CRISPR Genome Editing in Personalized Therapy for Oral and Maxillofacial Diseases: A Scoping Review
Abstract
1. Introduction
2. Methodology
2.1. Literature Search Strategy
- Peer-reviewed articles and registered clinical trials involving CRISPR-based technologies;
- Studies relevant to oral medicine, maxillofacial pathology, or related systemic conditions with oral manifestations;
- English-language articles published from 2012 onward.
- Exclusion criteria were:
- Editorials, abstracts, conference posters, and opinion pieces;
- Non-human studies without translational application;
- Studies lacking mention of CRISPR/Cas or gene editing tools;
- Additionally, references of included articles and regulatory databases were manually screened for completeness.
2.2. Study Selection and Screening Process
2.3. Quality Assessment
2.4. Data Extraction and Synthesis
- ○
- Study type and design;
- ○
- Disease focus;
- ○
- CRISPR system used (e.g., Cas9, Cas12a);
- ○
- Clinical setting or application (e.g., diagnostic, therapeutic, regenerative);
- ○
- Summary of results or clinical endpoints (where applicable).
3. Fundamentals of Gene Editing Biotechnology in Medicine and Biomedical Research
Key CRISPR Types Relevant to Biomedical Use
4. Clinical Trials for CRISPR GEBT
5. The Potential Application of Gene Editing Biotechnology in Personalized Oral Medicine
5.1. Primary Head and Neck Cancers and Oral Manifestations of Malignant Conditions
5.2. Hereditary Oral and Maxilla- and Craniofacial Pathologies
5.3. CRISPR-Based Xenotransplants in Maxillo-Facial Regenerative Surgery
5.4. Application of the CRISPR/Cas9 System in Organoids and Tissue Engineering of Oral and Maxillofacial Diseases
5.5. Revolutionizing Pathogen Testing: Harnessing CRISPR for Rapid Detection of Specific Pathogens Responsible for Oral Diseases
5.6. Common Oral Diseases: Periodontitis and Dental Caries
6. Exploring the Frontiers: Unveiling the Constraints and Challenges of GEBT
6.1. Procedural and Technical Challenges
6.2. In Vivo vs. Ex Vivo Delivery: Dental Relevance
6.3. Economic and Infrastructure Barriers
6.4. Ethical Concerns in Oral and Pediatric Gene Editing
7. Future Directions and Research Priorities
7.1. Priority Areas for Clinical Research
7.2. Metrics for Evaluating CRISPR in Oral Medicine
7.3. Limitations of This Study
7.4. Limitations of Evidence
7.5. Long-Term Considerations
7.6. Key Takeaways: CRISPR in Oral and Maxillofacial Medicine
- Current Use Is Preliminary: Most CRISPR-related clinical trials target systemic conditions. Common or rare oral and maxillofacial applications remain largely preclinical or conceptual.
- Most Feasible Short-Term Applications: CRISPR-based diagnostics for oral pathogens (e.g., HPV, EBV). Ex vivo editing of dental stem cells for regenerative therapy. Precision oncology using CRISPR-engineered T cells in head and neck cancers.
- Long-Term Potential Areas: Gene therapy for hereditary enamel/dentin defects (e.g., amelogenesis/dentinogenesis imperfecta). Personalized immunotherapy for oral cancers. Integration with tissue engineering and organoids for craniofacial regeneration.
- Primary Barriers to Implementation: Off-target mutation risk and immune responses. High cost and limited access to gene editing platforms. Ethical concerns in pediatric and elective contexts. Lack of standard protocols for oral tissue targeting.
