Clinical Electrophysiology and Mathematical Modeling for Precision Diagnosis of Infertility
Abstract
:1. Introduction
2. Electrophysiology and Mathematical Models
3. Follicle-Stimulating Hormone Alters the Plasma Membrane Potential in Sertoli Cells
4. Thyroid Hormones Act on Sertoli Cells by Activating Potassium Channels
5. The Influence of Retinol on Calcium and Potassium Channels in Sertoli Cells
6. Testosterone Modulates Electrical Activities in Sertoli Cells
7. 1,α25(OH)2 Vitamin D3 Activates Chloride Channels and Exocytosis in Sertoli Cells
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carreau, S.; Bouraima-Lelong, H.; Delalande, C. Estrogens in male germ cells. Spermatogenesis 2011, 1, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Yuanyuan, Z.; Guicheng, Z.; Yi, Z.; Jiang, X. From biological marker to clinical application: The role of anti-Müllerian hormone (AMH) for delayed puberty and idiopathic non-obstructive azoospermia in males. Endocr. Connect. 2025, EC-24-0630. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.; Walia, R.; Quinton, R. Basal and stimulated inhibin B in pubertal disorders. J. Clin. Endocrinol. Metab. 2025, Dgaf005. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Guo, Y.; Muhammad, S.; Zhu, J.; Liu, Y.; Liu, C. The effects of the Wnt/β-catenin signaling pathway on the in vitro differentiation of rat BMSCs into leydig cells. Sci. Rep. 2025, 15, 1177. [Google Scholar] [CrossRef]
- Li, X.; Shi, Y.; Liu, S.; Feng, Z.; Xiao, H.; Li, R.; Li, Z.; Zhang, X.; Han, Y.; Wang, J.; et al. Sulfur dioxide increases testosterone biosynthesis by activating ERK1/2 pathway and disrupting autophagy in Leydig cells. J. Hazard. Mater. 2024, 486, 137001. [Google Scholar] [CrossRef]
- Kabelikova, P.; Ivovic, D.; Sumbalova, Z.; Karhanek, M.; Tatayova, L.; Skopkova, M.; Cagalinec, M.; Bruderova, V.; Roska, J.; Jurkovicova, D. Mitochondrial genome variability and metabolic alterations reveal new biomarkers of resistance in testicular germ cell tumors. Cancer Drug Resist. 2024, 7, 54. [Google Scholar] [CrossRef]
- Loss, E.S.; Jacobus, A.P.; Wassermann, G.F. Rapid signaling responses in Sertoli cell membranes induced by follicle stimulating hormone and testosterone: Calcium inflow and electrophysiological changes. Life Sci. 2011, 89, 577–583. [Google Scholar] [CrossRef]
- Oliveira, P.F.; Alves, M.G. Sertoli Cell Metabolism and Spermatogenesis, 1st ed.; Springer International Publishing: Cham, Switzerland, 2015; Volume 11, ISBN 978-3-319-19790-6. [Google Scholar]
- Zheng, Y.; Yuan, J.; Meng, S.; Chen, J.; Gu, Z. Testicular transcriptome alterations in zebrafish (Danio rerio) exposure to 17β-estradiol. Chemosphere 2019, 218, 14–25. [Google Scholar] [CrossRef]
- Rato, L.; Alves, M.G.; Socorro, S.; Duarte, A.I.; Cavaco, J.E.; Oliveira, P.F. Metabolic regulation is important for spermatogenesis. Nat. Rev. Urol. 2012, 9, 330–338. [Google Scholar] [CrossRef]
- Fomichova, O.; Oliveira, P.F.; Bernardino, R.L. Exploring the interplay between inflammation and male fertility. FEBS J. 2024. [Google Scholar] [CrossRef]
- Chen, J.; Cen, C.; Wang, M.; Qin, S.; Liu, B.; Shen, Z.; Cui, X.; Hou, X.; Gao, F.; Chen, M. Foxo1 directs the transdifferentiation of mouse Sertoli cells into granulosa-like cells. J. Genet. Genomics. 2024. [Google Scholar] [CrossRef]
