Novel Translational Concept: Axon-to-Muscle Exosomal Signaling as an Emerging Therapeutic Target in Spinal Muscular Atrophy
Abstract
1. Introduction
2. Neuromuscular Crosstalk: Beyond Classical Neurotransmission
2.1. Conventional NMJ Signaling
2.2. Exosomes as Signaling Entities in Neuromuscular Systems
3. Exosomes in Neuromuscular Disorders: Untapped Therapeutic Potential
| Author(s) and Year | Central Thesis | Key Positive Insights | Key Limitations | Conclusion |
|---|---|---|---|---|
| Anakor et al. (2021) [60] | Exosomes function as both pathogenic and therapeutic mediators in motor neuron diseases. | Cross the blood-brain barrier; carry diverse RNA/protein cargo; enable minimally invasive biomarkers; allow engineering for targeting. | Possible spread of pathogenic proteins; weak intrinsic targeting; uncertain safety; lack of standardization. | High therapeutic and diagnostic promise but requires controlled engineering and safety validation. |
| Bonafede et al. (2016) [61] | Stromal cell-derived exosomes exert neuroprotection in ALS cell models. | Reduce oxidative stress; support neuronal survival; improve mitochondrial homeostasis. | In vitro only; unclear in vivo mechanisms; no human data. | Promising early evidence; needs in vivo and clinical translation. |
| Bonafede et al. (2020) [62] | ASC-exosomes slow ALS progression in mouse models. | Improve motor function and survival; feasible non-cellular therapy; repeated dosing effective. | Dosing and delivery not optimized; long-term safety unknown; production challenges. | Strong preclinical support for clinical development. |
| Leng et al. (2021) [68] | Exosomes enhance muscle membrane stability in DMD. | Restore muscle integrity; delay progression; multiple feasible cell sources. | No human studies; dosing unresolved; possible off-target effects. | Novel therapeutic avenue for DMD; needs further validation. |
| Wu et al. (2025) [69] | Intranasal MSC-exosomes reduce neuroinflammation and improve outcomes in EAE. | Non-invasive delivery; strong anti-inflammatory effects; broad CNS applicability. | Only animal models; human immune effects unclear; dosing uncertain. | Intranasal route is promising for neuromodulation strategies. |
| René & Parks (2025) [81] | EVs deliver SMN protein across tissue barriers to rescue SMA phenotypes. | Direct protein replacement; bypasses limitations of gene therapy; robust functional rescue in models. | Human safety not tested; production scalability unresolved. | Potential paradigm shift in SMA therapy pending translational steps. |
| Trifunov et al. (2023) [82] | EV-based SMN transcript quantification tracks SMA therapy response. | Enables non-invasive monitoring; supports dose adjustment; may predict outcomes. | Not therapeutic; requires validation; standardization of workflows needed. | Valuable biomarker tool for SMA therapy optimization. |
| Chen et al. (2025) [83] | Muscle-derived EVs mitigate ALS-related muscle inflammation and atrophy. | Anti-inflammatory effects; promote M2 macrophages; suppress NF-κB signaling. | Preclinical only; variability in EV source; translational hurdles. | Multi-mechanistic approach that merits clinical exploration. |
| India SCC (2025) [84] | Early clinical data show functional improvement with exosome therapy in SMA. | Suggests patient-level efficacy; minimally invasive; supports human feasibility. | Preliminary non-RCT data; small samples; potential bias. | Promising clinical signal; high-quality trials required. |
4. Proposed Hypothesis: Dysfunctional Axon-to-Muscle Exosomal Signaling in SMA
4.1. SMN as a Molecular Orchestrator of Vesicle Biology
4.2. Mechanistic Basis: Three Converging Pathways
4.3. Candidate Molecules and Pathways
4.4. Translational Implications: Biomarkers and Therapeutics
4.5. Toward a Dual-Therapy Paradigm
5. Therapeutic Approaches Targeting Axonal Exosomal Signaling
5.1. Engineered Exosomes: Technological Foundations and Cargo Loading Strategies
5.2. Modulating Endogenous Exosome Biogenesis and Secretion
- Advanced isolation of regenerative/immunomodulatory vesicles,
- Engineering parental cells or environments to bias output,
6. Preclinical Experimental Design for Exosomal SMA Therapy
7. Clinical and Translational Implications
8. Challenges, Open Questions and Future Perspectives
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Darras, B.T. Spinal muscular atrophies. Pediatr. Clin. N. Am. 2015, 62, 743–766. [Google Scholar] [CrossRef]
- Verhaart, I.E.C.; Robertson, A.; Wilson, I.J.; Aartsma-Rus, A.; Cameron, S.; Jones, C.C.; Cook, S.F.; Lochmüller, H. Prevalence, Incidence and Carrier Frequency of 5q–Linked Spinal Muscular Atrophy—A Literature Review. Orphanet J. Rare Dis. 2017, 12, 124. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.N.; Singh, N.N. Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes. Adv. Neurobiol. 2018, 20, 31–61. [Google Scholar]
- Pánek, J.; Roithová, A.; Radivojević, N.; Sýkora, M.; Prusty, A.B.; Huston, N.; Wan, H.; Pyle, A.M.; Fischer, U.; Staněk, D. The SMN Complex Drives Structural Changes in Human SnRNAs to Enable SnRNP Assembly. Nat. Commun. 2023, 14, 6580. [Google Scholar] [CrossRef] [PubMed]
- Fallini, C.; Bassell, G.J.; Rossoll, W. Spinal Muscular Atrophy: The Role of SMN in Axonal MRNA Regulation. Brain Res. 2012, 1462, 81–92. [Google Scholar] [CrossRef]
- Zobaroğlu Özer, P.; Koyunoğlu, D.; Son, Ç.D.; Erdem-Yurter, H.; Bora, G. SMN Loss Dysregulates Microtubule-Associated Proteins in Spinal Muscular Atrophy Model. Mol. Cell Neurosci. 2022, 120, 103725. [Google Scholar] [CrossRef]
- James, R.; Chaytow, H.; Ledahawsky, L.M.; Gillingwater, T.H. Revisiting the Role of Mitochondria in Spinal Muscular Atrophy. Cell Mol. Life Sci. 2021, 78, 4785–4804. [Google Scholar] [CrossRef]
- Sharma, G.; Paganin, M.; Lauria, F.; Perenthaler, E.; Viero, G. The SMN-Ribosome Interplay: A New Opportunity for Spinal Muscular Atrophy Therapies. Biochem. Soc. Trans. 2024, 52, 465–479. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, E.; Sumner, C.J.; Muntoni, F.; Darras, B.T.; Finkel, R.S. Spinal muscular atrophy. Nat. Rev. Dis. Primers 2022, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-H. New and developing therapies in spinal muscular atrophy: From genotype to phenotype to treatment and where do we stand? Int. J. Mol. Sci. 2020, 21, 3297. [Google Scholar] [CrossRef]
- Talbot, K.; Tizzano, E.F. The clinical landscape for SMA in a new therapeutic era. Gene Ther. 2017, 24, 529–533. [Google Scholar] [CrossRef]
- Hassan, H.A.; Zaki, M.S.; Issa, M.Y.; El-Bagoury, N.M.; Essawi, M.L. Genetic pattern of SMN1, SMN2, and NAIP genes in prognosis of SMA patients. Egypt. J. Med. Hum. Genet. 2020, 21, 4. [Google Scholar] [CrossRef]
- Tizzano, E.F.; Finkel, R.S. Spinal muscular atrophy: A changing phenotype beyond the clinical trials. Neuromuscul. Disord. 2017, 27, 883–889. [Google Scholar] [CrossRef]
- Farrar, M.A.; Carey, K.A.; Paguinto, S.-G.; Kasparian, N.A.; De Abreu Lourenço, R. “The whole game is changing and you’ve got hope”: Australian perspectives on treatment decision making in spinal muscular atrophy. Patient 2020, 13, 389–400. [Google Scholar]
- Belančić, A.; Eustaquio, P.C.; Gkrinia, E.M.M.; Rački, V.; Pilipović, K.; Vitezić, D. Transforming Spinal Muscular Atrophy: From Pivotal Trials to Real-World Evidence and Future Therapeutic Frontiers in Types 1 and 2. Biomedicines 2025, 13, 1939. [Google Scholar] [CrossRef]
- Mežnarić, S.; Belančić, A.; Rački, V.; Vitezić, D.; Mršić-Pelčić, J.; Pilipović, K. Prenatal Management of Spinal Muscular Atrophy in the Era of Genetic Screening and Emerging Opportunities in In Utero Therapy. Biomedicines 2025, 13, 1796. [Google Scholar] [CrossRef] [PubMed]
