Prevalence and Risk Factors of MASLD in Prediabetes and Type 2 Diabetes Mellitus in Belgium and The Netherlands
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Glucose Metabolism Status
2.4. Data Collection
2.5. Liver Stiffness and Steatosis Measurements
2.6. Statistical Analysis
3. Results
3.1. Steatosis and Fibrosis in the Bi-National Cohort
3.2. Characteristics and Differences in the Bi-National Cohort
3.3. Risk Factor Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- 1
- Ziekenhuis Oost-Limburg, Department of Endocrinology, Genk, Belgium
- 2
- Huisartsenbox, Genk, Belgium
- 3
- Huisartsenpraktijk Medi-Mine, Genk, Belgium
- 4
- Groepspraktijk Luce, Genk, Belgium
- 5
- Gezondheidscentrum Sirona vzw, Genk, Belgium
- 6
- Groepspraktijk De Dam, Maasmechelen, Belgium
- 7
- W-Care Hoeselt, Hoeselt, Belgium
- 8
- Huisartsen Termolen, Zonhoven, Belgium
- 9
- Huisarts Gilio, Maasmechelen, Belgium
- 10
- University of Antwerp, Maatschappelijke Gezondheidszorg en Eerstelijnzorg, Wilrijk, Belgium
- 11
- Antwerp University Hospital, Department of Gastroenterology and Hepatology, Antwerp, Belgium
- 12
- MUMC+, Department of Endocrinology, Maastricht University Medical Centre, The Netherlands
- 13
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- 14
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
- 15
- Department Clinical Chemistry, Division Diagnostic Laboratory, Maastricht University Medical Center, The Netherlands
References
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Kimura, T.; Fujimori, N.; Nagaya, T.; Komatsu, M.; Tanaka, E. Current status, problems, and perspectives of non-alcoholic fatty liver disease research. World J. Gastroenterol. 2019, 25, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Raverdy, V.; Tavaglione, F.; Chatelain, E.; Lassailly, G.; De Vincentis, A.; Vespasiani-Gentilucci, U.; Qadri, S.F.; Caiazzo, R.; Verkindt, H.; Saponaro, C.; et al. Data-driven cluster analysis identifies distinct types of metabolic dysfunction-associated steatotic liver disease. Nat. Med. 2024, 30, 3624–3633. [Google Scholar] [CrossRef]
- Stefan, N.; Yki-Järvinen, H.; Neuschwander-Tetri, B.A. Metabolic dysfunction-associated steatotic liver disease: Heterogeneous pathomechanisms and effectiveness of metabolism-based treatment. Lancet Diabetes Endocrinol. 2025, 13, 134–148. [Google Scholar] [CrossRef]
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Targher, G.; Byrne, C.D.; Cao, Y.Y.; Zheng, M.H. Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. 2024, 35, 697–707. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Price, J.K.; Owrangi, S.; Gundu-Rao, N.; Satchi, R.; Paik, J.M. The Global Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis Among Patients with Type 2 Diabetes. Clin. Gastroenterol. Hepatol. 2024, 22, 1999–2010.e8. [Google Scholar] [CrossRef]
- Targher, G.; Tilg, H.; Byrne, C.D. Non-alcoholic fatty liver disease: A multisystem disease requiring a multidisciplinary and holistic approach. Lancet Gastroenterol. Hepatol. 2021, 6, 578–588. [Google Scholar] [CrossRef]
