Regional Variation in Antioxidant and Anti-Inflammatory Activities of the Brown Alga Sargassum thunbergii and Mechanistic Role of Fucosterol in Inflammation Modulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Acquisition and Extraction
2.2. Total Polyphenol and Flavonoid Contents
2.2.1. Total Polyphenol Content (TPC) Assay
2.2.2. Total Flavonoid Content (TFC) Assay
2.3. Antioxidant Activity Assays
2.3.1. 2,2-diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity
2.3.2. Determination of ABTS+ Radical Scavenging Activity
2.3.3. Determination of Ferric Reducing Antioxidant Power (FRAP)
2.4. Anti-Inflammatory Activity Assay
2.4.1. Cell Culture
2.4.2. Cell Viability Assay
2.4.3. Nitric Oxide (NO) Production Assay
2.4.4. Evaluation of iNOS Expression by Western Blotting
2.5. HPLC Analysis of Fucosterol in S. thunbergii Extract
2.6. In Silico Docking of Fucosterol to iNOS
2.7. Statistical Analysis
3. Results
3.1. Characterization of Collection Sites and Geographical Variation
3.2. Total Polyphenol and Flavonoid Contents of S. thunbergii Extracts from Different Regions
3.3. Free Radical Scavenging Activity of S. thunbergii Extracts from Different Regions
3.4. Ferric Reducing Antioxidant Power (FRAP) of S. thunbergii Extracts from Different Regions
3.5. Cytotoxicity of S. thunbergii Extracts from Different Regions
3.6. Inhibitory Effects of S. thunbergii Extracts from Different Regions on NO Production
3.7. Effects of S. thunbergii Extract Collected from Haeundae-gu on iNOS Expression in LPS-Stimulated RAW 264.7 Cells
3.8. Identification of Fucosterol in S. thunbergii Extract from Haeundae-gu
3.9. Molecular Docking Analysis of Representative Fucosterol from S. thunbergii Against iNOS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABTS | 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) |
| AT2 | Ethyl 4-[(4-methylpyridin-2-yl) amino] piperidine-1-carboxylate |
| BCA | Bicinchoninic acid |
| COX-2 | Cyclooxygenase-2 |
| DPPH | 2,2-diphenyl-1-picrylhydrazyl |
| FRAP | Ferric reducing antioxidant power |
| GAE | Gallic acid equivalent |
| HPLC | High-performance liquid chromatography |
| iNOS | Inducible nitric oxide synthase |
| LPS | Lipopolysaccharide |
| MABIK | National Marine Biodiversity Institute of Korea |
| MAPK | Mitogen-activated protein kinase |
| MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide |
| NF-κB | Nuclear factor kappa B |
| NO | Nitric oxide |
| ROS | Reactive oxygen species |
| TFC | Total flavonoid content |
| TPC | Total polyphenol content |
References
- Jiménez-Escrig, A.; Gómez-Ordóñez, E.; Rupérez, P. Brown and Red Seaweeds as Potential Sources of Antioxidant Nutraceuticals. J. Appl. Phycol. 2012, 24, 1123–1132. [Google Scholar] [CrossRef]
- Holdt, S.L.; Kraan, S. Bioactive Compounds in Seaweed: Functional Food Applications and Legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Li, Y.X.; Wijesekara, I.; Li, Y.; Kim, S.K. Phlorotannins as Bioactive Agents from Brown Algae. Process Biochem. 2011, 46, 2219–2224. [Google Scholar] [CrossRef]
- Saraswati, P.E.; Giriwono, P.E.; Iskandriati, D.; Tan, C.P.; Andarwulan, N. Sargassum Seaweed as a Source of Anti-Inflammatory Substances and the Potential Insight of the Tropical Species: A Review. Mar. Drugs 2019, 17, 590. [Google Scholar] [CrossRef]