- Belančić, A.; Faour, A.K.; Gkrinia, E.M.M.; Vitezić, D. A systematic review of economic evaluations of orphan medicines for the management of spinal muscular atrophy. Br. J. Clin. Pharmacol. 2025, 91, 95–116. [Google Scholar] [CrossRef] [PubMed]
- Belančić, A.; Janković, T.; Gkrinia, E.M.M.; Kristić, I.; Rajič Bumber, J.; Rački, V.; Pilipović, K.; Vitezić, D.; Mršić-Pelčić, J. Glial cells in spinal muscular atrophy: Speculations on non-cell-autonomous mechanisms and therapeutic implications. Neurol. Int. 2025, 17, 41. [Google Scholar] [CrossRef]
- Hatanaka, F.; Suzuki, K.; Shojima, K.; Yu, J.; Takahashi, Y.; Sakamoto, A.; Prieto, J.; Shokhirev, M.; Nuñez Delicado, E.; Rodriguez Esteban, C.; et al. Therapeutic Strategy for Spinal Muscular Atrophy by Combining Gene Supplementation and Genome Editing. Nat. Commun. 2024, 15, 6191. [Google Scholar] [CrossRef] [PubMed]
- Caruso Bavisotto, C.; Bucchieri, F.; Cappello, F. The unexplored potential of exosomes in the muscle-brain axis. Proc. Natl. Acad. Sci. USA 2025, 122, e2420766121. [Google Scholar] [CrossRef]
- Liu, M.; Teng, T. Exosomes: New targets for understanding axon guidance in the developing central nervous system. Front. Cell Dev. Biol. 2024, 12, 1510862. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.L. Promoting axonal regeneration through exosomes: An update of recent findings on exosomal PTEN and mTOR modifiers. Brain Res. Bull. 2018, 143, 123–131. [Google Scholar] [CrossRef]
- Madison, R.D.; Robinson, G.A. Muscle-Derived Extracellular Vesicles Influence Motor Neuron Regeneration Accuracy. Neuroscience 2019, 419, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Ashique, S.; Kumar, N.; Mishra, N.; Muthu, S.; Rajendran, R.L.; Chandrasekaran, B.; Obeng, B.F.; Hong, C.M.; Krishnan, A.; Ahn, B.C.; et al. Unveiling the role of exosomes as cellular messengers in neurodegenerative diseases and their potential therapeutic implications. Pathol. Res. Pract. 2024, 260, 155451. [Google Scholar] [CrossRef]
- Théry, C. Exosomes: Secreted vesicles and intercellular communications. F1000 Biol. Rep. 2011, 3, 15. [Google Scholar] [CrossRef]
- Spinelli, S.; Tripodi, D.; Corti, N.; Zocchi, E.; Bruschi, M.; Leoni, V.; Dominici, R. Roles, Functions, and Pathological Implications of Exosomes in the Central Nervous System. Int. J. Mol. Sci. 2025, 26, 1345. [Google Scholar] [CrossRef]
- Jin, Q.; Wu, P.; Zhou, X.; Qian, H.; Xu, W. Extracellular Vesicles: Novel Roles in Neurological Disorders. Stem Cells Int. 2021, 2021, 6640836. [Google Scholar] [CrossRef]
- Janas, A.M.; Sapoń, K.; Janas, T.; Stowell, M.H.; Janas, T. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases. Biochim. Biophys. Acta 2016, 1858, 1139–1151. [Google Scholar] [CrossRef]
- Gurung, S.; Perocheau, D.; Touramanidou, L.; Baruteau, J. The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun. Signal 2021, 19, 47. [Google Scholar] [CrossRef]
- Khalil, B.; Marwaha, K.; Bollu, P.C. Physiology, neuromuscular junction. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Rodríguez Cruz, P.M.; Cossins, J.; Beeson, D.; Vincent, A. The neuromuscular junction in health and disease: Molecular mechanisms governing synaptic formation and homeostasis. Front. Mol. Neurosci. 2020, 13, 610964. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.R.; Shah, S.B.; Lovering, R.M. The neuromuscular junction: Roles in aging and neuromuscular disease. Int. J. Mol. Sci. 2021, 22, 8058. [Google Scholar] [CrossRef]
- Aszódi, A.; Legate, K.R.; Nakchbandi, I.; Fässler, R. What mouse mutants teach us about extracellular matrix function. Annu. Rev. Cell Dev. Biol. 2006, 22, 591–621. [Google Scholar] [CrossRef]
- Schüler, S.C.; Liu, Y.; Dumontier, S.; Grandbois, M.; Le Moal, E.; Cornelison, D.; Bentzinger, C.F. Extracellular matrix: Brick and mortar in the skeletal muscle stem cell niche. Front. Cell Dev. Biol. 2022, 10, 1056523. [Google Scholar] [CrossRef]
- Mis, K.; Grubic, Z.; Lorenzon, P.; Sciancalepore, M.; Mars, T.; Pirkmajer, S. In vitro innervation as an experimental model to study the expression and functions of acetylcholinesterase and agrin in human skeletal muscle. Molecules 2017, 22, 1418. [Google Scholar] [CrossRef]
- Ruff, R.L. Endplate contributions to the safety factor for neuromuscular transmission. Muscle Nerve 2011, 44, 854–861. [Google Scholar] [CrossRef]
- Sanes, J.R. The basement membrane/basal lamina of skeletal muscle. J. Biol. Chem. 2003, 278, 12601–12604. [Google Scholar] [CrossRef]
- Todd, K.J.; Darabid, H.; Robitaille, R. Perisynaptic glia discriminate patterns of motor nerve activity and influence plasticity at the neuromuscular junction. J. Neurosci. 2010, 30, 11870–11882. [Google Scholar] [CrossRef] [PubMed]
- Castro, R.; Taetzsch, T.; Vaughan, S.K.; Godbe, K.; Chappell, J.; Settlage, R.E.; Valdez, G. Specific labeling of synaptic Schwann cells reveals unique cellular and molecular features. eLife 2020, 9, e56935. [Google Scholar] [CrossRef]
- Bosch-Queralt, M.; Fledrich, R.; Stassart, R.M. Schwann cell functions in peripheral nerve development and repair. Neurobiol. Dis. 2023, 176, 105952. [Google Scholar] [CrossRef]
- Hubbard, S.R.; Gnanasambandan, K. Structure and activation of MuSK, a receptor tyrosine kinase central to neuromuscular junction formation. Biochim. Biophys. Acta 2013, 1834, 2166–2169. [Google Scholar] [CrossRef]
- Wu, H.; Xiong, W.C.; Mei, L. To build a synapse: Signaling pathways in neuromuscular junction assembly. Development 2010, 137, 1017–1033. [Google Scholar] [CrossRef]
- Liu, M.; Wen, Z.; Zhang, T.; Zhang, L.; Liu, X.; Wang, M. The role of exosomal molecular cargo in exosome biogenesis and disease diagnosis. Front. Immunol. 2024, 15, 1417758. [Google Scholar] [CrossRef]
- van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef]
- Hessvik, N.P.; Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 2018, 75, 193–208. [Google Scholar] [CrossRef]
- Ortega, A.; Martinez-Arroyo, O.; Forner, M.J.; Cortes, R. Exosomes as drug delivery systems: Endogenous nanovehicles for treatment of systemic lupus erythematosus. Pharmaceutics 2020, 13, 3. [Google Scholar] [CrossRef]
- Murphy, C.; Withrow, J.; Hunter, M.; Liu, Y.; Tang, Y.L.; Fulzele, S.; Hamrick, M.W. Emerging role of extracellular vesicles in musculoskeletal diseases. Mol. Asp. Med. 2018, 60, 123–128. [Google Scholar] [CrossRef]
- Kim, H.I.; Park, J.; Zhu, Y.; Wang, X.; Han, Y.; Zhang, D. Recent advances in extracellular vesicles for therapeutic cargo delivery. Exp. Mol. Med. 2024, 56, 836–849. [Google Scholar] [CrossRef]
- Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle formation during reticulocyte maturation: Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 1987, 262, 9412–9420. [Google Scholar] [CrossRef]
- Korkut, C.; Li, Y.; Koles, K.; Brewer, C.; Ashley, J.; Yoshihara, M.; Budnik, V. Regulation of postsynaptic retrograde signaling by presynaptic exosome release. Neuron 2013, 77, 1039–1046. [Google Scholar] [CrossRef]
- Beckett, K.; Monier, S.; Palmer, L.; Alexandre, C.; Green, H.; Bonneil, E.; Raposo, G.; Thibault, P.; Le Borgne, R.; Vincent, J.P. Drosophila S2 cells secrete Wingless on exosome-like vesicles but the Wingless gradient forms independently of exosomes. Traffic 2013, 14, 82–96. [Google Scholar] [CrossRef]
- Gross, J.C.; Chaudhary, V.; Bartscherer, K.; Boutros, M. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 2012, 14, 1036–1045. [Google Scholar] [CrossRef]
- Koles, K.; Budnik, V. Exosomes go with the Wnt. Cell Logist. 2012, 2, 169–173. [Google Scholar] [CrossRef]
- Maggio, S.; Ceccaroli, P.; Polidori, E.; Cioccoloni, A.; Stocchi, V.; Guescini, M. Signal exchange through extracellular vesicles in neuromuscular junction establishment and maintenance: From physiology to pathology. Int. J. Mol. Sci. 2019, 20, 2804. [Google Scholar] [CrossRef]