- Huang, R.; Xia, H.; Lin, W.; Wang, Z.; Li, L.; Deng, J.; Ye, T.; Li, Z.; Yang, Y.; Huang, Y. Riluzole Reverses Blood-Testis Barrier Loss to Rescue Chemotherapy-Induced Male Infertility by Binding to TRPC. Cells 2024, 13, 2016. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.T.; Nguyen, H.B.; Dinh, H.V.; Jannini, E.A. Association of testicular histopathology with sperm retrieval success rates in men with idiopathic non-obstructive azoospermia. Aging Male. 2025, 28, 2436850. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, Z.A.; Melin, V.E.; Hrubec, T.C. Quaternary ammonium compound exposure causes infertility by altering endocrine signaling and gametogenesis. Reprod Toxicol. 2024, 132, 108817. [Google Scholar] [CrossRef]
- Gómez-Zúñiga, A.; Landero-Huerta, D.A.; Rojas-Castañeda, J.C.; Sánchez-Huerta, K.; Contreras-García, I.J.; Reynoso-Robles, R.; Arteaga-Silva, M.; Vigueras-Villaseñor, R.M. Methimazole-induced congenital hypothyroidism affects gonocytes differentiation and arrests meiosis: Role of Sertoli cells. Front. Cell Dev. Biol. 2024, 12, 1493872. [Google Scholar] [CrossRef] [PubMed]
- Menegaz, D.; Royer, C.; Rosso, A.; de Souza, A.Z.P.; dos Santos, A.R.S.; Silva, F.R.M.B. Rapid stimulatory effect of thyroxine on plasma membrane transport systems: Calcium uptake and neutral amino acid accumulation in immature rat testis. Int. J. Biochem. Cell Biol. 2010, 42, 1046–1051. [Google Scholar] [CrossRef]
- Menegaz, D.; Barrientos-Duran, A.; Kline, A.; Silva, F.R.M.B.; Norman, A.W.; Mizwicki, M.T.; Zanello, L.P. 1α,25(OH)2-Vitamin D3 stimulation of secretion via chloride channel activation in Sertoli cells. J. Steroid Biochem. Mol. Biol. 2010, 119, 127–134. [Google Scholar] [CrossRef]
- Crocetto, F.; Risolo, R.; Colapietro, R.; Bellavita, R.; Barone, B.; Ballini, A.; Arrigoni, R.; Francesco Caputo, V.; Luca, G.; Grieco, P.; et al. Heavy Metal Pollution and Male Fertility: An Overview on Adverse Biological Effects and Socio-Economic Implications. Endocr. Metab. Immune Disord. Drug Targets. 2023, 23, 129–146. [Google Scholar]
- Napolitano, L.; Barone, B.; Crocetto, F.; Capece, M.; La Rocca, R. The COVID-19 Pandemic: Is It A Wolf Consuming Fertility? Int. J. Fertil. Steril. 2020, 14, 159–160. [Google Scholar] [CrossRef]
- Wassermann, G.F.; Block, L.M.; Grillo, M.L.; Silva, F.R.M.B.; Loss, E.S.; McConnell, L. Electrophysiological Changes of Sertoli Cells Produced by the Acute Administration of Amino Acid and FSH. Horm. Metab. Res. 1992, 24, 326–328. [Google Scholar] [CrossRef]
- Zanatta, A.P.; Gonçalves, R.; Zanatta, L.; de Oliveria, G.T.; Ludwig Moraes, A.L.; Zamoner, A.; Fernández-Dueñas, V.; Lanznaster, D.; Ciruela, F.; Tasca, C.I.; et al. New ionic targets of 3,3′,5′-triiodothyronine at the plasma membrane of rat Sertoli cells. Biochim. Biophys. Acta Biomembr. 2019, 1861, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.D.; Contreras, G.F.; Shen, R.; Perozzo, E. Electromechanical coupling in the hyperpolarization activated K+ channel KTAT1. Nature 2020, 583, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Hamill, O.P.; Marty, A.; Neher, E.; Sakmann, B.; Sigworth, F.J. Improved patch-clamp techniques for higjpresolution current recording from cell and cell-free membrane patches. Pflügers Archiv Eur. J. Physiol. 