Mac-2 binding protein. Hepatol. Res. 2018, 48, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Higashioka, M.; Hirakawa, Y.; Hata, J.; Honda, T.; Sakata, S.; Shibata, M.; Kitazono, T.; Osawa, H.; Ninomiya, T. Serum Mac-2 Binding Protein Glycosylation Isomer Concentrations Are Associated With Incidence of Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2023, 108, e425–e433. [Google Scholar] [CrossRef] [PubMed]
- Trepo, E.; Valenti, L. Update on NAFLD genetics: From new variants to the clinic. J. Hepatol. 2020, 72, 1196–1209. [Google Scholar] [CrossRef] [PubMed]
- WHOE Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Chuaypen, N.; Chittmittrapap, S.; Avihingsanon, A.; Siripongsakun, S.; Wongpiyabovorn, J.; Tanpowpong, N.; Tanaka, Y.; Tangkijvanich, P. Liver fibrosis improvement assessed by magnetic resonance elastography and Mac-2-binding protein glycosylation isomer in patients with hepatitis C virus infection receiving direct-acting antivirals. Hepatol. Res. 2021, 51, 528–537. [Google Scholar] [CrossRef]
- Boursier, J.; Zarski, J.P.; de Ledinghen, V.; Rousselet, M.C.; Sturm, N.; Lebail, B.; Fouchard-Hubert, I.; Gallois, Y.; Oberti, F.; Bertrais, S.; et al. Determination of reliability criteria for liver stiffness evaluation by transient elastography. Hepatology 2013, 57, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Raksayot, M.; Chuaypen, N.; Khlaiphuengsin, A.; Pinjaroen, N.; Treeprasertsuk, S.; Poovorawan, Y.; Tanaka, Y.; Tangkijvanich, P. Independent and additive effects of PNPLA3 and TM6SF2 polymorphisms on the development of non-B, non-C hepatocellular carcinoma. J. Gastroenterol. 2019, 54, 427–436. [Google Scholar] [CrossRef]
- Hagstrom, H.; Nasr, P.; Ekstedt, M.; Hammar, U.; Stal, P.; Hultcrantz, R.; Kechagias, S. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J. Hepatol. 2017, 67, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.L.; Chan, W.K.; Sthaneshwar, P.; Nik Mustapha, N.R.; Goh, K.L.; Mahadeva, S. Serum Wisteria floribunda agglutinin-positive Mac-2 binding protein in non-alcoholic fatty liver disease. PLoS ONE 2017, 12, e0174982. [Google Scholar] [CrossRef] [PubMed]
- Ajmera, V.; Kim, B.K.; Yang, K.; Majzoub, A.M.; Nayfeh, T.; Tamaki, N.; Izumi, N.; Nakajima, A.; Idilman, R.; Gumussoy, M.; et al. Liver Stiffness on Magnetic Resonance Elastography and the MEFIB Index and Liver-Related Outcomes in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Individual Participants. Gastroenterology 2022, 163, 1079–1089.e5. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.W.; Irles, M.; Wong, G.L.; Shili, S.; Chan, A.W.; Merrouche, W.; Shu, S.S.; Foucher, J.; Le Bail, B.; Chan, W.K.; et al. Unified interpretation of liver stiffness measurement by M and XL probes in non-alcoholic fatty liver disease. Gut 2019, 68, 2057–2064. [Google Scholar] [CrossRef] [PubMed]
