Serum Carnosinase 1 Is Not Associated with Insulin Resistance or Glucose Metabolism in a Type 1 Diabetes Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort
2.2. CN1 Concentration Measurement
2.3. Renal Function and Serum Insulin
2.4. Glucose Variability
2.5. Statistics
2.6. Ethics Approval
3. Results
3.1. Patient Characteristics
3.2. Insulin Application Routes
3.3. Serum CN1 Concentration and Patients’ Characteristics
3.4. Insulin Sensitivity and Glucose Control
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petrazzuolo, A.; Sabiu, G.; Assi, E.; Maestroni, A.; Pastore, I.; Lunati, M.E.; Montefusco, L.; Loretelli, C.; Rossi, G.; Ben Nasr, M.; et al. Broadening Horizons in Mechanisms, Management, and Treatment of Diabetic Kidney Disease. Pharmacol. Res. 2023, 190, 106710. [Google Scholar] [CrossRef]
- Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global Estimates for the Prevalence of Diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef]
- Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and Pathophysiology of Carnosine. Physiol. Rev. 2013, 93, 1803–1845. [Google Scholar] [CrossRef]
- Sauerhöfer, S.; Yuan, G.; Braun, G.S.; Deinzer, M.; Neumaier, M.; Gretz, N.; Floege, J.; Kriz, W.; van der Woude, F.; Moeller, M.J. L-Carnosine, a Substrate of Carnosinase-1, Influences Glucose Metabolism. Diabetes 2007, 56, 2425–2432. [Google Scholar] [CrossRef]
- Riedl, E.; Pfister, F.; Braunagel, M.; Brinkkötter, P.; Sternik, P.; Deinzer, M.; Bakker, S.J.L.; Henning, R.H.; van den Born, J.; Krämer, B.K.; et al. Carnosine Prevents Apoptosis of Glomerular Cells and Podocyte Loss in STZ Diabetic Rats. Cell. Physiol. Biochem. 2011, 28, 279–288. [Google Scholar] [CrossRef]
- Anderson, E.J.; Vistoli, G.; Katunga, L.A.; Funai, K.; Regazzoni, L.; Monroe, T.B.; Gilardoni, E.; Cannizzaro, L.; Colzani, M.; De Maddis, D.; et al. A Carnosine Analog Mitigates Metabolic Disorders of Obesity by Reducing Carbonyl Stress. J. Clin. Investig. 2018, 128, 5280–5293. [Google Scholar] [CrossRef]
- Qiu, J.; Albrecht, T.; Zhang, S.; Hauske, S.J.; Rodriguez-Niño, A.; Zhang, X.; Nosan, D.; Pastene, D.O.; Sticht, C.; Delatorre, C.; et al. Human Carnosinase 1 Overexpression Aggravates Diabetes and Renal Impairment in BTBROb/Ob Mice. J. Mol. Med. 2020, 98, 1333–1346. [Google Scholar] [CrossRef]
- Janssen, B.; Hohenadel, D.; Brinkkoetter, P.; Peters, V.; Rind, N.; Fischer, C.; Rychlik, I.; Cerna, M.; Romzova, M.; de Heer, E.; et al. Carnosine as a Protective Factor in Diabetic Nephropathy: Association with a Leucine Repeat of the Carnosinase Gene CNDP1. Diabetes 2005, 54, 2320–2327. [Google Scholar] [CrossRef]
- Alkhalaf, A.; Bakker, S.J.L.; Bilo, H.J.G.; Gans, R.O.B.; Navis, G.J.; Postmus, D.; Forsblom, C.; Groop, P.H.; Vionnet, N.; Hadjadj, S.; et al. A Polymorphism in the Gene Encoding Carnosinase (CNDP1) as a Predictor of Mortality and Progression from Nephropathy to End-Stage Renal Disease in Type 1 Diabetes Mellitus. Diabetologia 2010, 53, 2562–2568. [Google Scholar] [CrossRef]