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 3D | Three-dimensional |
| AIDS | Acquired Immunodeficiency Syndrome |
| AI | Amelogenesis Imperfecta |
| AMELX | Amelogenin X-linked gene |
| AQP5 | Aquaporin 5 |
| BMP | Bone Morphogenetic Protein |
| CAR-T | Chimeric Antigen Receptor T cells |
| Cas | CRISPR-associated protein |
| Cas9 | CRISPR-associated Endonuclease 9 |
| Cas12 | CRISPR-associated Endonuclease 12 |
| Cas13 | CRISPR-associated Endonuclease 13 |
| CD19 | Cluster of Differentiation 19 |
| CD33 | Cluster of Differentiation 33 |
| CD44 | Cluster of Differentiation 44 |
| CD70 | Cluster of Differentiation 70 |
| CISH | Cytokine Inducible SH2-Containing Protein |
| CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
| CRISPR/Cas | CRISPR with CRISPR-associated Protein System |
| DMP1 or DMP-1 | Dentin Matrix Protein 1 |
| DMFT | Decayed, Missing, and Filled Teeth Index |
| DETECTR | DNA Endonuclease-Targeted CRISPR Trans Reporter |
| DI | Dentinogenesis Imperfecta |
| DSPP | Dentin Sialophosphoprotein |
| EBV | Epstein–Barr Virus |
| EDA | Ectodysplasin A gene |
| EDAR | Ectodysplasin A Receptor gene |
| EDARADD | EDAR-Associated Death Domain gene |
| ELAVL1 or HuR | ELAV-like RNA-Binding Protein 1 |
| ENAM | Enamelin Gene |
| FAM83H | Family With Sequence Similarity 83 Member H gene |
| gRNA | Guide RNA |
| GEBT | Gene Editing Biotechnology |
| HDR | Homology Directed Repair |
| HLA | Human Leukocyte Antigen |
| HNC | Head and Neck Cancer |
| HNSCC | Head and Neck Squamous Cell Carcinoma |
| HNH | Histidine–Asparagine–Histidine Nuclease Domain of Cas9 |
| HPV | Human Papillomavirus |
| HSC | Hematopoietic Stem Cell |
| iPSC | Induced Pluripotent Stem Cell |
| INDELs | Insertions and Deletions |
| LAMP | Loop-mediated Isothermal Amplification |
| MeSH | Medical Subject Headings |
| MMP20 | Matrix Metallopeptidase 20 |
| MSC | Mesenchymal Stem Cell |
| MUC1 | Mucin 1 |
| NCT | National Clinical Trial identifier |
| NHEJ | Non-homologous End Joining |
| OSCC | Oral Squamous Cell Carcinoma |
| PAM | Protospacer Adjacent Motif |
| PBMC | Peripheral Blood Mononuclear Cell |
| PCR | Polymerase Chain Reaction |
| PD-1 | Programmed Cell Death Protein 1 |
| PDCD1 | Programmed Cell Death 1 gene |
| PDL-1 or PD-L1 | Programmed Death Ligand 1 |
| PLGA | Poly(lactic-co-glycolic acid) |
| PRISMA-ScR | Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews |
| PSC | Pluripotent Stem Cell |
| RNP | Ribonucleoprotein |
| RUNX2 | Runt-related Transcription Factor 2 |
| RuvC | RuvC-like nuclease domain of Cas9 |
| SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
| sgRNA | Single-guide RNA |
| SHERLOCK | Specific High-sensitivity Enzymatic Reporter unLOCKing |
| SG | Salivary Gland |
| Sox2 | SRY-box Transcription Factor 2 |
| TALEN | Transcription Activator-like Effector Nuclease |
| TB | Tuberculosis |
| TCR | T Cell Receptor |
| TILs | Tumor-Infiltrating Lymphocytes |
| uPAR | Urokinase-type Plasminogen Activator Receptor |
| WT1 | Wilms Tumor 1 gene |
| ZFN | Zinc Finger Nuclease |
References
- Gonçalves, G.A.R.; Paiva, R.M.A. Gene therapy: Advances, challenges and perspectives. Einstein 2017, 15, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Delhove, J.; Osenk, I.; Prichard, I.; Donnelley, M. Public Acceptability of Gene Therapy and Gene Editing for Human Use: A Systematic Review. Hum. Gene Ther. 2020, 31, 20–46. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Yang, J.; Mishina, Y.; Giannobile, W.V. Genome Editing: A New Horizon for Oral and Craniofacial Research. J. Dent. Res. 2019, 98, 36–45. [Google Scholar] [CrossRef]