- Agostini, R.; Ceccaroli, P.; Polidori, E.; Ferracin, M.; Pace, I.; Maggio, S.; Cioccoloni, A.; Battistelli, M.; Matacchione, G.; Sbriscia, M.; et al. Synergic action of microRNAs and Wnts delivered by motor neuron EVs in promoting AChR clustering. Cell Commun. Signal. 2025, 23, 360. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, P. A novel cell–cell communication mechanism in the nervous system: Exosomes. J. Neurosci. Res. 2018, 96, 45–52. [Google Scholar] [CrossRef]
- Nesler, K.R.; Sand, R.I.; Symmes, B.A.; Pradhan, S.J.; Boin, N.G.; Laun, A.E.; Barbee, S.A. The miRNA pathway controls rapid changes in activity-dependent synaptic structure at the Drosophila melanogaster neuromuscular junction. PLoS ONE 2013, 8, e68385. [Google Scholar] [CrossRef]
- Rome, S.; Forterre, A.; Mizgier, M.L.; Bouzakri, K. Skeletal muscle-released extracellular vesicles: State of the art. Front. Physiol. 2019, 10, 929. [Google Scholar] [CrossRef]
- Sork, H.; Corso, G.; Krjutskov, K.; Johansson, H.J.; Nordin, J.Z.; Wiklander, O.P.B.; Lee, Y.X.F.; Westholm, J.O.; Lehtiö, J.; Wood, M.J.A.; et al. Heterogeneity and interplay of the extracellular vesicle small RNA transcriptome and proteome. Sci. Rep. 2018, 8, 10813. [Google Scholar] [CrossRef]
- Anakor, E.; Le Gall, L.; Dumonceaux, J.; Duddy, W.J.; Duguez, S. Exosomes in Ageing and Motor Neurone Disease: Biogenesis, Uptake Mechanisms, Modifications in Disease and Uses in the Development of Biomarkers and Therapeutics. Cells 2021, 10, 2930. [Google Scholar] [CrossRef]
- Bonafede, R.; Scambi, I.; Peroni, D.; Potrich, V.; Boschi, F.; Benati, D.; Bonetti, B.; Mariotti, R. Exosome Derived from Murine Adipose-Derived Stromal Cells: Neuroprotective Effect on in Vitro Model of Amyotrophic Lateral Sclerosis. Exp. Cell Res. 2016, 340, 150–158. [Google Scholar] [CrossRef]
- Bonafede, R.; Turano, E.; Scambi, I. ASC-Exosomes Ameliorate the Disease Progression in SOD1(G93A) Murine Model Underlining Their Potential Therapeutic Use in Human ALS. Int. J. Mol. Sci. 2020, 21, 3651. [Google Scholar] [CrossRef]
- Lee, M.; Liu, T.; Im, W. Exosomes from Adipose-Derived Stem Cells Ameliorate Phenotype of Huntington’s Disease in Vitro Model. Eur. J. Neurosci. 2016, 44, 2114–2119. [Google Scholar] [CrossRef]
- Morel, L.; Regan, M.; Higashimori, H. Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J. Biol. Chem. 2013, 288, 7105–7116. [Google Scholar] [CrossRef]
- Zhou, J.; Li, F.; Jia, B.; Wu, Z.; Huang, Z.; He, M.; Weng, H.; So, K.-F.; Qu, W.; Fu, Q.-L.; et al. Intranasal Delivery of Small Extracellular Vesicles Reduces the Progress of Amyotrophic Lateral Sclerosis and the Overactivation of Complement-Coagulation Cascade and NF-ĸB Signaling in SOD1G93A Mice. J. Nanobiotechnol. 2024, 22, 503. [Google Scholar] [CrossRef]
- Yedigaryan, L.; Sampaolesi, M. Extracellular Vesicles and Duchenne Muscular Dystrophy Pathology: Modulators of Disease Progression. Front. Physiol. 2023, 14, 1130063. [Google Scholar] [CrossRef]
- Gartz, M.; Lin, C.-W.; Sussman, M.A.; Lawlor, M.W.; Strande, J.L. Duchenne Muscular Dystrophy (DMD) Cardiomyocyte-Secreted Exosomes Promote the Pathogenesis of DMD-Associated Cardiomyopathy. Dis. Model. Mech. 2020, 13, dmm045559. [Google Scholar] [CrossRef]
- Leng, L.; Dong, X.; Gao, X.; Ran, N.; Geng, M.; Zuo, B.; Wu, Y.; Li, W.; Yan, H.; Han, G.; et al. Exosome-Mediated Improvement in Membrane Integrity and Muscle Function in Dystrophic Mice. Mol. Ther. 2021, 29, 1459–1470. [Google Scholar] [CrossRef]
- Wu, J.; Li, A.; Shi, Y.; Wang, Y.; Luo, J.; Zhuang, W.; Ma, X.; Qiao, Z.; Xiu, X.; Lang, X.; et al. Intranasal Delivery of Mesenchymal Stem Cell-Derived Exosomes Ameliorates Experimental Autoimmune Encephalomyelitis. Int. Immunopharmacol. 2025, 146, 113853. [Google Scholar] [CrossRef]
- Cano, A.; Muñoz-Morales, Á.; Sánchez-López, E.; Ettcheto, M.; Souto, E.B.; Camins, A.; Boada, M.; Ruíz, A. Exosomes-Based Nanomedicine for Neurodegenerative Diseases: Current Insights and Future Challenges. Pharmaceutics 2023, 15, 298. [Google Scholar] [CrossRef]
- Day, J.W.; Howell, K.; Place, A.; Long, K.; Rossello, J.; Kertesz, N.; Nomikos, G. Advances and Limitations for the Treatment of Spinal Muscular Atrophy. BMC Pediatr. 2022, 22, 632. [Google Scholar] [CrossRef]
- Chamakioti, M.; Karantzelis, N.; Taraviras, S. Advanced Gene-Targeting Therapies for Motor Neuron Diseases and Muscular Dystrophies. Int. J. Mol. Sci. 2022, 23, 4824. [Google Scholar] [CrossRef]
- Muthu, S.; Bapat, A.; Jain, R.; Jeyaraman, N.; Jeyaraman, M. Exosomal Therapy—A New Frontier in Regenerative Medicine. Stem Cell Investig. 2021, 8, 7. [Google Scholar] [CrossRef]
- Rossoll, W.; Jablonka, S.; Andreassi, C. Smn, the Spinal Muscular Atrophy-Determining Gene Product, Modulates Axon Growth and Localization of Beta-Actin mRNA in Growth Cones of Motoneurons. J. Cell Biol. 2003, 163, 801–812. [Google Scholar] [CrossRef]
- van der Pol, E.; Coumans, F.a.W.; Grootemaat, A.E.; Gardiner, C.; Sargent, I.L.; Harrison, P.; Sturk, A.; van Leeuwen, T.G.; Nieuwland, R. Particle Size Distribution of Exosomes and Microvesicles Determined by Transmission Electron Microscopy, Flow Cytometry, Nanoparticle Tracking Analysis, and Resistive Pulse Sensing. J. Thromb. Haemost. 2014, 12, 1182–1192. [Google Scholar] [CrossRef] [PubMed]
- Udina, E.; Putman, C.T.; Tyreman, N.; Gordon, T. Compensatory Axon Sprouting for Very Slow Axonal Die-back in a Transgenic Model of Spinal Muscular Atrophy Type III. J. Physiol. 2017, 595, 1111–1129. [Google Scholar] [CrossRef]
- Chen, H.; Wang, L.; Zeng, X.; Schwarz, H.; Nanda, H.S.; Peng, X.; Zhou, Y. Exosomes, a New Star for Targeted Delivery. Front. Cell Dev. Biol. 2021, 9, 751079. [Google Scholar] [CrossRef]
- Almasi, F.; Abbasloo, F.; Soltani, N.; Dehbozorgi, M.; Moghadam Fard, A.; Kiani, A.; Ghasemzadeh, N.; Mesgari, H.; Zadeh Hosseingholi, E.; Payandeh, Z.; et al. Biology, Pathology, and Targeted Therapy of Exosomal Cargoes in Parkinson’s Disease: Advances and Challenges. Mol. Neurobiol. 2025, 62, 8381–8399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, Y.; Lv, X.; Zhou, X.; Zhao, W.; Meng, L.; Zhu, S.; Zhang, Z.; Wang, Y. Exosome Cargo in Neurodegenerative Diseases: Leveraging Their Intercellular Communication Capabilities for Biomarker Discovery and Therapeutic Delivery. Brain Sci. 2024, 14, 1049. [Google Scholar] [CrossRef] [PubMed]
- Nash, L. Exosomes: A Novel Biomarker and Approach to Gene Therapy for Spinal Muscular Atrophy. Ph.D Thesis, University of Ottawa, Ottawa, ON, Canada, 2019. [Google Scholar]
- René, C.A.; Parks, R.J. Extracellular Vesicles Efficiently Deliver Survival Motor Neuron Protein to Cells in Culture. Sci. Rep. 2025, 15, 5674. [Google Scholar] [CrossRef] [PubMed]
- Trifunov, S.; Natera-de Benito, D.; Carrera-García, L.; Codina, A.; Expósito-Escudero, J.; Ortez, C.; Medina, J.; Torres Alcala, S.; Bernal, S.; Alias, L.; et al. Full-Length SMN Transcript in Extracellular Vesicles as Biomarker in Individuals with Spinal Muscular Atrophy Type 2 Treated with Nusinersen. J. Neuromuscul. Dis. 2023, 10, 653–665. [Google Scholar] [CrossRef]
- Chen, Y.; Qi, W.; Wang, Z.; Niu, F. Exosome Source Matters: A Comprehensive Review from the Perspective of Diverse Cellular Origins. Pharmaceutics 2025, 17, 147. [Google Scholar] [CrossRef]
- Mohan, S.; Khamjan, N.A.; Abdelwahab, S.I.; Taha, M.M.E.; Moshi, J.M.; Alshahrani, A.F.; Mohammed, J.A.; Alshahrani, S.; Sahli, K.A.; Alqhtani, H.A.S.; et al. Clinical Frontiers of Exosome Research: A Comprehensive Analysis of Human Trials in Diagnostics, Therapeutics, and Regenerative Medicine. J. Pharmacol. Pharmacother. 2025. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Yang, Z.; Wang, B.; Gong, H.; Zhang, K.; Lin, Y.; Sun, M. Extracellular Vesicles: Biological Mechanisms and Emerging Therapeutic Opportunities in Neurodegenerative Diseases. Transl. Neurodegener. 2024, 13, 60. [Google Scholar] [CrossRef]