- Yamada, N.; Katano, T.; Hirata, Y.; Okada, N.; Sanada, Y.; Ihara, Y.; Urahashi, T.; Ushijima, K.; Karasawa, T.; Takahashi, M.; et al. Serum Mac-2 binding protein glycosylation isomer predicts the activation of hepatic stellate cells after liver transplantation. J. Gastroenterol. Hepatol. 2019, 34, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Gantumur, D.; Harimoto, N.; Muranushi, R.; Hoshino, K.; Batbayar, C.; Hagiwara, K.; Yamanaka, T.; Ishii, N.; Tsukagoshi, M.; Igarashi, T.; et al. Hepatic stellate cell as a Mac-2-binding protein-producing cell in patients with liver fibrosis. Hepatol. Res. 2021, 51, 1058–1063. [Google Scholar] [CrossRef] [PubMed]
- Seko, Y.; Takahashi, H.; Toyoda, H.; Hayashi, H.; Yamaguchi, K.; Iwaki, M.; Yoneda, M.; Arai, T.; Shima, T.; Fujii, H.; et al. Diagnostic accuracy of enhanced liver fibrosis test for nonalcoholic steatohepatitis-related fibrosis: Multicenter study. Hepatol. Res. 2023, 53, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Wang, Z.; Zhao, Y.; Tao, C. Wisteria floribunda agglutinin-positive Mac-2-binding protein as a diagnostic biomarker in liver cirrhosis: An updated meta-analysis. Sci. Rep. 2020, 10, 10582. [Google Scholar] [CrossRef]
- Tamaki, N.; Higuchi, M.; Kurosaki, M.; Kirino, S.; Osawa, L.; Watakabe, K.; Wang, W.; Okada, M.; Shimizu, T.; Takaura, K.; et al. Wisteria floribunda agglutinin-positive mac-2 binding protein as an age-independent fibrosis marker in nonalcoholic fatty liver disease. Sci. Rep. 2019, 9, 10109. [Google Scholar] [CrossRef] [PubMed]
- Kam, L.Y.; Huang, D.Q.; Teng, M.L.P.; Takahashi, H.; Tanaka, K.; Yasuda, S.; Fung, J.; Lee, T.Y.; Hyogo, H.; Ono, M.; et al. Clinical Profiles of Asians with NAFLD: A Systematic Review and Meta-Analysis. Dig. Dis. 2022, 40, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Murotani, K.; Nakade, Y.; Inoue, T.; Nakao, H.; Sumida, Y.; Kamada, Y.; Yoneda, M. Serum Wisteria floribunda agglutinin-positive Mac-2-binding protein levels and liver fibrosis: A meta-analysis. J. Gastroenterol. Hepatol. 2017, 32, 1922–1930. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Honda, Y.; Kessoku, T.; Tomeno, W.; Imajo, K.; Yoneda, M.; Kawanaka, M.; Kirikoshi, H.; Ono, M.; Taguri, M.; et al. Wisteria floribunda agglutinin-positive Mac-2-binding protein and type 4 collagen 7S: Useful markers for the diagnosis of significant fibrosis in patients with non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2018, 33, 1795–1803. [Google Scholar] [CrossRef]
- Eslam, M.; Valenti, L.; Romeo, S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. J. Hepatol. 2018, 68, 268–279. [Google Scholar] [CrossRef]
- Singal, A.G.; Manjunath, H.; Yopp, A.C.; Beg, M.S.; Marrero, J.A.; Gopal, P.; Waljee, A.K. The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: A meta-analysis. Am. J. Gastroenterol. 2014, 109, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, F.V.; Claudel, T.; Tardelli, M.; Caligiuri, A.; Stulnig, T.M.; Marra, F.; Trauner, M. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology 2017, 65, 1875–1890. [Google Scholar] [CrossRef]