- Khalaf, K.; Janowicz, K.; Dyszkiewicz-Konwińska, M.; Hutchings, G.; Dompe, C.; Moncrieff, L.; Jankowski, M.; Machnik, M.; Oleksiewicz, U.; Kocherova, I.; et al. CRISPR/Cas9 in Cancer Immunotherapy: Animal Models and Human Clinical Trials. Genes 2020, 11, 921. [Google Scholar] [CrossRef]
- Chai, A.W.Y.; Yee, P.S.; Price, S.; Yee, S.M.; Lee, H.M.; Tiong, V.K.; Gonçalves, E.; Behan, F.M.; Bateson, J.; Gilbert, J.; et al. Genome-wide CRISPR screens of oral squamous cell carcinoma reveal fitness genes in the Hippo pathway. eLife 2020, 9, e57761. [Google Scholar] [CrossRef]
- Shaikh, M.H.; Clarke, D.T.W.; Johnson, N.W.; McMillan, N.A.J. Can gene editing and silencing technologies play a role in the treatment of head and neck cancer? Oral Oncol. 2017, 68, 9–19. [Google Scholar] [CrossRef]
- Elumalai, P.; Ezhilarasan, D. Emerging applications of CRISPR/Cas9 gene editing technology in reversing drug resistance in oral squamous cell carcinoma. Oral Oncol. 2022, 134, 106100. [Google Scholar] [CrossRef]
- Shinwari, Z.K.; Tanveer, F.; Khalil, A.T. Ethical Issues Regarding CRISPR Mediated Genome Editing. Curr. Issues Mol. Biol. 2018, 26, 103–110. [Google Scholar] [CrossRef]
- Brokowski, C.; Adli, M. CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. J. Mol. Biol. 2019, 431, 88–101. [Google Scholar] [CrossRef]
- Karimian, A.; Gorjizadeh, N.; Alemi, F.; Asemi, Z.; Azizian, K.; Soleimanpour, J.; Malakouti, F.; Targhazeh, N.; Majidinia, M.; Yousefi, B. CRISPR/Cas9 novel therapeutic road for the treatment of neurodegenerative diseases. Life Sci. 2020, 259, 118165. [Google Scholar] [CrossRef] [PubMed]
- Humbert, O.; Samuelson, C.; Kiem, H.P. CRISPR/Cas9 for the treatment of haematological diseases: A journey from bacteria to the bedside. Br. J. Haematol. 2021, 192, 33–49. [Google Scholar] [CrossRef]
- Li, T.; Yang, Y.; Qi, H.; Cui, W.; Zhang, L.; Fu, X.; He, X.; Liu, M.; Li, P.F.; Yu, T. CRISPR/Cas9 therapeutics: Progress and prospects. Signal Transduct. Target. Ther. 2023, 8, 36. [Google Scholar]
- Kosicki, M.; Allen, F.; Steward, F.; Tomberg, K.; Pan, Y.; Bradley, A. Cas9-induced large deletions and small indels are controlled in a convergent fashion. Nat. Commun. 2022, 13, 3422. [Google Scholar] [CrossRef]
- Bennett, E.P.; Petersen, B.L.; Johansen, I.E.; Niu, Y.; Yang, Z.; Chamberlain, C.A.; Met, Ö.; Wandall, H.H.; Frödin, M. INDEL detection, the ‘Achilles heel’ of precise genome editing: A survey of methods for accurate profiling of gene editing induced indels. Nucleic Acids Res. 2020, 48, 11958–11981. [Google Scholar] [CrossRef]
- Zhang, X.H.; Tee, L.Y.; Wang, X.G.; Huang, Q.S.; Yang, S.H. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. Mol. Ther. Nucleic Acids 2015, 4, e264. [Google Scholar] [CrossRef] [PubMed]
- Sturme, M.H.J.; van der Berg, J.P.; Bouwman, L.M.S.; De Schrijver, A.; de Maagd, R.A.; Kleter, G.A.; Battaglia-de Wilde, E. Occurrence and Nature of Off-Target Modifications by CRISPR-Cas Genome Editing in Plants. ACS Agric. Sci. Technol. 2022, 2, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Gaj, T.; Gersbach, C.A.; Barbas, C.F., 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef]
- Zhang, H.X.; Zhang, Y.; Yin, H. Genome Editing with mRNA Encoding ZFN, TALEN, and Cas9. Mol. Ther. 2019, 27, 735–746. [Google Scholar]
- Bhardwaj, A.; Nain, V. TALENs—An indispensable tool in the era of CRISPR: A mini review. J. Genet. Eng. Biotechnol. 2021, 19, 125. [Google Scholar] [CrossRef]