1981, 391, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Quattrone, A.; Zappia, M.; Quattrone, A. Simple biomarkers to distinguish Parkinson’s disease from its mimics in clinical practice: A comprehensive review and future directions. Front. Neurol. 2024, 15, 1460576. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, M.; Roshandel, H.; Rahimibarghani, S.; Rihani, T.S.S.; Mohammadyahya, E. Predictors of pain intensity in carpal tunnel syndrome: Development and validation of a model. Clin. Neurol. Neurosurg. 2024, 243, 108395. [Google Scholar] [CrossRef]
- Haefner, J.W. Modelling Biological Principles and Applications; Springer: New York, NY, USA, 2005; ISBN 9780387250120. [Google Scholar]
- Waranda, A.V. Eletrofisiologia Celular; Sarvier Editora: São Paulo, Brasil, 2024; Volume 1, pp. 1–284. ISBN 978-65-5686-051-0. [Google Scholar]
- Escott, G.; da Rosa, L.; Loss, E. Mechanisms of Hormonal Regulation of Sertoli Cell Development and Proliferation: A Key Process for Spermatogenesis. Curr. Mol. Pharmacol. 2015, 7, 96–108. [Google Scholar] [CrossRef]
- Hodgkin, A.; Huxley, A. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500. [Google Scholar] [CrossRef]
- Hernandez, J.; Fischbarg, J.; Liebovitch, L.S. Kinetic model of the effects of electrogenic enzymes on the membrane potential. J. Theor. Biol. 1989, 137, 113–125. [Google Scholar] [CrossRef]
- Taques, B.O.M.; Gamba, H.R.; Menegaz, D.; Silva, F.R.M.B.; Suzuki, D.O.H. Predictions from a mathematical approach to model ionic signaling for rapid responses of Sertoli cells exhibit similarities to pharmacological approaches. Biomed. Phys. Eng. Express 2023, 9, 065010. [Google Scholar] [CrossRef]
- Sharpe, R.; McKinnell, C.; Kivlin, C.; Fisher, J. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 2003, 125, 769–784. [Google Scholar] [CrossRef]
- Li, L.; Lin, W.; Wang, Z.; Huang, R.; Xia, H.; Li, Z.; Deng, J.; Ye, T.; Huang, Y.; Yang, Y. Hormone Regulation in Testicular Development and Function. Int. J. Mol. Sci. 2024, 25, 5805. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, I.; Pradhan, B.S.; Sarda, K.; Gautam, M.; Basu, S.; Majumdar, S.S. A switch in Sertoli cell responsiveness to FSH may be responsible for robust onset of germ cell differentiation during prepubartal testicular maturation in rats. Am. J. Physiol. Metab. 2012, 303, E886–E898. [Google Scholar] [CrossRef] [PubMed]
- Jabarpour, M. Evaluation of the effect of follicular stimulating hormone on the in vitro bovine spermatogonial stem cells self-renewal: An experimental study. Int. J. Reprod. Biomed. 2017, 15, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.A.; Joseph, S.; Mahale, S.D. From cell surface to signalling and back: The life of the mammalian FSH receptor. FEBS J. 2021, 288, 2673–2696. [Google Scholar] [CrossRef]
- Gloaguen, P. Mapping the follicle-stimulating hormone-induced signaling networks. Front. Endocrinol. 2011, 2, 45. [Google Scholar] [CrossRef]
- van Haaster, L.H.; de Jong, F.H.; Docter, R.; Rooij, D.G. de High neonatal triiodothyronine levels reduce the period of Sertoli cell proliferation and accelerate tubular lumen formation in the rat testis, and increase serum inhibin levels. Endocrinology 1993, 133, 755–760. [Google Scholar] [CrossRef]