- Kang, J.Y.; Khan, M.N.A.; Park, N.H.; Cho, J.Y.; Lee, M.C.; Fujii, H.; Hong, Y.K. Antipyretic, Analgesic, and Anti-Inflammatory Activities of the Seaweed Sargassum fulvellum and Sargassum thunbergii in Mice. J. Ethnopharmacol. 2008, 116, 187–190. [Google Scholar] [CrossRef]
- Meinita, M.D.N.; Harwanto, D.; Tirtawijaya, G.; Negara, B.F.S.P.; Sohn, J.-H.; Kim, J.-S.; Choi, J.-S. Fucosterol of Marine Macroalgae: Bioactivity, Safety and Toxicity on Organism. Mar. Drugs 2021, 19, 545. [Google Scholar] [CrossRef] [PubMed]
- Din, N.A.S.; Mohd Alayudin, A.S.; Sofian-Seng, N.-S.; Abdul Rahman, H.; Mohd Razali, N.S.; Lim, S.J.; Wan Mustapha, W.A. Brown Algae as Functional Food Source of Fucoxanthin: A Review. Foods 2022, 11, 2235. [Google Scholar] [CrossRef]
- Fuentes-Monteverde, J.C.C.; Nath, N.; Forero, A.M.; Balboa, E.M.; Navarro-Vázquez, A.; Griesinger, C.; Jiménez, C.; Rodríguez, J. Connection of Isolated Stereoclusters by Combining 13C-RCSA, RDC, and J-Based Configurational Analyses and Structural Revision of a Tetraprenyltoluquinol Chromane Meroterpenoid from Sargassum muticum. Mar. Drugs 2022, 20, 462. [Google Scholar] [CrossRef]
- Liang, Z.; Sun, X.; Wang, F.; Wang, W.; Liu, F. Impact of Environmental Factors on the Photosynthesis and Respiration of Young Seedlings of Sargassum thunbergii (Sargassaceae, Phaeophyta). Am. J. Plant Sci. 2013, 4, 38–45. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative Stress, Aging, and Diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Zhang, R.; Ren, Y.; Ren, T.; Yu, Y.; Li, B.; Zhou, X. Marine-Derived Antioxidants: A Comprehensive Review of Their Therapeutic Potential in Oxidative Stress-Associated Diseases. Mar. Drugs 2025, 23, 223. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Origin and Physiological Roles of Inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Jim, E.L.; Surya, R.; Permatasari, H.K.; Nurkolis, F. Marine-Derived Polymers–Polysaccharides as Promising Natural Therapeutics for Atherosclerotic Cardiovascular Disease. Mar. Drugs 2025, 23, 325. [Google Scholar] [CrossRef] [PubMed]
- Elbandy, M. Anti-Inflammatory Effects of Marine Bioactive Compounds and Their Potential as Functional Food Ingredients in the Prevention and Treatment of Neuroinflammatory Disorders. Molecules 2023, 28, 2. [Google Scholar] [CrossRef]
- You, S.H.; Jang, M.; Kim, G.H. Inhibition of Nitric Oxide and Lipid Accumulation by Sargassum sp. Seaweeds and Their Antioxidant Properties. Korean J. Food Preserv. 2021, 28, 288–296. [Google Scholar] [CrossRef]
- Kamiya, M.; Nishio, T.; Yokoyama, A.; Yatsuya, K.; Nishigaki, T.; Yoshikawa, S.; Ohki, K. Seasonal Variation of Phlorotannin in Sargassacean Species from the Coast of the Sea of Japan. Phycol. Res. 2010, 58, 53–61. [Google Scholar] [CrossRef]
- Wahl, M.; Molis, M.; Hobday, A.J.; Dudgeon, S.; Neumann, R.; Steinberg, P.; Campbell, A.H.; Marzinelli, E.; Connell, S. The Responses of Brown Macroalgae to Environmental Change from Local to Global Scales: Direct versus Ecologically Mediated Effects. Perspect. Phycol. 2015, 2, 11–30. [Google Scholar] [CrossRef]
- Kang, N.; Kim, E.A.; Heo, S.Y.; Heo, S.J. Structure-Based In Silico Screening of Marine Phlorotannins for Potential Walrus Calicivirus Inhibitor. Mar. Drugs 2022, 20, 578. [Google Scholar] [CrossRef]
- Kumari, N.; Singh, G.; Singh, M.; Asthana, S.; Wakode, S. In Silico Strategies to Recognize Pharmacological Constraints Contrary to COX-2 and 5-LOX. J. Biomol. Struct. Dyn. 2024, 21, 1–18. [Google Scholar] [CrossRef]