- Mosquera-Heredia, M.I.; Morales, L.C.; Vidal, O.M.; Barceló, E.; Silvera-Redondo, C.; Vélez, J.I.; Garavito-Galofre, P. Exosomes: Potential Disease Biomarkers and New Therapeutic Targets. Biomedicines 2021, 9, 1061. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, L.; Li, C.; Shan, Z.; Bi, L. Unveiling Exosomal Biomarkers in Neurodegenerative Diseases: LC-MS-Based Profiling. Extracell. Vesicle 2025, 5, 100071. [Google Scholar] [CrossRef]
- Haque, U.S.; Yokota, T. Recent Progress in Gene-Targeting Therapies for Spinal Muscular Atrophy: Promises and Challenges. Genes 2024, 15, 999. [Google Scholar] [CrossRef]
- Ponomarev, A.S.; Chulpanova, D.S.; Yanygina, L.M.; Solovyeva, V.V.; Rizvanov, A.A. Emerging Gene Therapy Approaches in the Management of Spinal Muscular Atrophy (SMA): An Overview of Clinical Trials and Patent Landscape. Int. J. Mol. Sci. 2023, 24, 13743. [Google Scholar] [CrossRef]
- Koh, H.B.; Kim, H.J.; Kang, S.-W.; Yoo, T.-H. Exosome-Based Drug Delivery: Translation from Bench to Clinic. Pharmaceutics 2023, 15, 2042. [Google Scholar] [CrossRef] [PubMed]
- 3Ahn, S.-H.; Ryu, S.-W.; Choi, H.; You, S.; Park, J.; Choi, C. Manufacturing Therapeutic Exosomes: From Bench to Industry. Mol. Cells 2022, 45, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Srivatsa Palakurthi, S.; Shah, B.; Kapre, S.; Charbe, N.; Immanuel, S.; Pasham, S.; Thalla, M.; Jain, A.; Palakurthi, S. A Comprehensive Review of Challenges and Advances in Exosome-Based Drug Delivery Systems. Nanoscale Adv. 2024, 6, 5803–5826. [Google Scholar] [CrossRef] [PubMed]
- Qu, Q.; Fu, B.; Long, Y.; Liu, Z.-Y.; Tian, X.-H. Current Strategies for Promoting the Large-Scale Production of Exosomes. Curr. Neuropharmacol. 2023, 21, 1964–1979. [Google Scholar] [CrossRef]
- Chen, J.; Xu, J.; Zhang, X. Exosome-Mediated Improvement in Membrane Integrity and Muscle Function in a Mouse Model of Duchenne Muscular Dystrophy. Mol. Ther. 2020, 28, 1075–1087. [Google Scholar]
- Tisdale, S.; Van Alstyne, M.; Simon, C.M.; Mentis, G.Z.; Pellizzoni, L. SMN controls neuromuscular junction integrity through U7 snRNP. Cell Rep. 2022, 40, 111393. [Google Scholar] [CrossRef]
- Kim, J.K.; Jha, N.N.; Awano, T.; Caine, C.; Gollapalli, K.; Welby, E.; Kim, S.S.; Fuentes-Moliz, A.; Wang, X.; Feng, Z.; et al. A spinal muscular atrophy modifier implicates the SMN protein in SNARE complex assembly at neuromuscular synapses. Neuron 2023, 111, 1423–1439. [Google Scholar] [CrossRef]
- Zhang, Z.; Pinto, A.M.; Wan, L.; Wang, W.; Berg, M.G.; Oliva, I.; Singh, L.N.; Dengler, C.; Wei, Z.; Dreyfuss, G. Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 2013, 110, 19348–19353. [Google Scholar] [CrossRef]
- Kariya, S.; Park, G.H.; Maeno-Hikichi, Y.; Leykekhman, O.; Lutz, C.; Arkovitz, M.S.; Landmesser, L.T.; Monani, U.R. Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy. Hum. Mol. Genet. 2008, 17, 2552–2569. [Google Scholar] [CrossRef]
- Berciano, M.T.; Gatius, A.; Puente-Bedia, A.; Rufino-Gómez, A.; Tarabal, O.; Rodríguez-Rey, J.C.; Calderó, J.; Lafarga, M.; Tapia, O. SMN deficiency induces an early non-atrophic myopathy with alterations in the contractile and excitatory coupling machinery of skeletal myofibers in the SMN∆7 mouse model of spinal muscular atrophy. Int. J. Mol. Sci. 2024, 25, 12415. [Google Scholar] [CrossRef] [PubMed]
- Chaytow, H.; Huang, Y.T.; Gillingwater, T.H.; Faller, K.M.E. The role of survival motor neuron protein (SMN) in protein homeostasis. Cell. Mol. Life Sci. 2018, 75, 3877–3894. [Google Scholar] [CrossRef] [PubMed]
- Gabanella, F.; Pisani, C.; Borreca, A.; Farioli-Vecchioli, S.; Ciotti, M.T.; Ingegnere, T.; Onori, A.; Ammassari-Teule, M.; Corbi, N.; Canu, N.; et al. SMN affects membrane remodelling and anchoring of the protein synthesis machinery. J. Cell Sci. 2016, 129, 804–816. [Google Scholar] [CrossRef] [PubMed]
- Donlin-Asp, P.G.; Fallini, C.; Campos, J.; Chou, C.C.; Merritt, M.E.; Phan, H.C.; Bassell, G.J.; Rossoll, W. The Survival of Motor Neuron Protein Acts as a Molecular Chaperone for mRNP Assembly. Cell Rep. 2017, 18, 1660–1673. [Google Scholar] [CrossRef]
- Franco-Espin, J.; Gatius, A.; Armengol, J.Á.; Arumugam, S.; Moradi, M.; Sendtner, M.; Calderó, J.; Tabares, L. SMN Is Physiologically Downregulated at Wild-Type Motor Nerve Terminals but Aggregates Together with Neurofilaments in SMA Mouse Models. Biomolecules 2022, 12, 1524. [Google Scholar] [CrossRef]
- Dimitriadi, M.; Derdowski, A.; Kalloo, G.; Maginnis, M.S.; O’Hern, P.; Bliska, B.; Sorkaç, A.; Nguyen, K.C.; Cook, S.J.; Poulogiannis, G.; et al. Decreased function of survival motor neuron protein impairs endocytic pathways. Proc. Natl. Acad. Sci. USA 2016, 113, E4377–E4386. [Google Scholar] [CrossRef]
- Ding, Q.; Kesavan, K.; Lee, K.M.; Wimberger, E.; Robertson, T.; Gill, M.; Power, D.; Chang, J.; Fard, A.T.; Mar, J.C.; et al. Impaired signaling for neuromuscular synaptic maintenance is a feature of Motor Neuron Disease. Acta Neuropathol. Commun. 2022, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Amin, N.D.; Bai, G.; Klug, J.R.; Bonanomi, D.; Pankratz, M.T.; Gifford, W.D.; Hinckley, C.A.; Sternfeld, M.J.; Driscoll, S.P.; Dominguez, B.; et al. Loss of motoneuron-specific microRNA-218 causes systemic neuromuscular failure. Science 2015, 350, 1525–1529. [Google Scholar] [CrossRef]
- Nash, L.A.; McFall, E.R.; Perozzo, A.M.; Turner, M.; Poulin, K.L.; De Repentigny, Y.; Burns, J.K.; McMillan, H.J.; Warman Chardon, J.; Burger, D.; et al. Survival Motor Neuron Protein is Released from Cells in Exosomes: A Potential Biomarker for Spinal Muscular Atrophy. Sci. Rep. 2017, 7, 13859. [Google Scholar] [CrossRef]
- Magen, I.; Aharoni, S.; Yacovzada, N.S.; Tokatly Latzer, I.; Alves, C.R.R.; Sagi, L.; Fattal-Valevski, A.; Swoboda, K.J.; Katz, J.; Bruckheimer, E.; et al. Muscle microRNAs in the cerebrospinal fluid predict clinical response to nusinersen therapy in type II and type III spinal muscular atrophy patients. Eur. J. Neurol. 2022, 29, 2420–2430. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Caine, C.; Awano, T.; Herbst, R.; Monani, U.R. Motor neuronal repletion of the NMJ organizer, Agrin, modulates the severity of the spinal muscular atrophy disease phenotype in model mice. Hum. Mol. Genet. 2017, 26, 2377–2385. [Google Scholar] [CrossRef]
- Boido, M.; De Amicis, E.; Valsecchi, V.; Trevisan, M.; Ala, U.; Ruegg, M.A.; Hettwer, S.; Vercelli, A. Increasing Agrin Function Antagonizes Muscle Atrophy and Motor Impairment in Spinal Muscular Atrophy. Front. Cell. Neurosci. 2018, 12, 17. [Google Scholar] [CrossRef]
- Tejero, R.; Lopez-Manzaneda, M.; Arumugam, S.; Tabares, L. Synaptotagmin-2 and -1 linked to neurotransmission impairment and vulnerability in Spinal Muscular Atrophy. Hum. Mol. Genet. 2016, 25, 4703–4716. [Google Scholar] [CrossRef] [PubMed]
- Deinhardt, K.; Salinas, S.; Verastegui, C.; Watson, R.; Worth, D.; Hanrahan, S.; Bucci, C.; Schiavo, G. Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron 2006, 52, 293–305. [Google Scholar] [CrossRef]
- Klockner, I.; Schutt, C.; Gerhardt, T.; Boettger, T.; Braun, T. Control of CRK-RAC1 activity by the miR-1/206/133 miRNA family is essential for neuromuscular junction function. Nat. Commun. 2022, 13, 3180. [Google Scholar] [CrossRef]
- Malacarne, C.; Galbiati, M.; Giagnorio, E.; Cavalcante, P.; Salerno, F.; Andreetta, F.; Cagnoli, C.; Taiana, M.; Nizzardo, M.; Corti, S.; et al. Dysregulation of muscle-specific microRNAs as a common pathogenic feature associated with muscle atrophy in ALS, SMA, and SBMA: Evidence from animal models and human patients. Int. J. Mol. Sci. 2021, 22, 5673. [Google Scholar] [CrossRef] [PubMed]