- Everaert, I.; He, J.; Hanssens, M.; Stautemas, J.; Bakker, K.; Albrecht, T.; Zhang, S.; Van der Stede, T.; Vanhove, K.; Hoetker, D.; et al. Carnosinase-1 Overexpression, but Not Aerobic Exercise Training, Affects the Development of Diabetic Nephropathy in BTBR Ob/Ob. Mice. Am. J. Physiol.-Ren. Physiol. 2020, 318, F1030–F1040. [Google Scholar] [CrossRef]
- Schmöhl, F.; Peters, V.; Schmitt, C.P.; Poschet, G.; Büttner, M.; Li, X.; Weigand, T.; Poth, T.; Volk, N.; Morgenstern, J.; et al. CNDP1 Knockout in Zebrafish Alters the Amino Acid Metabolism, Restrains Weight Gain, but Does Not Protect from Diabetic Complications. Cell. Mol. Life Sci. 2019, 76, 4551–4568. [Google Scholar] [CrossRef]
- Everaert, I.; Taes, Y.; De Heer, E.; Baelde, H.; Zutinic, A.; Yard, B.; Sauerhöfer, S.; Vanhee, L.; Delanghe, J.; Aldini, G.; et al. Low Plasma Carnosinase Activity Promotes Carnosinemia after Carnosine Ingestion in Humans. Am. J. Physiol.-Ren. Physiol. 2012, 302, F1537–F1544. [Google Scholar] [CrossRef]
- Albrecht, T.; Schilperoort, M.; Zhang, S.; Braun, J.D.; Qiu, J.; Rodriguez, A.; Pastene, D.O.; Krämer, B.K.; Köppel, H.; Baelde, H.; et al. Carnosine Attenuates the Development of Both Type 2 Diabetes and Diabetic Nephropathy in BTBR Ob/Ob Mice. Sci. Rep. 2017, 7, 44492. [Google Scholar] [CrossRef]
- Houjeghani, S.; Kheirouri, S.; Faraji, E.; Jafarabadi, M.A. L-Carnosine Supplementation Attenuated Fasting Glucose, Triglycerides, Advanced Glycation End Products, and Tumor Necrosis Factor– α Levels in Patients with Type 2 Diabetes: A Double-Blind Placebo-Controlled Randomized Clinical Trial. Nutr. Res. 2018, 49, 96–106. [Google Scholar] [CrossRef]
- De Courten, B.; Jakubova, M.; De Courten, M.P.J.; Kukurova, I.J.; Vallova, S.; Krumpolec, P.; Valkovic, L.; Kurdiova, T.; Garzon, D.; Barbaresi, S.; et al. Effects of Carnosine Supplementation on Glucose Metabolism: Pilot Clinical Trial. Obesity 2016, 24, 1027–1034. [Google Scholar] [CrossRef]
- Elbarbary, N.S.; Ismail, E.A.R.; El-Naggar, A.R.; Hamouda, M.H.; El-Hamamsy, M. The Effect of 12 Weeks Carnosine Supplementation on Renal Functional Integrity and Oxidative Stress in Pediatric Patients with Diabetic Nephropathy: A Randomized Placebo-Controlled Trial. Pediatr. Diabetes 2018, 19, 470–477. [Google Scholar] [CrossRef]
- Karkabounas, S.; Papadopoulos, N.; Anastasiadou, C.; Gubili, C.; Peschos, D.; Daskalou, T.; Fikioris, N.; Simos, Y.V.; Kontargiris, E.; Gianakopoulos, X.; et al. Effects of α-Lipoic Acid, Carnosine, and Thiamine Supplementation in Obese Patients with Type 2 Diabetes Mellitus: A Randomized, Double-Blind Study. J. Med. Food 2018, 21, 1197–1203. [Google Scholar] [CrossRef]
- Van Dijk, P.R.; Groenier, K.H.; Devries, J.H.; Gans, R.O.B.; Kleefstra, N.; Bilo, H.J.G.; Logtenberg, S.J.J. Continuous Intraperitoneal Insulin Infusion versus Subcutaneous Insulin Therapy in the Treatment of Type 1 Diabetes: Effects on Glycemic Variability. Diabetes Technol. Ther. 2015, 17, 379–384. [Google Scholar] [CrossRef]
- Vardarli, I.; Baier, L.J.; Hanson, R.L.; Akkoyun, I.; Fischer, C.; Rohmeiss, P.; Basci, A.; Bartram, C.R.; Van der Woude, F.J.; Janssen, B. Gene for Susceptibility to Diabetic Nephropathy in Type 2 Diabetes Maps to 18q22.3-23. Kidney Int. 2002, 62, 2176–2183. [Google Scholar] [CrossRef]