- Kawanaka, M.; Tomiyama, Y.; Hyogo, H.; Koda, M.; Shima, T.; Tobita, H.; Hiramatsu, A.; Nishino, K.; Okamoto, T.; Sato, S.; et al. Wisteria floribunda agglutinin-positive Mac-2 binding protein predicts the development of hepatocellular carcinoma in patients with non-alcoholic fatty liver disease. Hepatol. Res. 2018, 48, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Uojima, H.; Yamasaki, K.; Sugiyama, M.; Kage, M.; Ishii, N.; Shirabe, K.; Hidaka, H.; Kusano, C.; Murakawa, M.; Asahina, Y.; et al. Quantitative measurements of M2BPGi depend on liver fibrosis and inflammation. J. Gastroenterol. 2024, 59, 598–608. [Google Scholar] [CrossRef]
- Alexander, M.; Loomis, A.K.; Fairburn-Beech, J.; van der Lei, J.; Duarte-Salles, T.; Prieto-Alhambra, D.; Ansell, D.; Pasqua, A.; Lapi, F.; Rijnbeek, P.; et al. Real-world data reveal a diagnostic gap in non-alcoholic fatty liver disease. BMC Med. 2018, 16, 130. [Google Scholar] [CrossRef] [PubMed]
Characteristics | MASLD (n = 205) |
---|---|
Age (years) | 57.0 ± 13.4 |
Gender (male/female) | 51.2 (51.2)/48.8 (48.8) |
Body mass index (kg/m2) (<25.0/25.0–29.9/≥30.0) | 55 (26.8)/98 (47.8)/52 (25.4) |
Presence of type 2 diabetes | 65 (31.7) |
Presence of hypertension | 89 (43.4) |
Presence of dyslipidemia | 72 (35.1) |
Creatinine (mg/dL) | 1.0 ± 1.2 |
Hemoglobin (g/dL) | 13.8 ± 1.6 |
White blood count (103/µL) | 7.0 ± 2.0 |
Platelet count (103/µL) | 248.2 ± 72.1 |
Total bilirubin (mg/dL) | 0.7 ± 0.3 |
Serum albumin (g/dL) | 4.4 ± 0.3 |
Aspartate aminotransferase (IU/L) | 28.5 ± 13.8 |
Alanine aminotransferase (IU/L) | 36.4 ± 22.4 |
Alkaline phosphatase (IU/L) | 73.6 ± 27.1 |
Magnetic resonance elastography (kPa) | 2.9 ± 1.2 |
Proton density fat fraction (%) | 12.2 ± 7.5 |
Liver fibrosis stage (F0–1/F2/F3/F4) | 143 (69.8)/21 (10.2)/18 (8.8)/23 (11.2) |
Liver steatosis grade (S1/S2/S3) | 140 (68.3)/30 (14.6)/35 (17.1) |
Fibrosis Stage | AUROCs | COI | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | Accuracy (%) |
---|---|---|---|---|---|---|---|
≥F2 | 0.85 | 0.82 | 74.2 | 79.0 | 60.5 | 87.6 | 77.6 |
≥F3 | 0.91 | 0.95 | 80.5 | 86.6 | 60.0 | 94.7 | 85.4 |
F4 | 0.93 | 1.23 | 87.0 | 92.3 | 58.8 | 98.3 | 91.7 |
VCTE | M2BPGi | FIB-4 | APRI | NFS | |
---|---|---|---|---|---|
Age < 60 | 0.95 (0.89–1.00) | 0.85 (0.76–0.94) | 0.78 (0.65–0.92) | 0.74 (0.58–0.90) | 0.88 (0.80–0.96) |
Age ≥ 60 | 0.94 (0.89–0.99) | 0.84 (0.75–0.93) | 0.80 (0.70–0.90) | 0.80 (0.69–0.90) | 0.70 (0.58–0.83) |
BMI < 25 | 0.98 (0.95–1.00) | 0.85 (0.74–0.97) | 0.86 (0.75–0.97) | 0.76 (0.60–0.93) | 0.85 (0.73–0.97) |
BMI = 25.0–29.9 | 0.95 (0.89–1.00) | 0.86 (0.75–0.96) | 0.84 (0.75–0.94) | 0.83 (0.73–0.93) | 0.82 (0.72–0.92) |
BMI ≥ 30 | 0.89 (0.77–1.00) | 0.88 (0.77–0.99) | 0.74 (0.56–0.92) | 0.74 (0.54–0.93) | 0.70 (0.53–0.88) |