- Valsecchi, V.; Boido, M.; De Amicis, E.; Piras, A.; Vercelli, A. Expression of muscle-specific miRNA 206 in the progression of disease in a murine SMA model. PLoS ONE 2015, 10, e0128560. [Google Scholar] [CrossRef] [PubMed]
- Stanga, S.; Boido, M.; Kienlen-Campard, P. How to build and to protect the neuromuscular junction: The role of the glial cell line-derived neurotrophic factor. Int. J. Mol. Sci. 2020, 22, 136. [Google Scholar] [CrossRef]
- Castilla-Cortázar, I.; Iturrieta, I.; García-Magariño, M.; Puche, J.E.; Martín-Estal, I.; Aguirre, G.A.; Femat-Roldan, G.; Cantu-Martinez, L.; Muñoz, Ú. Neurotrophic factors and their receptors are altered by the mere partial IGF-1 deficiency. Neuroscience 2019, 404, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Wiens, K.R.; Wasti, N.; Ulloa, O.O.; Klegeris, A. Diversity of microglia-derived molecules with neurotrophic properties that support neurons in the central nervous system and other tissues. Molecules 2024, 29, 5525. [Google Scholar] [CrossRef]
- Huo, L.; Du, X.; Li, X.; Liu, S.; Xu, Y. The emerging role of neural cell-derived exosomes in intercellular communication in health and neurodegenerative diseases. Front. Neurosci. 2021, 15, 738442. [Google Scholar] [CrossRef]
- Oyarce, K.; Cepeda, M.Y.; Lagos, R.; Garrido, C.; Vega-Letter, A.M.; Garcia-Robles, M.; Luz-Crawford, P.; Elizondo-Vega, R. Neuroprotective and neurotoxic effects of glial-derived exosomes. Front. Cell. Neurosci. 2022, 16, 920686. [Google Scholar] [CrossRef]
- Welby, E.; Rehborg, R.J.; Harmelink, M.; Ebert, A.D. Assessment of cerebral spinal fluid biomarkers and microRNA-mediated disease mechanisms in spinal muscular atrophy patient samples. Hum. Mol. Genet. 2022, 31, 1830–1843. [Google Scholar] [CrossRef]
- Archana, R.; Rajendran, R.L.; Gangadaran, P.; Raja, N.S. Theranostic extracellular vesicles: Emerging frontiers in neuromuscular disease diagnosis and therapy. Gene 2025, 964, 149640. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, J.; Zheng, J.; Hao, H. Biomarkers in spinal muscular atrophy. Front. Neurol. 2025, 16, 1636992. [Google Scholar] [CrossRef]
- Muskan, M.; Abeysinghe, P.; Cecchin, R.; Branscome, H.; Morris, K.V.; Kashanchi, F. Therapeutic potential of RNA-enriched extracellular vesicles: The next generation in RNA delivery via biogenic nanoparticles. Mol. Ther. 2024, 32, 2939–2949. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, J.N.; Tian, C. Engineered extracellular vesicles: Emerging therapeutic strategies for translational applications. Int. J. Mol. Sci. 2023, 24, 15206. [Google Scholar] [CrossRef]
- Upadhya, R.; Zingg, W.; Shetty, S.; Shetty, A.K. Astrocyte-derived extracellular vesicles: Neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J. Control. Release 2020, 323, 225–239. [Google Scholar] [CrossRef]
- Arrazola Sastre, A.; Luque Montoro, M.; Gálvez-Martín, P.; Lacerda, H.M.; Lucia, A.M.; Llavero, F.; Zugaza, J.L. Small GTPases of the Ras and Rho families switch on/off signaling pathways in neurodegenerative diseases. Int. J. Mol. Sci. 2020, 21, 6312. [Google Scholar] [CrossRef]
- Arrazola Sastre, A.; Luque Montoro, M.; Lacerda, H.M.; Llavero, F.; Zugaza, J.L. Small GTPases of the Rab and Arf families: Key regulators of intracellular trafficking in neurodegeneration. Int. J. Mol. Sci. 2021, 22, 4425. [Google Scholar] [CrossRef]
- Mulligan, R.J.; Winckler, B. Regulation of endosomal trafficking by Rab7 and its effectors in neurons: Clues from Charcot-Marie-Tooth 2B disease. Biomolecules 2023, 13, 1399. [Google Scholar] [CrossRef]
- Hensel, N.; Kubinski, S.; Claus, P. The need for SMN-independent treatments of spinal muscular atrophy (SMA) to complement SMN-enhancing drugs. Front. Neurol. 2020, 11, 45. [Google Scholar] [CrossRef]
- Li, Q.; Fu, X.; Kou, Y.; Han, N. Engineering strategies and optimized delivery of exosomes for theranostic application in nerve tissue. Theranostics 2023, 13, 4266–4286. [Google Scholar] [CrossRef] [PubMed]
- Valsecchi, V.; Anzilotti, S.; Serani, A.; Laudati, G.; Brancaccio, P.; Guida, N.; Cuomo, O.; Pignataro, G.; Annunziato, L. miR-206 reduces the severity of motor neuron degeneration in the facial nuclei of the brainstem in a mouse model of SMA. Mol. Ther. 2020, 28, 1154–1166. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.H.; Valdez, G.; Moresi, V.; Qi, X.; McAnally, J.; Elliott, J.L.; Bassel-Duby, R.; Sanes, J.R.; Olson, E.N. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 2009, 326, 1549–1554. [Google Scholar] [CrossRef]
- Amirouche, A.; Jahnke, V.E.; Lunde, J.A.; Koulmann, N.; Freyssenet, D.G.; Jasmin, B.J. Muscle-specific microRNA-206 targets multiple components in dystrophic skeletal muscle representing beneficial adaptations. Am. J. Physiol. Cell Physiol. 2017, 312, C209–C221. [Google Scholar] [CrossRef] [PubMed]
- Valdez, G.; Heyer, M.P.; Feng, G.; Sanes, J.R. The role of muscle microRNAs in repairing the neuromuscular junction. PLoS ONE 2014, 9, e93140. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, P.; Yao, X.; Li, H.; Shen, H.; Li, X.; Wu, J.; Lu, X. Exosomes derived from miR-133b-modified mesenchymal stem cells promote recovery after spinal cord injury. Front. Neurosci. 2018, 12, 845. [Google Scholar] [CrossRef]
- Yedigaryan, L.; Martínez-Sarrà, E.; Giacomazzi, G.; Giarratana, N.; van der Veer, B.K.; Rotini, A.; Querceto, S.; Grosemans, H.; Cortés-Calabuig, Á.; Salucci, S.; et al. Extracellular vesicle-derived miRNAs improve stem cell-based therapeutic approaches in muscle wasting conditions. Front. Immunol. 2022, 13, 977617. [Google Scholar] [CrossRef]
- Hettwer, S.; Lin, S.; Kucsera, S.; Haubitz, M.; Oliveri, F.; Fariello, R.G.; Ruegg, M.A.; Vrijbloed, J.W. Injection of a soluble fragment of neural agrin (NT-1654) considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction. PLoS ONE 2014, 9, e88739. [Google Scholar] [CrossRef] [PubMed]
- Qaisar, R. Targeting neuromuscular junction to treat neuromuscular disorders. Life Sci. 2023, 333, 122186. [Google Scholar] [CrossRef]
- Toader, C.; Serban, M.; Munteanu, O.; Covache-Busuioc, R.A.; Enyedi, M.; Ciurea, A.V.; Tataru, C.P. From synaptic plasticity to neurodegeneration: BDNF as a transformative target in medicine. Int. J. Mol. Sci. 2025, 26, 4271. [Google Scholar] [CrossRef]
- Bazzari, A.H.; Bazzari, F.H. BDNF therapeutic mechanisms in neuropsychiatric disorders. Int. J. Mol. Sci. 2022, 23, 8417. [Google Scholar] [CrossRef]
- Awasthi, S.; Tiwari, P.C.; Awasthi, S.; Dwivedi, A.; Srivastava, S. Mechanistic role of proteins and peptides in management of neurodegenerative disorders. Neuropeptides 2025, 110, 102505. [Google Scholar] [CrossRef]
- Erana-Perez, Z.; Igartua, M.; Santos-Vizcaino, E.; Hernandez, R.M. Genetically engineered loaded extracellular vesicles for drug delivery. Trends Pharmacol. Sci. 2024, 45, 350–365. [Google Scholar] [CrossRef]
- Piguet, F.; de Saint Denis, T.; Audouard, E.; Beccaria, K.; André, A.; Wurtz, G.; Schatz, R.; Alves, S.; Sevin, C.; Zerah, M.; et al. The challenge of gene therapy for neurological diseases: Strategies and tools to achieve efficient delivery to the central nervous system. Hum. Gene Ther. 2021, 32, 349–374. [Google Scholar] [CrossRef] [PubMed]
- Berciano, M.T.; Puente-Bedia, A.; Medina-Samamé, A.; Rodríguez-Rey, J.C.; Calderó, J.; Lafarga, M.; Tapia, O. Nusinersen ameliorates motor function and prevents motoneuron Cajal body disassembly and abnormal poly(A) RNA distribution in a SMA mouse model. Sci. Rep. 2020, 10, 10738. [Google Scholar] [CrossRef] [PubMed]
- Ostrowski, M.; Carmo, N.B.; Krumeich, S.; Fanget, I.; Raposo, G.; Savina, A.; Moita, C.F.; Schauer, K.; Hume, A.N.; Freitas, R.P.; et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 2010, 12, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.T.; Li, Z.Z.; Cai, Y.; Ren, J.G.; Zhao, J.H. Emerging roles of Rab27 proteins: From normal to cancer stem cells. Biochem. Biophys. Res. Commun. 2025, 775, 152109. [Google Scholar] [CrossRef]