- Shankar, S.; Sreekumar, A.; Prasad, D.; Das, A.V.; Pillai, M.R. Genome editing of oncogenes with ZFNs and TALENs: Caveats in nuclease design. Cancer Cell Int. 2018, 18, 169. [Google Scholar] [CrossRef]
- Barman, A.; Deb, B.; Chakraborty, S. A glance at genome editing with CRISPR-Cas9 technology. Curr. Genet. 2020, 66, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Redman, M.; King, A.; Watson, C.; King, D. What is CRISPR/Cas9? Arch. Dis. Child.-Educ. Pract. 2016, 101, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; La Russa, M.; Qi, L.S. CRISPR/Cas9 in Genome Editing and Beyond. Annu. Rev. Biochem. 2016, 85, 227–264. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, D.R.; Ramírez-Solís, R.; Garza-Elizondo, M.A.; Garza-Rodríguez, M.L.; Barrera-Saldaña, H.A. Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases. Int. J. Mol. Med. 2019, 43, 1559–1574. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Hong, W.; Huang, M.; Wu, M.; Zhao, X. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduct. Target. Ther. 2020, 5, 1. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Huck, S.; Bock, J.; Girardello, J.; Gauert, M.; Pul, Ü. Marker-free genome editing in Ustilago trichophora with the CRISPR-Cas9 technology. RNA Biol. 2019, 16, 397–403. [Google Scholar] [CrossRef]
- Makarova, K.S.; Koonin, E.V. Annotation and Classification of CRISPR-Cas Systems. Methods Mol. Biol. 2015, 1311, 47–75. [Google Scholar]
- Liu, T.; Pan, S.; Li, Y.; Peng, N.; She, Q. Type III CRISPR-Cas System: Introduction And Its Application for Genetic Manipulations. Curr. Issues Mol. Biol. 2018, 26, 1–14. [Google Scholar] [CrossRef]
- Loureiro, A.; da Silva, G.J. CRISPR-Cas: Converting A Bacterial Defence Mechanism into A State-of-the-Art Genetic Manipulation Tool. Antibiotics 2019, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.S.; Li, Q.C.; Yin, C.Q.; Xue, W.; Song, C.Q. Advances in CRISPR/Cas-based gene therapy in human genetic diseases. Theranostics 2020, 10, 4374–4382. [Google Scholar] [CrossRef] [PubMed]
- Papasavva, P.; Kleanthous, M.; Lederer, C.W. Rare opportunities: CRISPR/Cas-based therapy development for rare genetic diseases. Mol. Diagn. Ther. 2019, 23, 201–222. [Google Scholar] [CrossRef]
- Wang, S.W.; Gao, C.; Zheng, Y.M.; Yi, L.; Lu, J.C.; Huang, X.Y.; Cai, J.-B.; Zhang, P.-F.; Cui, Y.-H.; Ke, A.-W. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol. Cancer 2022, 21, 57. [Google Scholar] [CrossRef]
- Soriano, V. Gene therapy with CRISPR/Cas9 coming to age for HIV cure. AIDS Rev. 2017, 19, 167–172. [Google Scholar] [CrossRef]
- Kennedy, E.M.; Cullen, B.R. Gene editing, a new tool for viral disease. Annu. Rev. Med. 2017, 68, 401–411. [Google Scholar] [CrossRef]
- Jangam, D.K.; Talreja, K.M. Applications of CRISPR technology in dentistry: A review. Eur. J. Biomed. Pharm. Sci. 2020, 7, 314–320. [Google Scholar]
- Todor, H.; Silvis, M.R.; Osadnik, H.; Gross, C.A. Bacterial CRISPR screens for gene function. Curr. Opin. Microbiol. 2021, 59, 102–109. [Google Scholar] [CrossRef]
- Kirby, E.N.; Shue, B.; Thomas, P.Q.; Beard, M.R. CRISPR tackles emerging viral pathogens. Viruses 2021, 13, 2157. [Google Scholar] [CrossRef]
- Hsu, M.N.; Chang, Y.H.; Truong, V.A.; Lai, P.L.; Nguyen, T.K.N.; Hu, Y.C. CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnol. Adv. 2019, 37, 107447. [Google Scholar] [CrossRef] [PubMed]
- Sowmya, S.V.; Augustine, D.; Mushtaq, S.; Baeshen, H.A.; Ashi, H.; Hassan, R.N.; Alshahrani, M.; Patil, S. Revitalizing oral cancer research, CRISPR-Cas9 technology the promise of genetic editing. Front. Oncol. 2024, 14, 1383062. [Google Scholar]