- McDonough, C.W.; Hicks, P.J.; Lu, L.; Langefeld, C.D.; Freedman, B.I.; Bowden, D.W. The Influence of Carnosinase Gene Polymorphisms on Diabetic Nephropathy Risk in African-Americans. Hum. Genet. 2009, 126, 265–275. [Google Scholar] [CrossRef]
- Chakkera, H.A.; Hanson, R.L.; Kobes, S.; Millis, M.P.; Nelson, R.G.; Knowler, W.C.; Distefano, J.K. Association of Variants in the Carnosine Peptidase 1 Gene (CNDP1) with Diabetic Nephropathy in American Indians. Mol. Genet. Metab. 2011, 103, 185–190. [Google Scholar] [CrossRef]
- Ahluwalia, T.S.; Lindholm, E.; Groop, L.C. Common Variants in CNDP1 and CNDP2, and Risk of Nephropathy in Type 2 Diabetes. Diabetologia 2011, 54, 2295–2302. [Google Scholar] [CrossRef]
- Kurashige, M.; Imamura, M.; Araki, S.-I.; Suzuki, D.; Babazono, T.; Uzu, T.; Umezono, T.; Toyoda, M.; Kawai, K.; Imanishi, M.; et al. The Influence of a Single Nucleotide Polymorphism within CNDP1 on Susceptibility to Diabetic Nephropathy in Japanese Women with Type 2 Diabetes. PLoS ONE 2013, 8, e54064. [Google Scholar] [CrossRef]
- Wanic, K.; Placha, G.; Dunn, J.; Smiles, A.; Warram, J.H.; Krolewski, A.S. Exclusion of Polymorphisms in Carnosinase Genes (CNDP1 and CNDP2) as a Cause of Diabetic Nephropathy in Type 1 Diabetes: Results of Large Case-Control and Follow-up Studies. Diabetes 2008, 57, 2547–2551. [Google Scholar] [CrossRef] [PubMed]
- Peters, V.; Riedl, E.; Braunagel, M.; Höger, S.; Hauske, S.; Pfister, F.; Zschocke, J.; Lanthaler, B.; Benck, U.; Hammes, H.P.; et al. Carnosine Treatment in Combination with ACE Inhibition in Diabetic Rats. Regul. Pept. 2015, 194, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Miceli, V.; Pampalone, M.; Frazziano, G.; Grasso, G.; Rizzarelli, E.; Ricordi, C.; Casu, A.; Iannolo, G.; Conaldi, P.G. Carnosine Protects Pancreatic Beta Cells and Islets against Oxidative Stress Damage. Mol. Cell Endocrinol. 2018, 474, 105–118. [Google Scholar] [CrossRef]
- Barca, A.; Gatti, F.; Spagnolo, D.; Ippati, S.; Vetrugno, C.; Verri, T. Responsiveness of Carnosine Homeostasis Genes in the Pancreas and Brain of Streptozotocin-Treated Mice Exposed to Dietary Carnosine. Int. J. Mol. Sci. 2018, 19, 1713. [Google Scholar] [CrossRef] [PubMed]
- Cripps, M.J.; Hanna, K.; Lavilla, C.; Sayers, S.R.; Caton, P.W.; Sims, C.; De Girolamo, L.; Sale, C.; Turner, M.D. Carnosine Scavenging of Glucolipotoxic Free Radicals Enhances Insulin Secretion and Glucose Uptake. Sci. Rep. 2017, 7, 13313. [Google Scholar] [CrossRef]
- LeBlanc, J.; Soucy, J. Effects of Carnosine on Insulin and Glucagon Secretion in the Dog. Nutr. Res. 1994, 14, 1655–1660. [Google Scholar] [CrossRef]
- Gualano, B.; Everaert, I.; Stegen, S.; Artioli, G.G.; Taes, Y.; Roschel, H.; Achten, E.; Otaduy, M.C.; Junior, A.H.; Harris, R.; et al. Reduced muscle carnosine content in type 2, but not in type 1 diabetic patients. Amino Acids 2012, 43, 21–44. [Google Scholar] [CrossRef]
- Yahya, M.J.; Ismail, P.B.; Nordin, N.B.; Akim, A.B.M.; Binti Md Yusuf, W.S.; Adam, N.L.B.; Zulkifli, N.F. CNDP1, NOS3, and MnSOD Polymorphisms as Risk Factors for Diabetic Nephropathy among Type 2 Diabetic Patients in Malaysia. J. Nutr. Metab. 2019, 2019, 8736215. [Google Scholar] [CrossRef]