- Vassy, R.; Nicolas, P.; Yin, Y.-L.; Perret, G.-Y. Nongenomic Effect of Triiodothyronine on Cell Surface -Adrenoceptors in Cultured Embryonic Cardiac Myocytes. Exp. Biol. Med. 1997, 214, 352–358. [Google Scholar] [CrossRef]
- Menegaz, D.; Zamoner, A.; Royer, C.; Leite, L.D.; Bortolotto, Z.A.; Silva, F.R.M.B. Rapid responses to thyroxine in the testis: Active protein synthesis-independent pathway. Mol. Cell Endocrinol. 2006, 246, 128–134. [Google Scholar] [CrossRef]
- Yu, Z.; Huang, C.X.; Wang, S.Y.; Wang, T.; Xu, L. Thyroid hormone predisposes rabbits to atrial arrhythmias by shortening monophasic action period and effective refractory period: Results from an in vivo study. J. Endocrinol. Invest. 2009, 32, 253–257. [Google Scholar] [CrossRef]
- Zanatta, A.P.; Zanatta, L.; Gonçalves, R.; Zamoner, A.; Silva, F.R.M.B. Rapid Responses to Reverse T3 Hormone in Immature Rat Sertoli Cells: Calcium Uptake and Exocytosis Mediated by Integrin. PLoS ONE 2013, 8, e77176. [Google Scholar] [CrossRef]
- Aranda, A. Thyroid Hormone Action by Genomic and Nongenomic Molecular Mechanisms. Methods Mol. Biol. 2025, 2876, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Livera, G.; Rouiller-Fabre, V.; Pairault, C.; Levacher, C.; Habert, R. Regulation and perturbation of testicular functions by vitamin A. Reproduction 2002, 124, 173–180. [Google Scholar] [CrossRef]
- Dufour, J.M.; Kim, K.H. Cellular and Subcellular Localization of Six Retinoid Receptors in Rat Testis During Postnatal Development: Identification of Potential Heterodimeric Receptors1. Biol. Reprod. 1999, 61, 1300–1308. [Google Scholar] [CrossRef] [PubMed]
- Menegaz, D.; Mendes, A.K.B.; Silva, F.R.M.B. Physiological Functions of Potassium and Chloride Channels through Non-Classical Hormone Signal Transduction in Sertoli Cells: Clinical Significance. In Advances in Medicine and Biology; Berhardt, L.V., Ed.; Advances in Medicine and Biology; Nova Science Publishers: New York, NY, USA, 2021; Volume 188, ISBN 9781685071790. [Google Scholar]
- Loss, E.S.; Barreto, K.P.; Leite, L.; Wassermann, G.F. Comparative study of the actions of isoproterenol and retinol in the amino acid accumulation. Med. Sci. Res. 1998, 26, 195–199. [Google Scholar]
- do Nascimento, M.A.W.; Cavalari, F.C.; Staldoni de Oliveria, V.; Gonçalves, R.; Menegaz, D.; da Silveira Loss, E.; Silva, F.R.M.B. Crosstalk in the non-classical signal transduction of testosterone and retinol in immature rat testes. Steroids 2020, 153, 108522. [Google Scholar] [CrossRef]
- Jacobus, A.P.; Rodrigues, D.O.; Borba, P.F.; Loss, E.S.; Wassermann, G.F. Isoproterenol opens K+(ATP) channels via a beta2-adrenoceptor-linked mechanism in Sertoli cells from immature rats. Horm. Metab. Res. 2005, 37, 198–204. [Google Scholar] [CrossRef]
- Cavalari, F.C.; da Rosa, L.A.; Escott, G.M.; Dourado, T.; de Castro, A.L.; Kohek, M.B.d.F.; Ribeiro, M.F.M.; Partata, W.A.; de Fraga, L.S.; Loss, E.d.S. Epitestosterone- and testosterone-replacement in immature castrated rats changes main testicular developmental characteristics. Mol. Cell Endocrinol. 2018, 461, 112–121. [Google Scholar] [CrossRef]
- Merke, J.; Hügel, U.; Ritz, E. Nuclear testicular 1,25-dihydroxyvitamin D3 receptors in sertoli cells and seminiferous tubules of adult rodents. Biochem. Biophys. Res. Commun. 1985, 127, 303–309. [Google Scholar] [CrossRef]