- Kirindage, K.G.I.S.; Jayasinghe, A.M.K.; Ko, C.-I.; Ahn, Y.-S.; Heo, S.-J.; Kim, E.-A.; Cho, N.-K.; Ahn, G. Photoprotective Effect of Ultrasonic-Assisted Ethanol Extract from Sargassum horneri on UVB-Exposed HaCaT Keratinocytes. Antioxidants 2024, 13, 1342. [Google Scholar] [CrossRef] [PubMed]
- Folin, O.; Denis, W. On Phosphotungstic-Phosphomolybdic Compounds as Color Reagents. J. Biol. Chem. 1912, 12, 239–243. [Google Scholar] [CrossRef]
- Nieva Moreno, M.I.; Isla, M.I.; Sampietro, A.R.; Vattuone, M.A. Comparison of the Free Radical-Scavenging Activity of Propolis from Several Regions of Argentina. J. Ethnopharmacol. 2000, 71, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant Determination by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of Nitrate, Nitrite, and [15N]Nitrate in Biological Fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Kim, S.; Choi, S.K.; Van, S.; Kim, S.T.; Kang, Y.H.; Park, S.R. Geographic Differentiation of Morphological Characteristics in the Brown Seaweed Sargassum thunbergii along the Korean Coast: A Response to Local Environmental Conditions. J. Mar. Sci. Eng. 2022, 10, 549. [Google Scholar] [CrossRef]
- Kirindage, K.G.I.S.; Jayasinghe, A.M.K.; Han, E.-J.; Jee, Y.; Kim, H.-J.; Do, S.G.; Fernando, I.P.S.; Ahn, G. Fucosterol Isolated from Dietary Brown Alga Sargassum horneri Protects TNF-α/IFN-γ-Stimulated Human Dermal Fibroblasts via Regulating Nrf2/HO-1 and NF-κB/MAPK Pathways. Antioxidants 2022, 11, 1429. [Google Scholar] [CrossRef]
- Hoang, M.H.; Jia, Y.; Jun, H.-J.; Lee, J.H.; Lee, B.Y.; Lee, S.-J. Fucosterol Is a Selective Liver X Receptor Modulator That Regulates the Expression of Key Genes in Cholesterol Homeostasis in Macrophages, Hepatocytes, and Intestinal Cells. J. Agric. Food Chem. 2012, 60, 11567–11575. [Google Scholar] [CrossRef]
- Lomartire, S.; Cotas, J.; Pacheco, D.; Gonçalves, A.M.M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19, 245. [Google Scholar] [CrossRef] [PubMed]
- Michalak, I.; Chojnacka, K. Algal Extracts: Technology and Advances. Eng. Life Sci. 2014, 14, 581–591. [Google Scholar] [CrossRef]
- Begum, R.; Howlader, S.; Mamun-Or-Rashid, A.N.M.; Rafiquzzaman, S.M.; Ashraf, G.M.; Albadrani, G.M.; Sayed, A.A.; Peluso, I.; Abdel-Daim, M.M.; Uddin, M.S. Antioxidant and Signal-Modulating Effects of Brown Seaweed-Derived Compounds against Oxidative Stress-Associated Pathology. Oxid. Med. Cell. Longev. 2021, 2021, 9971866. [Google Scholar] [CrossRef] [PubMed]
- Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Gonçalves, A.M.M.; da Silva, G.J.; Pereira, L. Seaweed Phenolics: From Extraction to Applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhao, Y.; Guo, L. A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins. Mar. Drugs 2022, 20, 742. [Google Scholar] [CrossRef] [PubMed]
- Baek, Y.; Kim, Y.J.; Baik, M.-Y.; Kim, D.-O.; Lee, H. Total Phenolic Contents and Antioxidant Activities of Korean Domestic Honey from Different Floral Sources. Food Sci. Biotechnol. 2015, 24, 1453–1457. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Kim, K.A.; Seo, H.-Y.; Kim, S.H.; Lee, H.M. Antioxidant and Anti-Hepatitis A Virus Activities of Ecklonia cava Kjellman Extracts. Heliyon 2024, 10, e25600. [Google Scholar] [CrossRef]
- Wijesinghe, W.A.J.P.; Jeon, Y.-J. Exploiting Biological Activities of Brown Seaweed Ecklonia cava for Potential Industrial Applications: A Review. Int. J. Food Sci. Nutr. 2012, 63, 225–235. [Google Scholar] [CrossRef]