- Colombo, M.; Moita, C.; van Niel, G.; Kowal, J.; Vigneron, J.; Benaroch, P.; Manel, N.; Moita, L.F.; Théry, C.; Raposo, G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 2013, 126 Pt 24, 5553–5565. [Google Scholar] [CrossRef] [PubMed]
- Marie, P.P.; Fan, S.J.; Mason, J.; Wells, A.; Mendes, C.C.; Wainwright, S.M.; Scott, S.; Fischer, R.; Harris, A.L.; Wilson, C.; et al. Accessory ESCRT-III proteins are conserved and selective regulators of Rab11a-exosome formation. J. Extracell. Vesicles 2023, 12, e12311. [Google Scholar]
- Ott, D.P.; Desai, S.; Solinger, J.A.; Kaech, A.; Spang, A. Coordination between ESCRT function and Rab conversion during endosome maturation. EMBO J. 2025, 44, 1574–1607. [Google Scholar] [CrossRef]
- Menduti, G.; Rasà, D.M.; Stanga, S.; Boido, M. Drug screening and drug repositioning as promising therapeutic approaches for spinal muscular atrophy treatment. Front. Pharmacol. 2020, 11, 592234. [Google Scholar] [CrossRef]
- Pagliarini, V.; Guerra, M.; Di Rosa, V.; Compagnucci, C.; Sette, C. Combined treatment with the histone deacetylase inhibitor LBH589 and a splice-switch antisense oligonucleotide enhances SMN2 splicing and SMN expression in spinal muscular atrophy cells. J. Neurochem. 2020, 153, 264–275. [Google Scholar]
- Poletti, A.; Fischbeck, K.H. Combinatorial treatment for spinal muscular atrophy: An editorial for ‘Combined treatment with the histone deacetylase inhibitor LBH589 and a splice-switch antisense oligonucleotide enhances SMN2 splicing and SMN expression in spinal muscular atrophy cells’ on page 264. J. Neurochem. 2020, 153, 146–149. [Google Scholar] [PubMed]
- van de Wakker, S.I.; Meijers, F.M.; Sluijter, J.P.G.; Vader, P. Extracellular vesicle heterogeneity and its impact for regenerative medicine applications. Pharmacol. Rev. 2023, 75, 1043–1061. [Google Scholar] [CrossRef]
- Xiang, B.; Zhang, S.; Zhao, I.S.; Gan, X.; Zhang, Y. Microenvironmental modulation for therapeutic efficacy of extracellular vesicles. Adv. Sci. 2025, 12, e2503027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tian, X.; Li, Y.; Fang, C.; Yang, F.; Dong, L.; Shen, Y.; Pu, S.; Li, J.; Chang, D.; et al. Stem cell-derived exosomes: A comprehensive review of biomedical applications, challenges, and future directions. Int. J. Nanomed. 2025, 20, 10857–10905. [Google Scholar] [CrossRef]
- Cheng, C.A. Before translating extracellular vesicles into personalized diagnostics and therapeutics: What we could do. Mol. Pharm. 2024, 21, 2625–2636. [Google Scholar] [CrossRef]
- Verma, N.; Arora, S. Navigating the global regulatory landscape for exosome-based therapeutics: Challenges, strategies, and future directions. Pharmaceutics 2025, 17, 990. [Google Scholar] [CrossRef]
- Ebert, A.D.; Yu, J.; Rose, F.F., Jr.; Mattis, V.B.; Lorson, C.L.; Thomson, J.A.; Svendsen, C.N. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 2009, 457, 277–280. [Google Scholar] [CrossRef]
- Corti, S.; Nizzardo, M.; Simone, C.; Falcone, M.; Nardini, M.; Ronchi, D.; Donadoni, C.; Salani, S.; Riboldi, G.; Magri, F.; et al. Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci. Transl. Med. 2012, 4, 165ra162. [Google Scholar] [CrossRef]
- Hor, J.H.; Soh, E.S.; Tan, L.Y.; Lim, V.J.W.; Santosa, M.M.; Winanto; Ho, B.X.; Fan, Y.; Soh, B.S.; Ng, S.Y. Cell cycle inhibitors protect motor neurons in an organoid model of spinal muscular atrophy. Cell Death Dis. 2018, 9, 1100. [Google Scholar] [CrossRef]
- Monani, U.R.; Sendtner, M.; Coovert, D.D.; Parsons, D.W.; Andreassi, C.; Le, T.T.; Jablonka, S.; Schrank, B.; Rossoll, W.; Prior, T.W.; et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn−/− mice and results in a mouse with spinal muscular atrophy. Hum. Mol. Genet. 2000, 9, 333–339, Erratum in Hum. Mol. Genet. 2007, 16, 2648. [Google Scholar] [CrossRef] [PubMed]
- Le, T.T.; Pham, L.T.; Butchbach, M.E.; Zhang, H.L.; Monani, U.R.; Coovert, D.D.; Gavrilina, T.O.; Xing, L.; Bassell, G.J.; Burghes, A.H. SMNΔ7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum. Mol. Genet. 2005, 14, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Hammond, S.M.; Gogliotti, R.G.; Rao, V.; Beauvais, A.; Kothary, R.; DiDonato, C.J. Mouse survival motor neuron alleles that mimic SMN2 splicing and are inducible rescue embryonic lethality early in development but not late. PLoS ONE 2010, 5, e15887. [Google Scholar] [CrossRef]
- Hua, Y.; Sahashi, K.; Hung, G.; Rigo, F.; Passini, M.A.; Bennett, C.F.; Krainer, A.R. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes. Dev. 2010, 24, 1634–1644. [Google Scholar] [CrossRef] [PubMed]
- Bowerman, M.; Murray, L.M.; Beauvais, A.; Pinheiro, B.; Kothary, R. A critical SMN threshold in mice dictates onset of an intermediate spinal muscular atrophy phenotype associated with a distinct neuromuscular junction pathology. Neuromuscul. Disord. 2012, 22, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Hinderer, C.; Katz, N.; Buza, E.L.; Dyer, C.; Goode, T.; Bell, P.; Richman, L.K.; Wilson, J.M. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum. Gene Ther. 2018, 29, 285–298. [Google Scholar] [CrossRef]
- Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011, 29, 341–345. [Google Scholar] [CrossRef]
- Cooper, J.M.; Wiklander, P.B.; Nordin, J.Z.; Al-Shawi, R.; Wood, M.J.; Vithlani, M.; Schapira, A.H.; Simons, J.P.; El-Andaloussi, S.; Alvarez-Erviti, L. Systemic exosomal siRNA delivery reduces alpha-synuclein aggregates in brains of transgenic mice. Mov. Disord. 2014, 29, 1476–1485. [Google Scholar] [CrossRef]
- Yuan, D.; Zhao, Y.; Banks, W.A.; Bullock, K.M.; Haney, M.; Batrakova, E.; Kabanov, A.V. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 2017, 142, 1–12. [Google Scholar] [CrossRef]
- Haney, M.J.; Klyachko, N.L.; Zhao, Y.; Gupta, R.; Plotnikova, E.G.; He, Z.; Patel, T.; Piroyan, A.; Sokolsky, M.; Kabanov, A.V.; et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Release 2015, 207, 18–30, Erratum in J. Control. Release 2021, 339, 232–234. [Google Scholar] [CrossRef]
- Virla, F.; Turano, E.; Scambi, I.; Schiaffino, L.; Boido, M.; Mariotti, R. Administration of adipose-derived stem cells extracellular vesicles in a murine model of spinal muscular atrophy: Effects of a new potential therapeutic strategy. Stem Cell Res. Ther. 2024, 15, 94, Erratum in Stem Cell Res. Ther. 2024, 15, 126. [Google Scholar] [CrossRef]
- Kowal, J.; Arras, G.; Colombo, M.; Jouve, M.; Morath, J.P.; Primdal-Bengtson, B.; Dingli, F.; Loew, D.; Tkach, M.; Théry, C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. USA 2016, 113, E968–E977. [Google Scholar] [CrossRef] [PubMed]
- Kojima, R.; Bojar, D.; Rizzi, G.; Hamri, G.C.; El-Baba, M.D.; Saxena, P.; Ausländer, S.; Tan, K.R.; Fussenegger, M. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat. Commun. 2018, 9, 1305. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Ran, N.; Dong, X.; Zuo, B.; Yang, R.; Zhou, Q.; Moulton, H.M.; Seow, Y.; Yin, H. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci. Transl. Med. 2018, 10, eaat0195, Erratum in Sci. Transl. Med. 2018, 10, eaaw0534. [Google Scholar] [CrossRef]
- Lobb, R.J.; Becker, M.; Wen, S.W.; Wong, C.S.; Wiegmans, A.P.; Leimgruber, A.; Möller, A. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J. Extracell. Vesicles 2015, 4, 27031. [Google Scholar] [CrossRef]
- Helwa, I.; Cai, J.; Drewry, M.D.; Zimmerman, A.; Dinkins, M.B.; Khaled, M.L.; Seremwe, M.; Dismuke, W.M.; Bieberich, E.; Stamer, W.D.; et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS ONE 2017, 12, e0170628. [Google Scholar] [CrossRef] [PubMed]
- Böing, A.N.; van der Pol, E.; Grootemaat, A.E.; Coumans, F.A.; Sturk, A.; Nieuwland, R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J. Extracell. Vesicles 2014, 3, 23430. [Google Scholar] [CrossRef]