- Chan, K.E.; Ong, E.Y.H.; Chung, C.H.; Ong, C.E.Y.; Koh, B.; Tan, D.J.H.; Lim, W.H.; Yong, J.N.; Xiao, J.; Wong, Z.Y.; et al. Longitudinal Outcomes Associated with Metabolic Dysfunction-Associated Steatotic Liver Disease: A Meta-analysis of 129 Studies. Clin. Gastroenterol. Hepatol. 2024, 22, 488–498.e414. [Google Scholar] [CrossRef]
- Bae, J.C.; Rhee, E.J.; Lee, W.Y.; Park, S.E.; Park, C.Y.; Oh, K.W.; Park, S.W.; Kim, S.W. Combined effect of nonalcoholic fatty liver disease and impaired fasting glucose on the development of type 2 diabetes: A 4-year retrospective longitudinal study. Diabetes Care 2011, 34, 727–729. [Google Scholar] [CrossRef] [PubMed]
- Gastaldelli, A.; Cusi, K. From NASH to diabetes and from diabetes to NASH: Mechanisms and treatment options. JHEP Rep. 2019, 1, 312–328. [Google Scholar] [CrossRef] [PubMed]
- Lefere, S.; Tacke, F. Macrophages in obesity and non-alcoholic fatty liver disease: Crosstalk with metabolism. JHEP Rep. 2019, 1, 30–43. [Google Scholar] [CrossRef]
- Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016, 65, 1038–1048. [Google Scholar] [CrossRef]
- Brunt, E.M.; Wong, V.W.; Nobili, V.; Day, C.P.; Sookoian, S.; Maher, J.J.; Bugianesi, E.; Sirlin, C.B.; Neuschwander-Tetri, B.A.; Rinella, M.E. Nonalcoholic fatty liver disease. Nat. Rev. Dis. Primers 2015, 1, 15080. [Google Scholar] [CrossRef]
- Roehlen, N.; Crouchet, E.; Baumert, T.F. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020, 9, 875. [Google Scholar] [CrossRef]
- Tanwar, S.; Rhodes, F.; Srivastava, A.; Trembling, P.M.; Rosenberg, W.M. Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World J. Gastroenterol. 2020, 26, 109–133. [Google Scholar] [CrossRef] [PubMed]
- Chao, H.W.; Chao, S.W.; Lin, H.; Ku, H.C.; Cheng, C.F. Homeostasis of Glucose and Lipid in Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2019, 20, 298. [Google Scholar] [CrossRef]
- Schram, M.T.; Sep, S.J.; van der Kallen, C.J.; Dagnelie, P.C.; Koster, A.; Schaper, N.; Henry, R.M.; Stehouwer, C.D. The Maastricht Study: An extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. Eur. J. Epidemiol. 2014, 29, 439–451. [Google Scholar] [CrossRef]
- Tacke, F.; Horn, P.; Wong, V.W.-S.; Ratziu, V.; Bugianesi, E.; Francque, S.; Zelber-Sagi, S.; Valenti, L.; Roden, M.; Schick, F.; et al. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef]
- Koeck, P.H.; Bastiaens, H.; Benhalima, K.; Cloetens, H.; Feyen, L.; Sunaert, P.; Van Crombrugge, P.; Van Pottelbergh, I.; Van Leeuwen, E.; Verhaegen, A.; et al. Diabetes Mellitus Type 2. Domus Medica. 2015. Available online: https://www.domusmedica.be/richtlijnen/diabetes-mellitus-type-2 (accessed on 1 August 2025).
- World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; WHO Technical Report Series 894; WHO: Geneva, Switzerland, 2000; pp. 1–253. [Google Scholar]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Loomis, A.K.; Kabadi, S.; Preiss, D.; Hyde, C.; Bonato, V.; Louis, M.S.; Desai, J.; Gill, J.M.R.; Welsh, P.; Waterworth, D.; et al. Body mass index and risk of nonalcoholic fatty liver disease: Two electronic health record prospective studies. J. Clin. Endocrinol. Metab. 2016, 101, 945–952. [Google Scholar] [CrossRef]