- Li, Y.; Fu, X.; Duan, D.; Liu, X.; Xu, J.; Gao, X. Extraction and Identification of Phlorotannins from the Brown Alga Sargassum fusiforme (Harvey) Setchell. Mar. Drugs 2017, 15, 49. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Yang, W.; Zhuang, L.; Guo, L. Extraction, Enrichment, Characterization, and Antioxidant Activities of Sargassum fusiforme Polyphenols. Foods 2025, 14, 3317. [Google Scholar] [CrossRef]
- Ragan, M.A.; Jensen, A. Quantitative Studies on Brown Algal Phenols. II. Seasonal Variation in Polyphenol Content of Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus (L.). J. Exp. Mar. Biol. Ecol. 1978, 34, 245–258. [Google Scholar] [CrossRef]
- Rosa, G.P.; Barreto, M.C.; Seca, A.M.L. Pharmacological Effects of Fucus spiralis Extracts and Phycochemicals: A Comprehensive Review. Bot. Mar. 2019, 62, 167–178. [Google Scholar] [CrossRef]
- Ruokolathi, C.; Rönnberg, O. Seasonal Variation in Chlorophyll α Content of Fucus vesiculosus in a Northern Baltic Archipelago. Ann. Bot. Fenn. 1988, 25, 385–388. [Google Scholar]
- Parys, S.; Kehraus, S.; Pete, R.; Küpper, F.C.; Glombitza, K.-W.; König, G.M. Seasonal Variation of Polyphenolics in Ascophyllum nodosum (Phaeophyceae). Eur. J. Phycol. 2009, 44, 331–338. [Google Scholar] [CrossRef]
- Farrokhnia, M. Density Functional Theory Studies on the Antioxidant Mechanism and Electronic Properties of Some Bioactive Marine Meroterpenoids: Sargahydroquinoic Acid and Sargachromanol. ACS Omega 2020, 5, 20382–20390. [Google Scholar] [CrossRef]
- Lim, S.N.; Cheung, P.C.K.; Ooi, V.E.C.; Ang, P.O. Evaluation of Antioxidative Activity of Extracts from a Brown Seaweed, Sargassum siliquastrum. J. Agric. Food Chem. 2002, 50, 3862–3866. [Google Scholar] [CrossRef]
- Kim, J.-A.; Kong, C.-S.; Kim, S.-K. Effect of Sargassum thunbergii on ROS-Mediated Oxidative Damage and Identification of Polyunsaturated Fatty Acid Components. Food Chem. Toxicol. 2010, 48, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-H.; Noh, Y.-S.; Won, S.-H.; Kim, S.-K.; Jung, S.-M. Ecological Evaluation Using Seaweed Distribution Characteristics along the Coast of Jeju Island. Korean J. Environ. Ecol. 2022, 36, 627–638. [Google Scholar] [CrossRef]
- Kim, S.Y.; Sidharthan, M.; Yoo, Y.H.; Lim, C.Y.; Joo, J.H.; Yoo, J.S.; Shin, H.W. Accumulation of Heavy Metals in Korean Marine Seaweeds. Algae 2003, 18, 349–354. [Google Scholar] [CrossRef]
- Salim, T.; Sershen, C.L.; May, E.E. Investigating the Role of TNF-α and IFN-γ Activation on the Dynamics of iNOS Gene Expression in LPS-Stimulated Macrophages. PLoS ONE 2016, 11, e0153289. [Google Scholar] [CrossRef]
- Jayawardena, T.U.; Sanjeewa, K.K.A.; Lee, H.G.; Nagahawatta, D.P.; Yang, H.W.; Kang, M.C.; Jeon, Y.J. Particulate Matter-Induced Inflammation/Oxidative Stress in Macrophages: Fucosterol from Padina boryana as a Potent Protector, Activated via NF-κB/MAPK Pathways and Nrf2/HO-1 Involvement. Mar. Drugs 2020, 18, 628. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.A.; Jin, S.E.; Ahn, B.R.; Lee, C.M.; Choi, J.S. Anti-Inflammatory Activity of Edible Brown Alga Eisenia bicyclis and Its Constituents Fucosterol and Phlorotannins in LPS-Stimulated RAW264.7 Macrophages. Food Chem. Toxicol. 2013, 59, 199–206. [Google Scholar] [CrossRef]