- Gimona, M.; Pachler, K.; Laner-Plamberger, S.; Schallmoser, K.; Rohde, E. Manufacturing of human extracellular vesicle-based therapeutics for clinical use. Int. J. Mol. Sci. 2017, 18, 1190. [Google Scholar] [CrossRef]
- Corso, G.; Mäger, I.; Lee, Y.; Görgens, A.; Bultema, J.; Giebel, B.; Wood, M.J.A.; Nordin, J.Z.; El-Andaloussi, S. Reproducible and scalable purification of extracellular vesicles using combined bind–elute and size exclusion chromatography. Sci. Rep. 2017, 7, 11561. [Google Scholar] [CrossRef]
- Shao, H.; Im, H.; Castro, C.M.; Breakefield, X.; Weissleder, R.; Lee, H. New technologies for analysis of extracellular vesicles. Chem. Rev. 2018, 118, 1917–1950. [Google Scholar] [CrossRef]
- Lener, T.; Gimona, M.; Aigner, L.; Börger, V.; Buzas, E.; Camussi, G.; Chaput, N.; Chatterjee, D.; Court, F.A.; Del Portillo, H.A.; et al. Applying extracellular vesicles-based therapeutics in clinical trials—An ISEV position paper. J. Extracell. Vesicles 2015, 4, 30087. [Google Scholar] [CrossRef]
- Mendt, M.; Kamerkar, S.; Sugimoto, H.; McAndrews, K.M.; Wu, C.C.; Gagea, M.; Yang, S.; Blanko, E.V.R.; Peng, Q.; Ma, X.; et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight 2018, 3, e99263. [Google Scholar] [CrossRef]
- Witwer, K.W.; Van Balkom, B.W.M.; Bruno, S.; Choo, A.; Dominici, M.; Gimona, M.; Hill, A.F.; De Kleijn, D.; Koh, M.; Lai, R.C.; et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J. Extracell. Vesicles 2019, 8, 1609206. [Google Scholar] [CrossRef]
- Finkel, R.S.; Mercuri, E.; Darras, B.T.; Connolly, A.M.; Kuntz, N.L.; Kirschner, J.; Chiriboga, C.A.; Saito, K.; Servais, L.; Tizzano, E.; et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 2017, 377, 1723–1732. [Google Scholar] [CrossRef]
- Mercuri, E.; Darras, B.T.; Chiriboga, C.A.; Day, J.W.; Campbell, C.; Connolly, A.M.; Iannaccone, S.T.; Kirschner, J.; Kuntz, N.L.; Saito, K.; et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N. Engl. J. Med. 2018, 378, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Oskoui, M.; Day, J.W.; Deconinck, N.; Mazzone, E.S.; Nascimento, A.; Saito, K.; Vuillerot, C.; Baranello, G.; Goemans, N.; Kirschner, J.; et al. Two-year efficacy and safety of risdiplam in patients with type 2 or non-ambulant type 3 spinal muscular atrophy (SMA). J. Neurol. 2023, 270, 2531–2546, Erratum in J. Neurol. 2023, 270, 2547–2549. [Google Scholar] [CrossRef]
- Tscherter, A.; Steiner, L.; Broser, P.J.; Enzmann, C.; Galiart, E.; Henzi, B.C.; Jacquier, D.; Mathis, A.M.; Neuwirth, C.; Ramelli, G.P.; et al. Real-world data on the effect of long-term treatment with nusinersen over > 4 years in a cohort of Swiss patients with spinal muscular atrophy. Clin. Neurol. Neurosurg. 2025, 255, 108983. [Google Scholar] [CrossRef] [PubMed]
- Servais, L.; Day, J.W.; De Vivo, D.C.; Kirschner, J.; Mercuri, E.; Muntoni, F.; Proud, C.M.; Shieh, P.B.; Tizzano, E.F.; Quijano-Roy, S.; et al. Real-world outcomes in patients with spinal muscular atrophy treated with onasemnogene abeparvovec monotherapy: Findings from the RESTORE Registry. J. Neuromuscul. Dis. 2024, 11, 425–442. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.; Li, X.; Wang, Z.; Li, J.; Shahzad, K.; Zheng, J. Clinical applications of stem cell-derived exosomes. Signal Transduct. Target. Ther. 2024, 9, 17. [Google Scholar] [CrossRef]
- Lee, K.W.A.; Chan, L.K.W.; Hung, L.C.; Phoebe, L.K.W.; Park, Y.; Yi, K.H. Clinical applications of exosomes: A critical review. Int. J. Mol. Sci. 2024, 25, 7794. [Google Scholar] [CrossRef]
- Boido, M.; Vercelli, A. Neuromuscular junctions as key contributors and therapeutic targets in spinal muscular atrophy. Front. Neuroanat. 2016, 10, 6. [Google Scholar] [CrossRef]
- Wang, C.; Tsai, T.; Lee, C. Regulation of exosomes as biologic medicines: Regulatory challenges faced in exosome development and manufacturing processes. Clin. Transl. Sci. 2024, 17, e13904. [Google Scholar] [CrossRef] [PubMed]
- Muni-Lofra, R.; Coratti, G.; Duong, T.; Medina-Cantillo, J.; Civitello, M.; Mayhew, A.; Finkel, R.; Mercuri, E.; Marini-Bettolo, C.; Muntoni, F. Assessing disease progression in spinal muscular atrophy, current gaps, and opportunities: A narrative review. Neuromuscul. Disord. 2025, 49, 105341, Erratum in Neuromuscul. Disord. 2025, 51, 105391. [Google Scholar] [CrossRef]
- Landfeldt, E.; Pechmann, A.; McMillan, H.J.; Lochmüller, H.; Sejersen, T. Costs of illness of spinal muscular atrophy: A systematic review. Appl. Health Econ. Health Policy 2021, 19, 501–520. [Google Scholar] [CrossRef]
- Quan, J.; Liu, Q.; Li, P.; Yang, Z.; Zhang, Y.; Zhao, F.; Zhu, G. Mesenchymal stem cell exosome therapy: Current research status in the treatment of neurodegenerative diseases and the possibility of reversing normal brain aging. Stem Cell Res. Ther. 2025, 16, 76. [Google Scholar] [CrossRef]
- Antonaci, L.; Pera, M.C.; Mercuri, E. New therapies for spinal muscular atrophy: Where we stand and what is next. Eur. J. Pediatr. 2023, 182, 2935–2942. [Google Scholar] [CrossRef]
- Li, P.; Kaslan, M.; Lee, S.H.; Yao, J.; Gao, Z. Progress in exosome isolation techniques. Theranostics 2017, 7, 789–804. [Google Scholar] [CrossRef]
- Taylor, D.D.; Shah, S. Methods of isolating extracellular vesicles impact downstream analyses of their cargoes. Methods 2015, 87, 3–10. [Google Scholar] [CrossRef]
- Tolomeo, A.M.; Zuccolotto, G.; Malvicini, R.; De Lazzari, G.; Penna, A.; Franco, C.; Caicci, F.; Magarotto, F.; Quarta, S.; Pozzobon, M.; et al. Biodistribution of intratracheal, intranasal, and intravenous injections of human mesenchymal stromal cell-derived extracellular vesicles in a mouse model for drug delivery studies. Pharmaceutics 2023, 15, 548. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, C.; Zheng, H.; Yaddanapudi, K.; Ng, C.K. Biodistribution studies of 89Zr-labeled stem cell-derived exosomes using PET imaging. Appl. Radiat. Isot. 2025, 225, 112000. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, A.; Chalupska, R.; Louro, A.F.; Firth, M.; González-King Garibotti, H.; Hultin, L.; Kohl, F.; Lázaro-Ibáñez, E.; Lindgren, J.; Musa, G.; et al. Barcoded hybrids of extracellular vesicles and lipid nanoparticles for multiplexed analysis of tissue distribution. Adv. Sci. 2025, 12, e2407850. [Google Scholar] [CrossRef]
- Liang, X.; Gupta, D.; Xie, J.; Van Wonterghem, E.; Van Hoecke, L.; Hean, J.; Niu, Z.; Ghaeidamini, M.; Wiklander, O.P.B.; Zheng, W.; et al. Engineering of extracellular vesicles for efficient intracellular delivery of multimodal therapeutics including genome editors. Nat. Commun. 2025, 16, 4028. [Google Scholar] [CrossRef]
- Han, C.; Qin, G. Reporter systems for assessments of extracellular vesicle transfer. Front. Cardiovasc. Med. 2022, 9, 922420. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.Y.; Sung, Y.C.; Chen, Y.J.; Chou, S.T.; Guo, V.; Chien, J.C.; Ko, J.J.; Yang, A.L.; Huang, H.C.; Chuang, J.C.; et al. Multiresolution imaging using bioluminescence resonance energy transfer identifies distinct biodistribution profiles of extracellular vesicles and exomeres with redirected tropism. Adv. Sci. 2020, 7, 2001467. [Google Scholar] [CrossRef]
- Rossi, B.; Virla, F.; Angelini, G.; Scambi, I.; Bani, A.; Marostica, G.; Caprioli, M.; Anni, D.; Furlan, R.; Marzola, P.; et al. Intranasal administration of extracellular vesicles derived from adipose mesenchymal stem cells has therapeutic effect in experimental autoimmune encephalomyelitis. Cells 2025, 14, 1172. [Google Scholar] [CrossRef] [PubMed]
- Bonafede, R.; Brandi, J.; Manfredi, M.; Scambi, I.; Schiaffino, L.; Merigo, F.; Turano, E.; Bonetti, B.; Marengo, E.; Cecconi, D.; et al. The anti-apoptotic effect of ASC-exosomes in an in vitro ALS model and their proteomic analysis. Cells 2019, 8, 1087. [Google Scholar] [CrossRef]