- Zhang, H.; Qin, C.; An, C.; Zheng, X.; Wen, S.; Chen, W.; Liu, X.; Lv, Z.; Yang, P.; Xu, W.; et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol. Cancer 2021, 20, 126. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Shi, M.; Ren, Y.; Xu, H.; Weng, S.; Ning, W.; Ge, X.; Liu, L.; Guo, C.; Duo, M.; et al. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol. Cancer 2023, 22, 35. [Google Scholar] [CrossRef] [PubMed]
- Vaghari-Tabari, M.; Hassanpour, P.; Sadeghsoltani, F.; Malakoti, F.; Alemi, F.; Qujeq, D.; Asemi, Z.; Yousefi, B. CRISPR/Cas9 gene editing, a new approach for overcoming drug resistance in cancer. Cell. Mol. Biol. Lett. 2022, 27, 49. [Google Scholar] [CrossRef] [PubMed]
- Allemailem, K.S.; Alsahli, M.A.; Almatroudi, A.; Alrumaihi, F.; Alkhaleefah, F.K.; Rahmani, A.H.; Khan, A.A. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells, an innovative strategy of cancer management. Cancer Commun. 2022, 42, 1257–1287. [Google Scholar] [CrossRef]
- Bagnyukova, T.V.; Serebriiskii, I.G.; Zhou, Y.; Hopper-Borge, E.A.; Golemis, E.A.; Astsaturov, I. Chemotherapy and signaling, how can targeted therapies supercharge cytotoxic agents. Cancer Biol. Ther. 2010, 10, 839–853. [Google Scholar] [CrossRef]
- Murphy, B.A.; Cmelak, A.; Burkey, B.; Netterville, J.; Shyr, Y.; Douglas, S.; Smith, W. Topoisomerase I inhibitors in the treatment of head and neck cancer. Oncology 2001, 15 (Suppl. S8), 47–52. [Google Scholar]
- ClinicalTrials.gov. PD-1 Knockout Engineered T Cells for Advanced Esophageal Cancer; ClinicalTrials.gov Identifier: NCT03081715. Available online: https://clinicaltrials.gov/study/NCT03081715 (accessed on 28 October 2024).
- Intima Bioscience, Inc. A Study of Metastatic Gastrointestinal Cancers Treated with Tumor Infiltrating Lymphocytes in Which the Gene Encoding the Intracellular Immune Checkpoint CISH Is Inhibited Using CRISPR Genetic Engineering; ClinicalTrials.gov Identifier: NCT04426669. Available online: https://clinicaltrials.gov/study/NCT04426669 (accessed on 15 September 2024).
- Eid, A.; Mahfouz, M.M. Genome Editing: The Road of CRISPR/Cas9 from Bench to Clinic. Exp. Mol. Med. 2016, 48, e265. [Google Scholar] [CrossRef]
- Kolanu, N.D. CRISPR-Cas9 gene editing, curing genetic diseases by inherited epigenetic modifications. Glob. Med. Genet. 2024, 11, 113–122. [Google Scholar] [CrossRef]
- Ryczek, N.; Hryhorowicz, M.; Zeyland, J.; Lipiński, D.; Słomski, R. CRISPR/Cas technology in pig-to-human xenotransplantation research. Int. J. Mol. Sci. 2021, 22, 3196. [Google Scholar] [CrossRef]
- Alfayez, E. Current trends and innovations in oral and maxillofacial reconstruction. Med. Sci. Monit. 2025, 31, e947152. [Google Scholar] [CrossRef]
- Dipalma, G.; Marinelli, G.; Palumbo, I.; Guglielmo, M.; Riccaldo, L.; Morolla, R.; Inchingolo, F.; Palermo, A.; Inchingolo, A.D.; Inchingolo, A.M. Mesenchymal stem cells in oral and maxillofacial surgery, a systematic review of clinical applications and regenerative outcomes. J. Clin. Med. 2025, 14, 3623. [Google Scholar] [CrossRef]
- Hung, M.; Sadri, M.; Katz, M.; Schwartz, C.; Mohajeri, A. A systematic review of stem cell applications in maxillofacial regeneration. Dent. J. 2024, 12, 315. [Google Scholar] [CrossRef] [PubMed]
- Ono, H.; Obana, A.; Usami, Y.; Sakai, M.; Nohara, K.; Egusa, H.; Sakai, T. Regenerating salivary glands in the microenvironment of induced pluripotent stem cells. Biomed. Res. Int. 2015, 2015, 293570. [Google Scholar] [CrossRef]