- Saida, T.; Fukushima, W.; Ohfuji, S.; Kondo, K.; Matsunaga, I.; Hirota, Y. Effect modification of body mass index and body fat percentage on fatty liver disease in a Japanese population. J. Gastroenterol. Hepatol. 2014, 29, 128–136. [Google Scholar] [PubMed]
- Fan, R.; Wang, J.; Du, J. Association between body mass index and fatty liver risk: A dose-response analysis. Sci. Rep. 2018, 8, 15273. [Google Scholar] [CrossRef] [PubMed]
- Julián, M.T.; Arteaga, I.; Torán-Monserrat, P.; Pera, G.; Pérez-Montes de Oca, A.; Ruiz-Rojano, I.; Casademunt-Gras, E.; Chacón, C.; Alonso, N. The Link between Abdominal Obesity Indices and the Progression of Liver Fibrosis: Insights from a Population-Based Study. Nutrients 2024, 16, 1586. [Google Scholar] [CrossRef]
- Cherubini, A.; Della Torre, S.; Pelusi, S.; Valenti, L. Sexual dimorphism of metabolic dysfunction-associated steatotic liver disease. Trends Mol. Med. 2024, 30, 1126–1136. [Google Scholar] [CrossRef]
- Fu, C.E.; Teng, M.; Tung, D.; Ramadoss, V.; Ong, C.; Koh, B.; Lim, W.H.; Tan, D.J.H.; Koh, J.H.; Nah, B.; et al. Sex and Race-Ethnic Disparities in Metabolic Dysfunction-Associated Steatotic Liver Disease: An Analysis of 40,166 Individuals. Dig. Dis. Sci. 2024, 69, 3195–3205. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Cholankeril, G.; Loomba, R.; Ahmed, A. Prevalence of Nonalcoholic Fatty Liver Disease and Hepatic Fibrosis Among US Adults with Prediabetes and Diabetes, NHANES 2017–2018. J. Gen. Intern. Med. 2022, 37, 261–263. [Google Scholar] [CrossRef]
- Forlani, G.; Giorda, C.; Manti, R.; Mazzella, N.; De Cosmo, S.; Rossi, M.C.; Nicolucci, A.; Di Bartolo, P.; Ceriello, A.; Guida, P. The Burden of NAFLD and Its Characteristics in a Nationwide Population with Type 2 Diabetes. J. Diabetes Res. 2016, 2016, 2931985. [Google Scholar] [CrossRef]
- Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef]
- Williamson, R.M.; Price, J.F.; Glancy, S.; Perry, E.; Nee, L.D.; Hayes, P.C.; Frier, B.M.; Van Look, L.A.; Johnston, G.I.; Reynolds, R.M.; et al. Prevalence of and risk factors for hepatic steatosis and nonalcoholic Fatty liver disease in people with type 2 diabetes: The Edinburgh Type 2 Diabetes Study. Diabetes Care 2011, 34, 1139–1144. [Google Scholar] [CrossRef]
- Ferraioli, G.; Soares Monteiro, L.B. Ultrasound-based techniques for the diagnosis of liver steatosis. World J. Gastroenterol. 2019, 25, 6053–6062. [Google Scholar] [CrossRef]
- Hernaez, R.; Lazo, M.; Bonekamp, S.; Kamel, I.; Brancati, F.L.; Guallar, E.; Clark, J.M. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: A meta-analysis. Hepatology 2011, 54, 1082–1090. [Google Scholar] [CrossRef]
- Park, J.; Kwon, H.J.; Sohn, W.; Cho, J.Y.; Park, S.J.; Chang, Y.; Ryu, S.; Kim, B.I.; Cho, Y.K. Risk of liver fibrosis in patients with prediabetes and diabetes mellitus. PLoS ONE 2022, 17, e0269070. [Google Scholar] [CrossRef] [PubMed]
- Corbin, K.D.; Pittas, A.G.; Desouza, C.; Grdinovac, K.K.; Herzig, K.H.; Kashyap, S.R.; Kim, S.H.; Nelson, J.; Rasouli, N.; Vickery, E.M.; et al. Indices of hepatic steatosis and fibrosis in prediabetes and association with diabetes development in the vitamin D and type 2 diabetes study. J. Diabetes Complicat. 2023, 37, 108475. [Google Scholar] [CrossRef] [PubMed]