- Auletta, B.; Chiolerio, P.; Cecconi, G.; Rossi, L.; Sartore, L.; Cecchinato, F.; Barbato, G.; Lauroja, A.; Maghin, E.; Easler, M.; et al. Tissue-engineered neuromuscular organoids. Commun. Biol. 2025, 8, 1074. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Zhou, W.; Zhu, J.; Chen, Z.; Jiang, L.; Zhuang, X.; Chen, J.; Wei, J.; Lu, X.; Liu, Y.; et al. Generation of self-organized neuromusculoskeletal tri-tissue organoids from human pluripotent stem cells. Cell Stem Cell 2025, 32, 157–171.e8. [Google Scholar] [CrossRef]
- Grass, T.; Dokuzluoglu, Z.; Buchner, F.; Rosignol, I.; Thomas, J.; Caldarelli, A.; Dalinskaya, A.; Becker, J.; Rost, F.; Marass, M.; et al. Isogenic patient-derived organoids reveal early neurodevelopmental defects in spinal muscular atrophy initiation. Cell Rep. Med. 2024, 5, 101659. [Google Scholar] [CrossRef]

| SMA Type | Age at Onset | Maximum Motor Function | Typical Prognosis |
|---|---|---|---|
| 0 | Prenatal | No motor function | Severe hypotonia at birth; death usually <6 months |
| 1 | <6 months | Never sits | Life expectancy rarely exceeds 2 years |
| 2 | 7–18 months | Sits unsupported | Lives into adolescence or early adulthood |
| 3 | >18 months | Walks independently | Slow progression; normal or near-normal lifespan |
| Molecular/Pathway Focus | Study (Year) | Model/Population | Key Findings | Relevance to Hypothesis |
|---|---|---|---|---|
| SMN protein in exosomes | Nash et al., 2017 [107] | SMA serum/CSF | SMN packaged into circulating exosomes; reduced in SMA; correlates with genotype and severity. | EV cargo mirrors disease burden; SMN-in-exosomes is a biomarker of residual disease activity. |
| miR-206, miR-133a-3p response to therapy | Magen et al., 2022 [108] | SMA II/III on nusinersen (longitudinal CSF) | miR-206/133a-3p inversely correlate with motor score; early predictors of therapeutic response. | EV/CSF miRNAs act as dynamic biomarkers of NMJ health and drug efficacy. |
| Agrin Z+ isoform restoration | Kim et al., 2017 [109] | SMA mouse models | SMN deficiency lowers neuronal Z+ Agrin; restoration enlarges NMJ, improves innervation, increases fiber size, extends survival. | Loss of neuronal synaptic cues destabilizes NMJs; restoring cargo is disease-modifying. |
| Agrin mimetic NT-1654 | Boido et al., 2018 [110] | SMA mice | NT-1654 enhances NMJ maturation, reduces denervation, improves outcomes. | Proof that replacing missing synaptic organizers rescues NMJ architecture. |
| Presynaptic vesicle machinery | Tejero et al., 2016 [111] | SMA (SMNΔ7) mice | Syt2, SV2B markedly reduced in vulnerable muscles; impaired neurotransmitter release. | Presynaptic protein loss drives NMJ instability; aligns with cargo-deficiency hypothesis. |
| Axonal trafficking nodes (Rab5/Rab7) | Deinhardt et al., 2006 [112] | Motor neurons, DRG | Rab5 regulates early endosomes; Rab7 long-range retrograde transport; Rab7 inhibition blocks cargo transport. | SMN-linked trafficking deficits may impair Rab5→Rab7 transition, altering exosomal sorting. |
| Exosomal SMN delivery | René et al., 2025 [81] | SMA in vitro models | EV-delivered SMN restores nuclear SMN localization; functional rescue. | Confirms EVs as therapeutic vectors supporting the axon-to-muscle repair hypothesis. |
| Molecule | Normal Function in NMJ/Muscle | Predicted Alteration in SMA Exosomes | Expected Consequence |
|---|---|---|---|
| miR-206 | Promotes NMJ regeneration, supports reinnervation after injury | Reduced neuronal exosomal delivery (compensatory muscle upregulation insufficient) | Delayed, incomplete NMJ repair; partial synaptic stabilization |
| miR-133b | Regulates acetylcholine receptor clustering and postsynaptic differentiation | Loss from motor neuron exosomes | Fragmented and unstable postsynaptic architecture |
| miR-23a/b | Protects against muscle atrophy via inhibition of catabolic pathways | Underrepresented in SMN-deficient exosomes | Accelerated muscle wasting |
| Agrin/MuSK modulators | Induce acetylcholine receptor clustering and NMJ maturation | Deficient exosomal transfer | Impaired synaptic assembly, immature NMJs |
| Synaptophysin, SNAP25 | Support vesicle docking and neurotransmitter release | Reduced delivery to synaptic sites | Presynaptic disassembly, impaired neurotransmission |
| BDNF | Enhances motor neuron survival and synaptic stability | Lower exosomal release | Reduced trophic support, synaptic vulnerability |
| GDNF | Strengthens NMJ connectivity and motor neuron resilience | Loss from exosomal cargo | Weakening of neuromuscular signaling, denervation |
| IGF-1 | Promotes muscle growth, regeneration, and metabolic resilience | Diminished exosomal presence | Reduced muscle repair capacity, enhanced atrophy |
| Domain | Key Models/Approaches | Main Findings | Translational Relevance |
|---|---|---|---|
| In vitro SMA systems | Patient fibroblasts; iPSC-derived motor neurons; organoids | SMN restoration, improved axonal growth and NMJ maturation | Fast screening of exosome cargo and potency assays |
| In vivo SMA models | SMNΔ7 mice; Smn2B/-mice | Survival extension, improved motor outcomes with EV-based interventions | Predictive for early-dose strategies and repeat dosing evaluation |
| Engineered exosomes | RVG-targeted EVs; OLIGO- or mRNA-loaded EVs | CNS delivery after peripheral dosing; gene silencing; neuroprotection in other neurodegenerative models | Feasibility of SMN1 mRNA or ASO-loaded exosomes |
| Endogenous EV-SMN biology | Human fibroblast EVs; serum EVs from SMA patients | SMN detectable and reduced in SMA; correlates with severity | Biomarker potential and rationale for EV-SMN replacement |
| Stem cell EV therapies | MSC/hASC EVs in SMA mice | Motor improvement, reduced apoptosis and gliosis | SMN-independent therapeutic pathways (trophic and anti-inflammatory) |
| Delivery considerations | Intranasal, intrathecal, intravenous | Effective CNS penetration demonstrated in ALS/PD models | Guides route selection for SMA clinical trials |
| Manufacturing and Quality Control | SEC, TFF, bioreactors | Higher purity, scalable production | Required for GMP-grade EV therapeutics |
| Clinical application | Adjunctive or standalone therapy; biomarker monitoring | Potential to enhance SMN-targeted drugs and aid non-responders | Supports development of future early-phase trials |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fajkić, A.; Belančić, A.; Lam, Y.W.; Rački, V.; Pilipović, K.; Janković, T.; Mežnarić, S.; Mršić-Pelčić, J.; Vitezić, D. Novel Translational Concept: Axon-to-Muscle Exosomal Signaling as an Emerging Therapeutic Target in Spinal Muscular Atrophy. Biomedicines 2025, 13, 2876. https://doi.org/10.3390/biomedicines13122876
Fajkić A, Belančić A, Lam YW, Rački V, Pilipović K, Janković T, Mežnarić S, Mršić-Pelčić J, Vitezić D. Novel Translational Concept: Axon-to-Muscle Exosomal Signaling as an Emerging Therapeutic Target in Spinal Muscular Atrophy. Biomedicines. 2025; 13(12):2876. https://doi.org/10.3390/biomedicines13122876
Chicago/Turabian StyleFajkić, Almir, Andrej Belančić, Yun Wah Lam, Valentino Rački, Kristina Pilipović, Tamara Janković, Silvestar Mežnarić, Jasenka Mršić-Pelčić, and Dinko Vitezić. 2025. "Novel Translational Concept: Axon-to-Muscle Exosomal Signaling as an Emerging Therapeutic Target in Spinal Muscular Atrophy" Biomedicines 13, no. 12: 2876. https://doi.org/10.3390/biomedicines13122876
APA StyleFajkić, A., Belančić, A., Lam, Y. W., Rački, V., Pilipović, K., Janković, T., Mežnarić, S., Mršić-Pelčić, J., & Vitezić, D. (2025). Novel Translational Concept: Axon-to-Muscle Exosomal Signaling as an Emerging Therapeutic Target in Spinal Muscular Atrophy. Biomedicines, 13(12), 2876. https://doi.org/10.3390/biomedicines13122876