- Arakaki, M.; Ishikawa, M.; Nakamura, T.; Iwamoto, T.; Yamada, A.; Fukumoto, E.; Saito, M.; Otsu, K.; Harada, H.; Yamada, Y.; et al. Role of epithelial-stem cell interactions during dental cell differentiation. J. Biol. Chem. 2012, 287, 10590–10601. [Google Scholar] [CrossRef] [PubMed]
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development, a narrative review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef]
- Serapide, F.; Pallone, R.; Quirino, A.; Marascio, N.; Barreca, G.S.; Davoli, C.; Lionello, R.; Matera, G.; Russo, A. Impact of multiplex PCR on diagnosis of bacterial and fungal infections and choice of appropriate antimicrobial therapy. Diagnostics 2025, 15, 1044. [Google Scholar] [CrossRef]
- Mukherjee, R.; Vidic, J.; Auger, S.; Wen, H.C.; Pandey, R.P.; Chang, C.M. Exploring disease management and control through pathogen diagnostics and One Health initiative, a concise review. Antibiotics 2023, 13, 17. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Y.; Teng, X.; Hou, H.; Deng, R.; Li, J. CRISPR-based nucleic acid diagnostics for pathogens. Trends Anal. Chem. 2023, 160, 116980. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yan, W.; Long, L.; Dong, L.; Ma, Y.; Li, C.; Xie, Y.; Liu, N.; Xing, Z.; Xia, W.; et al. The CRISPR/Cas system, a customizable toolbox for molecular detection. Genes 2023, 14, 850. [Google Scholar] [CrossRef]
- Son, H. Harnessing CRISPR/Cas systems for DNA and RNA detection, principles, techniques, and challenges. Biosensors 2024, 14, 460. [Google Scholar] [CrossRef]
- Hadi, R.; Poddar, A.; Sonnaila, S.; Bhavaraju, V.S.M.; Agrawal, S. Advancing CRISPR-based solutions for COVID-19 diagnosis and therapeutics. Cells 2024, 13, 1794. [Google Scholar] [CrossRef]
- Chopra, A.; Bhuvanagiri, G.; Natu, K.; Chopra, A. Role of CRISPR-Cas systems in periodontal disease pathogenesis and potential for periodontal therapy, a review. Mol. Oral Microbiol. 2025, 40, 1–16. [Google Scholar] [CrossRef]
- Cho, S.; Shin, J.; Cho, B.K. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering. Int. J. Mol. Sci. 2018, 19, 1089. [Google Scholar] [CrossRef] [PubMed]
- Solbiati, J.; Duran-Pinedo, A.; Godoy Rocha, F.; Gibson, F.C.; Frias-Lopez, J. Virulence of the pathogen Porphyromonas gingivalis is controlled by the CRISPR-Cas protein Cas3. mSystems 2020, 5, e00852-20. [Google Scholar] [CrossRef] [PubMed]
- Ayanoğlu, F.B.; Elçin, A.E.; Elçin, Y.M. Bioethical issues in genome editing by CRISPR-Cas9 technology. Turk. J. Biol. 2020, 44, 110–120. [Google Scholar] [CrossRef]
- Joseph, A.M.; Karas, M.; Ramadan, Y.; Joubran, E.; Jacobs, R.J. Ethical perspectives of therapeutic human genome editing from multiple and diverse viewpoints, a scoping review. Cureus 2022, 14, e31927. [Google Scholar] [CrossRef] [PubMed]
- Hackett, P.B.; Largaespada, D.A.; Switzer, K.C.; Cooper, L.J. Evaluating risks of insertional mutagenesis by DNA transposons in gene therapy. Transl. Res. 2013, 161, 265–283. [Google Scholar] [CrossRef]
- Merlin, J.P.J.; Abrahamse, H. Optimizing CRISPR/Cas9 precision, mitigating off-target effects for safe integration with photodynamic and stem cell therapies in cancer treatment. Biomed. Pharmacother. 2024, 180, 117516. [Google Scholar] [CrossRef]
- Uddin, F.; Rudin, C.M.; Sen, T. CRISPR gene therapy, applications, limitations, and implications for the future. Front. Oncol. 2020, 10, 1387. [Google Scholar] [CrossRef]
- Jung, Y.; Kwon, S. The effects of intellectual property rights on access to medicines and catastrophic expenditure. Int. J. Health Serv. 2015, 45, 507–529. [Google Scholar] [CrossRef]