- Marcinkiewicz, E.; Marcinkiewicz, J.; Chłopicki, S. Nitric Oxide—A Pro-Inflammatory and Anti-Inflammatory Mediator. Cent. Eur. J. Immunol. 2003, 28, 74–78. [Google Scholar]
- Matsui, T.; Ito, C.; Itoigawa, M.; Shibata, T. Three Phlorotannins from Sargassum carpophyllum Are Effective against the Secretion of Allergic Mediators from Antigen-Stimulated Rat Basophilic Leukemia Cells. Food Chem. 2022, 377, 131992. [Google Scholar] [CrossRef]
- Gwon, W.-G.; Joung, E.-J.; Shin, T.; Utsuki, T.; Wakamatsu, N.; Kim, H.-R. Meroterpenoid-Rich Fraction of the Ethanol Extract from Sargassum serratifolium Suppresses TNF-α-Induced Monocyte Adhesion to Vascular Endothelium and Vascular Inflammation in High Cholesterol-Fed C57BL/6J Mice. J. Funct. Foods 2018, 46, 384–393. [Google Scholar] [CrossRef]
- Yoon, W.-J.; Kim, K.-N.; Heo, S.-J.; Han, S.-C.; Kim, J.; Ko, Y.-J.; Kang, H.-K.; Yoo, E.-S. Sargachromanol G Inhibits Osteoclastogenesis by Suppressing the Activation of NF-κB and MAPKs in RANKL-Induced RAW 264.7 Cells. Biochem. Biophys. Res. Commun. 2013, 434, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Jung, H.A.; Kang, M.J.; Choi, J.S.; Kim, G.D. Fucosterol, Isolated from Ecklonia stolonifera, Inhibits Adipogenesis through Modulation of FoxO1 Pathway in 3T3-L1 Adipocytes. J. Pharm. Pharmacol. 2017, 69, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Yeon, S.L.; Sang, H.J.; Sam, S.K.; Kuk, H.S. Antioxidant Activities of Fucosterol from the Marine Algae Pelvetia siliquosa. Arch. Pharm. Res. 2003, 26, 719–722. [Google Scholar] [CrossRef] [PubMed]









| No. | Collection Site | MABIK 1 Number | Part | Extraction Solvent | Extraction Method |
|---|---|---|---|---|---|
| 1 | Boryeong-si, Chungcheongnam-do | NP30210069 | Whole | 70% EtOH 2 | Ultrasonic extraction |
| 2 | Jindo-gun, Jeollanam-do | NP30210018 | |||
| 3 | Seogwipo-si, Jeju Special Self-Governing Province | NP3022007474 | |||
| 4 | Haeundae-gu, Busan Metropolitan City | NP30220006 | |||
| 5 | Sacheon-si, Gyeongsangnam-do | NP30230130 | |||
| 6 | Uljin-gun, Gyeongsangbuk-do | NP30230116 | |||
| 7 | Yangyang-gun, Gangwon-do | NP30230178 |
| Ligand | Glide Score (kcal/mol) | Key Binding Residues |
|---|---|---|
| Fucosterol | −4.774 | TYR489 (H-bond) |
| AT2 1 | −6.848 | TRP194 (π-π stacking), CYS200 (Salt Bridge) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-G.; Kang, H. Regional Variation in Antioxidant and Anti-Inflammatory Activities of the Brown Alga Sargassum thunbergii and Mechanistic Role of Fucosterol in Inflammation Modulation. Biomedicines 2025, 13, 2808. https://doi.org/10.3390/biomedicines13112808
Lee S-G, Kang H. Regional Variation in Antioxidant and Anti-Inflammatory Activities of the Brown Alga Sargassum thunbergii and Mechanistic Role of Fucosterol in Inflammation Modulation. Biomedicines. 2025; 13(11):2808. https://doi.org/10.3390/biomedicines13112808
Chicago/Turabian StyleLee, Sung-Gyu, and Hyun Kang. 2025. "Regional Variation in Antioxidant and Anti-Inflammatory Activities of the Brown Alga Sargassum thunbergii and Mechanistic Role of Fucosterol in Inflammation Modulation" Biomedicines 13, no. 11: 2808. https://doi.org/10.3390/biomedicines13112808
APA StyleLee, S.-G., & Kang, H. (2025). Regional Variation in Antioxidant and Anti-Inflammatory Activities of the Brown Alga Sargassum thunbergii and Mechanistic Role of Fucosterol in Inflammation Modulation. Biomedicines, 13(11), 2808. https://doi.org/10.3390/biomedicines13112808