- Sporea, I.; Mare, R.; Lupusoru, R.; Sima, A.; Sirli, R.; Popescu, A.; Timar, R. Liver Stiffness Evaluation by Transient Elastography in Type 2 Diabetes Mellitus Patients with Ultrasound-proven Steatosis. J. Gastrointest. Liver Dis. JGLD 2016, 25, 167–174. [Google Scholar] [CrossRef]
- Sobhonslidsuk, A.; Pulsombat, A.; Kaewdoung, P.; Petraksa, S. Non-alcoholic fatty liver disease (NAFLD) and significant hepatic fibrosis defined by non-invasive assessment in patients with type 2 diabetes. Asian Pac. J. Cancer Prev. APJCP 2015, 16, 1789–1794. [Google Scholar] [CrossRef] [PubMed]
- Cusi, K.; Abdelmalek, M.F.; Apovian, C.M.; Balapattabi, K.; Bannuru, R.R.; Barb, D.; Bardsley, J.K.; Beverly, E.A.; Corbin, K.D.; ElSayed, N.A.; et al. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in People With Diabetes: The Need for Screening and Early Intervention. A Consensus Report of the American Diabetes Association. Diabetes Care 2025, 48, 1057–1082. [Google Scholar] [CrossRef]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef]
- Zheng, H.; Sechi, L.A.; Navarese, E.P.; Casu, G.; Vidili, G. Metabolic dysfunction-associated steatotic liver disease and cardiovascular risk: A comprehensive review. Cardiovasc. Diabetol. 2024, 23, 346. [Google Scholar] [CrossRef]
- Fu, H.; Yu, H.; Zhao, Y.; Chen, J.; Liu, Z. Association between hypertension and the prevalence of liver steatosis and fibrosis. BMC Endocr. Disord. 2023, 23, 85. [Google Scholar] [CrossRef]
- Gangireddy, V.G.R.; Pilkerton, C.; Xiang, J.; Tinajero, R.; Ashcraft, A.M. Hepatic Fibrosis and Steatosis in Metabolic Syndrome. J. Obes. Metab. Syndr. 2022, 31, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.-Q.; Xiong, Y.-T.; Wang, D.; Wang, K.-X.; Guo, C.; Fu, Y.-M.; Niu, X.-X.; Wang, C.-Y.; Wang, J.-J.; Ji, D.; et al. Metabolic syndrome is associated with significant hepatic fibrosis and steatosis in patients with nonalcoholic steatohepatitis. iLIVER 2024, 3, 100094. [Google Scholar] [CrossRef]
- Feng, G.; Targher, G.; Byrne, C.D.; Yilmaz, Y.; Wai-Sun Wong, V.; Adithya Lesmana, C.R.; Adams, L.A.; Boursier, J.; Papatheodoridis, G.; El-Kassas, M.; et al. Global burden of metabolic dysfunction-associated steatotic liver disease, 2010 to 2021. JHEP Rep. 2025, 7, 101271. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Fang, Y.; Zhao, J.; Yang, N.; Li, Y.; Liu, F.; Chen, X. Nonlinear relationship between body fat percentage and NAFLD mediated by METS-IR: Threshold effects and subgroup differences. Sci. Rep. 2025, 15, 24917. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Huang, M.; Han, Y.; Zhang, X.; Hu, H.; Wang, Y. The nonlinear connection between relative fat mass and non-alcoholic fatty liver disease in the Japanese population: An analysis based on data from a cross-sectional study. Diabetol. Metab. Syndr. 2024, 16, 236. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Lin, Y.; Chen, J.; Wang, F.; Wang, L.; Liu, J.; Zhang, X. Diet Supplementation of Luteolin before Fatty Liver Formation Improves Hepatic Steatosis in Obese Mice by Inhibiting Visceral Adipose Tissue Lipolysis. Mol. Nutr. Food Res. 2023, 67, e2200478. [Google Scholar] [CrossRef]