- Haussler, M.R.; Jurutka, P.W.; Mizwicki, M.; Norman, A.W. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)2vitamin D3: Genomic and non-genomic mechanisms. Best. Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 543–559. [Google Scholar] [CrossRef]
- Mizwicki, M.T.; Norman, A.W. The vitamin D sterol-vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signaling. Sci. Signal. 2009, 2, re4. [Google Scholar] [CrossRef]
- Sequeira, V.B.; Rybchyn, M.S.; Gordon-Thomson, C.; Tongkao-On, W.; Mizwicki, M.T.; Norman, A.W.; Reeve, V.E.; Halliday, G.M.; Mason, R.S. Opening of chloride channels by 1α,25-dihydroxyvitamin D3 contributes to photoprotection against UVR-induced thymine dimers in keratinocytes. J. Investig. Dermatol. 2013, 133, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Mizwicki, M.T.; Menegaz, D.; Yaghmaei, S.; Henry, H.L.; Norman, A.W. A molecular description of ligand binding to the two overlapping binding pockets of the nuclear vitamin D receptor (VDR): Structure-function implications. J. Steroid Biochem. Mol. Biol. 2010, 121, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Osmundsen, B.C.; Huang, H.F.; Anderson, M.B.; Christakos, S.; Walters, M.R. Multiple sites of action of the vitamin D endocrine system: FSH stimulation of testis 1,25-dihydroxyvitamin D3 receptors. J. Steroid Biochem. 1989, 34, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Ei-Samahy, M.A.; Yang, H.; Feng, X.; Li, F.; Meng, F.; Nie, H.; Wang, F. Age-associated expression of vitamin D receptor and vitamin D-metabolizing enzymes in the male reproductive tract and sperm of Hu sheep. Anim. Reprod. Sci. 2018, 190, 27–38. [Google Scholar] [CrossRef]
- Silva, F.R.M.B. Functional Importance of 1 α,25(OH)2-Vitamin D3 and the Identification of Its Nongenomic and Genomic Signaling Pathways in the Testis. Adv. Androl. 2014, 2014. [Google Scholar] [CrossRef]
- Rosso, A.; Pansera, M.; Zamoner, A.; Zanatta, L.; Bouraïma-Lelong, H.; Carreau, S.; Silva, F.R.M.B. 1α,25(OH)2-vitamin D3 stimulates rapid plasma membrane calcium influx via MAPK activation in immature rat Sertoli cells. Biochimie 2012, 94, 146–154. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalari, F.C.; Mendes, P.S.; Zaniboni, B.A.; Royer, C.; Taques, B.O.M.; Cesca, K.; Aragón, M.; Silva, F.R.M.B. Clinical Electrophysiology and Mathematical Modeling for Precision Diagnosis of Infertility. Biomedicines 2025, 13, 250. https://doi.org/10.3390/biomedicines13020250
Cavalari FC, Mendes PS, Zaniboni BA, Royer C, Taques BOM, Cesca K, Aragón M, Silva FRMB. Clinical Electrophysiology and Mathematical Modeling for Precision Diagnosis of Infertility. Biomedicines. 2025; 13(2):250. https://doi.org/10.3390/biomedicines13020250
Chicago/Turabian StyleCavalari, Fernanda Carvalho, Paola Sulis Mendes, Bruna Antunes Zaniboni, Carine Royer, Bárbara Ogliari Martins Taques, Karina Cesca, Marcela Aragón, and Fátima Regina Mena Barreto Silva. 2025. "Clinical Electrophysiology and Mathematical Modeling for Precision Diagnosis of Infertility" Biomedicines 13, no. 2: 250. https://doi.org/10.3390/biomedicines13020250
APA StyleCavalari, F. C., Mendes, P. S., Zaniboni, B. A., Royer, C., Taques, B. O. M., Cesca, K., Aragón, M., & Silva, F. R. M. B. (2025). Clinical Electrophysiology and Mathematical Modeling for Precision Diagnosis of Infertility. Biomedicines, 13(2), 250. https://doi.org/10.3390/biomedicines13020250