Factors | Category | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | ||
Age (years) | ≥60 vs. <60 | 2.19 (1.19–4.03) | 0.012 * | 1.07 (0.18–6.38) | 0.943 |
Gender | Male vs. Female | 1.29 (0.71–2.35) | 0.402 | ||
BMI (kg/m2) | ≥25 vs. <25 | 1.08 (0.55–2.12) | 0.828 | ||
Diabetes | Yes vs. No | 3.56 (1.89–6.69) | <0.001 * | 1.39 (0.33–5.74) | 0.653 |
Hypertension | Yes vs. No | 3.15 (1.70–5.86) | <0.001 * | 1.52 (0.36–6.36) | 0.568 |
Dyslipidemia | Yes vs. No | 0.83 (0.44–1.57) | 0.572 | ||
Aspartate aminotransferase (IU/L) | ≥40 vs. <40 | 8.94 (3.51–22.75) | <0.001 * | 1.66 (0.09–30.36) | 0.733 |
Alanine aminotransferase (IU/L) | ≥40 vs. <40 | 1.29 (0.68–2.43) | 0.432 | ||
Platelet count (109/L) | <150 vs. ≥150 | 6.10 (1.97–18.84) | 0.002 * | 2.12 (0.13–34.64) | 0.599 |
Liver steatosis grade | S2+S3 vs. S1 | 2.07 (1.03–4.18) | 0.042 * | 1.09 (0.24–4.97) | 0.909 |
PNPLA3 rs738409 | GG vs. CC+CG | 3.02 (1.63–5.58) | <0.001 * | 5.00 (1.15–21.81) | 0.032 * |
TM6SF2 rs58542926 | CT+TT vs. CC | 1.31 (0.66–2.59) | 0.438 | ||
HSD17B13 rs6834314 | AA vs. AG+GG | 1.50 (0.78–2.89) | 0.222 | ||
VCTE (kPa) | ≥7.6 vs. <7.6 | 28.39 (11.76–68.53) | <0.001 * | 21.78 (4.97–95.47) | <0.001 * |
M2BPGi (COI) | ≥0.82 vs. <0.82 | 25.19 (10.49–60.47) | <0.001 * | 11.16 (2.55–48.95) | 0.001 * |
FIB-4 | ≥1.30 vs. <1.30 | 8.36 (4.20–16.62) | <0.001 * | 3.06 (0.49–19.22) | 0.233 |
APRI | ≥0.50 vs. <0.50 | 16.95 (6.83–42.06) | <0.001 * | 0.87 (0.04–16.95) | 0.925 |
NFS | ≥1.455 vs. <1.455 | 4.20 (2.03–8.70) | <0.001 * | 1.01 (0.23–4.52) | 0.987 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ananchuensook, P.; Moonlisarn, K.; Boonkaew, B.; Bunchorntavakul, C.; Tangkijvanich, P. Diagnostic Performance of Serum Mac-2-Binding Protein Glycosylation Isomer as a Fibrosis Biomarker in Non-Obese and Obese Patients with MASLD. Biomedicines 2025, 13, 415. https://doi.org/10.3390/biomedicines13020415
Ananchuensook P, Moonlisarn K, Boonkaew B, Bunchorntavakul C, Tangkijvanich P. Diagnostic Performance of Serum Mac-2-Binding Protein Glycosylation Isomer as a Fibrosis Biomarker in Non-Obese and Obese Patients with MASLD. Biomedicines. 2025; 13(2):415. https://doi.org/10.3390/biomedicines13020415
Chicago/Turabian StyleAnanchuensook, Prooksa, Kamonchanok Moonlisarn, Bootsakorn Boonkaew, Chalermarat Bunchorntavakul, and Pisit Tangkijvanich. 2025. "Diagnostic Performance of Serum Mac-2-Binding Protein Glycosylation Isomer as a Fibrosis Biomarker in Non-Obese and Obese Patients with MASLD" Biomedicines 13, no. 2: 415. https://doi.org/10.3390/biomedicines13020415
APA StyleAnanchuensook, P., Moonlisarn, K., Boonkaew, B., Bunchorntavakul, C., & Tangkijvanich, P. (2025). Diagnostic Performance of Serum Mac-2-Binding Protein Glycosylation Isomer as a Fibrosis Biomarker in Non-Obese and Obese Patients with MASLD. Biomedicines, 13(2), 415. https://doi.org/10.3390/biomedicines13020415