- Igarashi, Y.; Tanaka, M.; Okada, H.; Hashimoto, Y.; Kumagai, M.; Yamaoka, M.; Nishimura, H.; Fukui, M. Visceral adipose tissue quality was associated with nonalcoholic fatty liver disease, independent of its quantity. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 973–980. [Google Scholar] [CrossRef]
- Saponaro, C.; Sabatini, S.; Gaggini, M.; Carli, F.; Rosso, C.; Positano, V.; Armandi, A.; Caviglia, G.P.; Faletti, R.; Bugianesi, E.; et al. Adipose tissue dysfunction and visceral fat are associated with hepatic insulin resistance and severity of NASH even in lean individuals. Liver Int. 2022, 42, 2418–2427. [Google Scholar] [CrossRef]
- Matsuzawa, Y. Obesity and metabolic syndrome: The contribution of visceral fat and adiponectin. Diabetes Manag. 2014, 4, 391–401. [Google Scholar] [CrossRef]
- Unamuno, X.; Gómez-Ambrosi, J.; Rodríguez, A.; Becerril, S.; Frühbeck, G.; Catalán, V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur. J. Clin. Investig. 2018, 48, e12997. [Google Scholar] [CrossRef] [PubMed]
- Yamane, R.; Yoshioka, K.; Hayashi, K.; Shimizu, Y.; Ito, Y.; Matsushita, K.; Yoshizaki, M.; Kajikawa, G.; Mizutani, T.; Watarai, A.; et al. Prevalence of nonalcoholic fatty liver disease and its association with age in patients with type 2 diabetes mellitus. World J. Hepatol. 2022, 14, 1226–1234. [Google Scholar] [CrossRef]
- Golabi, P.; Paik, J.M.; Kumar, A.; Al Shabeeb, R.; Eberly, K.E.; Cusi, K.; GunduRao, N.; Younossi, Z.M. Nonalcoholic fatty liver disease (NAFLD) and associated mortality in individuals with type 2 diabetes, pre-diabetes, metabolically unhealthy, and metabolically healthy individuals in the United States. Metabolism 2023, 146, 155642. [Google Scholar] [CrossRef] [PubMed]
- van Kleef, L.A.; Sonneveld, M.J.; Kavousi, M.; Ikram, M.A.; de Man, R.A.; de Knegt, R.J. Fatty liver disease is not associated with increased mortality in the elderly: A prospective cohort study. Hepatology 2023, 77, 585–593. [Google Scholar] [CrossRef]
- Targher, G.; Bertolini, L.; Padovani, R.; Rodella, S.; Tessari, R.; Zenari, L.; Day, C.; Arcaro, G. Prevalence of Nonalcoholic Fatty Liver Disease and Its Association With Cardiovascular Disease Among Type 2 Diabetic Patients. Diabetes Care 2007, 30, 1212–1218. [Google Scholar] [CrossRef]
- Heyens, L.J.M.; Busschots, D.; Koek, G.H.; Robaeys, G.; Francque, S. Liver Fibrosis in Non-alcoholic Fatty Liver Disease: From Liver Biopsy to Non-invasive Biomarkers in Diagnosis and Treatment. Front. Med. 2021, 8, 615978. [Google Scholar] [CrossRef]
- Chowdhury, A.B.; Mehta, K.J. Liver biopsy for assessment of chronic liver diseases: A synopsis. Clin. Exp. Med. 2023, 23, 273–285. [Google Scholar] [CrossRef] [PubMed]

| Characteristic | Total Cohort (n = 1928) | Belgium (n = 811) | The Netherlands (n = 1117) | p1 | p2 | p3 | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| Normal GMS with MASLD (n = 279) | Prediabetes (n = 102) | T2DM (n = 430) | Normal GMS with MASLD (n = 459) | Prediabetes (n = 269) | T2DM (n = 389) | |||||