- Mooyaart, A.L.; Zutinic, A.; Bakker, S.J.L.; Grootendorst, D.C.; Kleefstra, N.; Van Valkengoed, I.G.M.; Böhringer, S.; Bilo, H.J.G.; Dekker, F.W.; Bruijn, J.A.; et al. Association between CNDP1 Genotype and Diabetic Nephropathy Is Sex Specific. Diabetes 2010, 59, 1555–1559. [Google Scholar] [CrossRef] [PubMed]
CN1 Concentration Tertiles b,c | |||||||
---|---|---|---|---|---|---|---|
n | Descriptives a | Tertile 1 (n = 57) | Tertile 2 (n = 58) | Tertile 3 (n = 57) | p-Value | ||
age [years] | 172 | 50.3 | (12.5) | 49.8 (13.5) | 52.3 (12.3) | 48.7 (11.7) | 0.29 |
gender [% male] | 172 | 63.0 | % female | 63.2% | 62.1% | 61.4% | 0.98 |
BMI [kg/m2] | 172 | 26.4 | (4.5) | 26.2 (4.5) | 26.2 (4.2) | 26.7 (4.9) | 0.80 |
diabetes duration [years] | 172 | 26.3 | (12.3) | 25.9 (12.5) | 26.7 (12.9) | 26.4 (11.6) | 0.94 |
HbA1c [mmol/mol] | 172 | 63.7 | (10.2) | 65.6 (9.9) | 63.3 (10.5) | 62.2 (10.1) | 0.20 |
SBP [mmHg] | 172 | 136.7 | (18.1) | 136.1 (19.5) | 137.3 (18.1) | 137.5 (16.7) | 0.90 |
DBP [mmHg] | 172 | 79.6 | (10.7) | 77.8 (11.5) | 79.9 (11.7) | 81.3 (8.4) | 0.22 |
plasma creatinine [µmol/L] | 172 | 69.3 | (12.7) | 69. 8 (14.1) | 70.6 (13.1) | 67.5 (10.6) | 0.40 |
eGFR CKD-Epi [mL/min/1.73 m2] | 172 | 96.3 | (16.0) | 96.1 (16.8) | 93.3 (17.4) | 99.5 (13.2) | 0.12 |
urinary ACR [mg/mmol] | 169 | 0.9 | [1.2] | 0.8 [1.3] | 0.6 [1.3] | 1.0 [1.5] | 0.52 |
Insulin dose [IU/kg body weight] | 171 | 0.7 | (0.2) | 0.6 (0.2) | 0.6 (0.2) | 0.7 (0.3) | 0.09 |
continuous glucose monitor | |||||||
mean glucose [mmol/L] | 158 | 9.6 | (1.9) | 10.1 (1.9) | 9.6 (1.9) | 9.3 (1.9) | 0.09 |
SD of individual blood glucose [mmol/L] | 158 | 3.9 | (0.9) | 4.0 (0.9) | 3.8 (0.9) | 3.8 (0.8) | 0.32 |
coefficient of variance [%] | 158 | 40.8 | (8.7) | 40.4 (8.4) | 40.8 (9.6) | 41.4 (8.3) | 0.84 |
MAGE [mmol/L] | 158 | 7.8 | (2.5) | 8.1 (2.3) | 7.6 (2.5) | 7.7 (2.6) | 0.49 |
MODD [mmol/L] | 157 | 4.1 | (1.3) | 4.3 (1.3) | 4.1 (1.7) | 3.9 (1.0) | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, J.; Yard, B.A.; Krämer, B.K.; van Goor, H.; van Dijk, P.R.; Kannt, A. Serum Carnosinase 1 Is Not Associated with Insulin Resistance or Glucose Metabolism in a Type 1 Diabetes Cohort. Biomedicines 2025, 13, 366. https://doi.org/10.3390/biomedicines13020366
Qiu J, Yard BA, Krämer BK, van Goor H, van Dijk PR, Kannt A. Serum Carnosinase 1 Is Not Associated with Insulin Resistance or Glucose Metabolism in a Type 1 Diabetes Cohort. Biomedicines. 2025; 13(2):366. https://doi.org/10.3390/biomedicines13020366
Chicago/Turabian StyleQiu, Jiedong, Benito A. Yard, Bernhard K. Krämer, Harry van Goor, Peter R. van Dijk, and Aimo Kannt. 2025. "Serum Carnosinase 1 Is Not Associated with Insulin Resistance or Glucose Metabolism in a Type 1 Diabetes Cohort" Biomedicines 13, no. 2: 366. https://doi.org/10.3390/biomedicines13020366
APA StyleQiu, J., Yard, B. A., Krämer, B. K., van Goor, H., van Dijk, P. R., & Kannt, A. (2025). Serum Carnosinase 1 Is Not Associated with Insulin Resistance or Glucose Metabolism in a Type 1 Diabetes Cohort. Biomedicines, 13(2), 366. https://doi.org/10.3390/biomedicines13020366