| Demographics | ||||||||||
| Age (years) | 67 [13.0] | 62 [17.0] | 64.0 ± 10.5 | 62 [12.0] | 67 [12.0] | 70.0 [10.0] | 71 [10.0] | α | α | α |
| Sex (male) | 1080 (56.0) | 147 (52.7) | 49 (48.0) | 249 (57.9) | 226 (49.2) | 141 (52.4) | 268 (68.9) | - | - | α |
| BMI (kg/m2) | 28.4 [5.9] | 29.9 [5.6] | 29.8 ± 5.0 | 31.0 [7.4] | 27.0 [4.3] | 27.3 [5.0] | 28.0 [5.1] | α | α | α |
| Waist circum. (cm) | ||||||||||
| Male | 104.0 [14.9] | 106.5 [13.1] | 107.0 ± 12.6 | 107.0 [16.9] | 99.1 [10.0] | 101.7 ± 10.0 | 106.3 [13.7] | α | α | - |
| Female | 97.0 [19.0] | 101.3 ± 13.1 | 99.2 ± 11.9 | 106.5 [21.0] | 91.4 [14.5] | 91.9 ± 11.6 | 96.8 ± 12.0 | α | α | α |
| Blood pressure * | ||||||||||
| High SBP | 1238 (64.2) | 194 (69.5) | 72 (70.5) | 291 (73.9) | 237 (51.6) | 155 (57.6) | 289 (74.5) | α | α | - |
| High DBP | 633 (32.8) | 138 (49.5) | 50 (49.0) | 189 (48.0) | 105 (22.9) | 62 (23.1) | 89 (23.0) | α | α | α |
| Smoker status | ||||||||||
| Never | 867 (45.0) | 145 (52.0) | 56 (54.9) | 196 (45.7) | 214 (46.6) | 106 (39.4) | 150 (38.6) | α | α | α |
| Former | 899 (46.7) | 107 (38.4) | 37 (36.3) | 171 (39.9) | 222 (48.4) | 148 (55.0) | 214 (55.0) | |||
| Current | 161 (8.4) | 27 (9.7) | 9 (8.8) | 62 (14.15) | 23 (5.0) | 15 (5.6) | 25 (6.4) | |||
| Metabolic health | ||||||||||
| CVD history | 577 (29.9) | 36 (12.9) | 13 (12.7) | 112 (26.0) | 79 (17.2) | 53 (19.7) | 284 (27.0) | - | - | - |
| Metabolic syndrome | 1214 (62.9) | 161 (57.7) | 70 (68.6) | 347 (80.7) | 137 (29.8) | 161 (59.9) | 338 (86.9) | α | - | α |
| Laboratory values | ||||||||||
| HDL-cholesterol (mg/dL) | 50.3 [19.3] | 49.0 [18.0] | 58.3 ± 12.4 | 44.0 [15.0] | 58 [23.2] | 58 [19.3] | 46.4 [15.5] | α | - | α |
| LDL-cholesterol (mg/dL) | 102.9 [56.7] | 111.0 [45.5] | 120.6 ± 30.8 | 71.0 [44.9] | 123.8 [46.4] | 125.8 ± 35.3 | 85.1 [42.5] | α | - | α |
| Total cholesterol (mg/dL) | 181.8 [61.9] | 190.0 [51.3] | 204.4 ± 31.4 | 151.0 [49.0] | 203.3 ± 40.8 | 210.0 ± 39.7 | 154.7 [54.1] | α | - | α |
| Triglycerides (mg/dL) | 124.9 [87.7] | 136.0 [93.0] | 130 [59.0] | 149.5 [118.5] | 106.3 [62.9] | 121.3 [70.9] | 134.6 [89.9] | α | - | - |
| HbA1c (%) | 5.9 [1.5] | 5.8 [0.7] † | 6.0 ± 0.3 | 7 [1.2] | 5.4 [0.5] | 5.7 [0.5] | 7.0 [1.3] | α | α | - |
| Serum creatinine (mg/dL) | 0.87 [0.26] | 0.84 [0.23] | 0.77 ± 0.13 | 0.89 [0.34] | 0.84 [0.23] | 0.78 [0.16] | 0.90 [0.28] | - | - | - |
| Thrombocytes (×109/L) | 231.0 [77.0] | 247.5 [86.8] | 262.6 ± 55.7 | 227 [85.8] | 231.5 [71.0] | 250.0 [71.0] | 224 [77.8] | α | - | - |
| Medication use | ||||||||||
| Glucose-lowering medication * | 648 (36.5) | 7 (3.5) †† | 2 (2.7) | 362 (94.8) | 0 (0.0) | 0 | 277 (71.2) | α | α | α |
| Anti-hypertensives ** | 966 (54.5) | 83 (41.3) | 34 (45.9) | 288 (75.6) | 152 (33.1) | 129 (48.0) | 280 (72.0) | α | - | - |
| Lipid-modifying medication *** | 926 (50.2) | 104 (45.2) | 47 (54.7) | 321 (78.3) | 106 (23.1) | 89 (33.1) | 259 (66.6) | α | α | α |
| Liver parameters | ||||||||||
| VCTETM (kPa) | 5.3 [2.4] | 5.5 [2.3] | 4.9 [2.1] | 6.6 [5.1] | 4.6 [1.7] | 4.4 [1.7] | 5.3 [2.3] | α | - | α |
| F2 | 165 (8.6) | 35 (12.5) | 12 (11.8) | 88 (20.5) | 3 (0.7) | 3 (1.1) | 24 (6.2) | α | α | α |
| F3–4 | 99 (5.1) | 3 (1.1) | 0 (0.0) | 78 (18.1) | 3 (0.7) | 1 (0.4) | 14 (3.6) | - | - | α |
| CAPTM (dB/m) | 290.0 [72.0] | 303.0 [62.0] | 270.5 ± 50.1 | 312 [81.0] | 283.0 [42.0] | 265.5 ± 58.3 | 294 [93.0] | α | - | α |
| MASLD | 1629 (84.5) | 100% | 74 (72.5) | 354 (82.3) | 100% | 173 (64.3) | 290 (74.6) | N.A | - | α |
| Variable | β | SE | p | 95% CI |
|---|---|---|---|---|
| Variables not part of any interactions | ||||
| Intercept | 289.072 | 4.317 | α | 280.605; 297,548 |
| Sex | −7.445 | 2.238 | α | −11.834; −3.056 |
| BMI | 5.184 | 0.284 | α | 4.627; 5.741 |
| MetS | 13.725 | 2.686 | α | 8.456; 18.994 |
| Effect of interaction terms on CAP | ||||
| BMI2 | −0.077 | 0.031 | α | −0.138; −0.016 |
| Age | ||||
| Normal GMS | −0.025 | 0.184 | - | −0.387; 0.336 |
| Prediabetes | −0.663 | 0.284 | α | −1.220; −0.107 |
| T2DM | −0.755 | 0.181 | α | −1.111; −0.399 |
| High SBP | ||||
| Belgium | 6.455 | 3.988 | - | −1.366; 14.275 |
| The Netherlands | −5.249 | 2.992 | - | −11.117; 0.620 |
| History of CVD | ||||
| Belgium | 4.518 | 4.315 | - | 12.982; 0.373 |
| The Netherlands | −10.756 | 3.431 | α | −17.485; −4.027 |
| CAP difference at average age | ||||
| CAP difference between prediabetes and normal GMS at the average age | −25.342 | 3.101 | α | −31.424; −19.260 |
| CAP difference between T2DM and normal GMS at the average age | −10.422 | 2.675 | α | −15.668; −5.177 |
| CAP difference between prediabetes and T2DM at the average age | 14.920 | 3.115 | α | 8.810; 21.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heyens, L.J.M.; Innocenti, F.; Van Steenkiste, C.; Struyve, M.; Francque, S.M.; Koek, G.H.; Robaeys, G.; on behalf of the MASLD Research Group. Prevalence and Risk Factors of MASLD in Prediabetes and Type 2 Diabetes Mellitus in Belgium and The Netherlands. Biomedicines 2025, 13, 2821. https://doi.org/10.3390/biomedicines13112821
Heyens LJM, Innocenti F, Van Steenkiste C, Struyve M, Francque SM, Koek GH, Robaeys G, on behalf of the MASLD Research Group. Prevalence and Risk Factors of MASLD in Prediabetes and Type 2 Diabetes Mellitus in Belgium and The Netherlands. Biomedicines. 2025; 13(11):2821. https://doi.org/10.3390/biomedicines13112821
Chicago/Turabian StyleHeyens, Leen J. M., Francesco Innocenti, Christophe Van Steenkiste, Mathieu Struyve, Sven M. Francque, Ger H. Koek, Geert Robaeys, and on behalf of the MASLD Research Group. 2025. "Prevalence and Risk Factors of MASLD in Prediabetes and Type 2 Diabetes Mellitus in Belgium and The Netherlands" Biomedicines 13, no. 11: 2821. https://doi.org/10.3390/biomedicines13112821
APA StyleHeyens, L. J. M., Innocenti, F., Van Steenkiste, C., Struyve, M., Francque, S. M., Koek, G. H., Robaeys, G., & on behalf of the MASLD Research Group. (2025). Prevalence and Risk Factors of MASLD in Prediabetes and Type 2 Diabetes Mellitus in Belgium and The Netherlands. Biomedicines, 13(11), 2821. https://doi.org/10.3390/biomedicines13112821