- Tenni, B.; Moir, H.V.J.; Townsend, B.; Kilic, B.; Farrell, A.M.; Keegel, T.; Gleeson, D. What is the impact of intellectual property rules on access to medicines, a systematic review. Glob. Health 2022, 18, 40. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, A.R.; Bhattacharya, M.; Lee, S.S.; Chakraborty, C. CRISPR-Cas9, a preclinical and clinical perspective for the treatment of human diseases. Mol. Ther. 2021, 29, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Guha, T.K.; Edgell, D.R. Applications of Alternative Nucleases in the Age of CRISPR/Cas9. Int. J. Mol. Sci. 2017, 18, 2565. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Granados, P.A.; Manisekaran, R.; Acosta-Torres, L.S.; Garcia-Contreras, R. CRISPR/Cas gene-editing technology and its advances in dentistry. Biochimie 2022, 194, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Niklander, S.E.; Hunter, K.D. A protocol to produce genetically edited primary oral keratinocytes using the CRISPR-Cas9 system. Methods Mol. Biol. 2023, 2588, 217–229. [Google Scholar]
- Kedlaya, M.N.; Puzhankara, L.; Prasad, R.; Raj, A. Periodontal disease pathogens, pathogenesis, and therapeutics, the CRISPR-Cas effect. CRISPR J. 2023, 6, 90–98. [Google Scholar] [CrossRef]
- Barbour, A.; Glogauer, J.; Grinfeld, L.; Ostadsharif Memar, R.; Fine, N.; Tenenbaum, H.; Glogauer, M. The role of CRISPR-Cas in advancing precision periodontics. J. Periodontal Res. 2021, 56, 454–461. [Google Scholar] [CrossRef]
- Gong, T.; Tang, B.; Zhou, X.; Zeng, J.; Lu, M.; Guo, X.; Peng, X.; Lei, L.; Gong, B.; Li, Y. Genome editing in Streptococcus mutans through self-targeting CRISPR arrays. Mol. Oral Microbiol. 2018, 33, 440–449. [Google Scholar] [CrossRef]
- Tao, S.; Chen, H.; Li, N.; Liang, W. The application of the CRISPR-Cas system in antibiotic resistance. Infect. Drug Resist. 2022, 15, 4155–4168. [Google Scholar] [CrossRef]
- Divaris, K. The era of the genome and dental medicine. J. Dent. Res. 2019, 98, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Ma, X.; Gao, F.; Guo, Y. Off-target effects in CRISPR/Cas9 gene editing. Front. Bioeng. Biotechnol. 2023, 11, 1143157. [Google Scholar] [CrossRef]
- Roi, A.; Roi, C.; Negruțiu, M.L.; Rusu, L.C.; Riviș, M. Mesenchymal Stem Cells Derived from Human Periapical Cysts and Their Implications in Regenerative Medicine. Biomedicines 2023, 11, 2436. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, S.; Berbéri, A.; Fayyad-Kazan, M. An update on human periapical cyst-mesenchymal stem cells and their potential applications in regenerative medicine. Mol. Biol. Rep. 2020, 47, 2381–2389. [Google Scholar] [CrossRef] [PubMed]







| Component | Function | Clinical Relevance |
|---|---|---|
| sgRNA | Directs Cas9 to DNA sequence | Determines targeting precision |
| Cas9 | Endonuclease that cuts DNA | Enables therapeutic gene disruption/correction |
| PAM (Protospacer Adjacent Motif) | DNA motif required for Cas9 activity | Limits off-target binding |
| NHEJ | Error-prone repair; introduces mutations | Used to silence harmful genes |
| HDR | Precise repair using a template | Used for correcting specific mutations |
| Condition/Domain | CRISPR Application | Status | References |
|---|---|---|---|
| Oral Squamous Cell Carcinoma | Oncogene knockout (e.g., p53, PD-1), CAR-T therapy | Preclinical and early trials | [5,6,42,43,45] |
| HPV-related Head and Neck Cancers | Immunotherapy, PD-1 knockout, therapeutic vaccines | Phase 1/2 trials | [38,39,48,49] |
| Craniofacial Syndromes (e.g., AI, DI) | Gene correction via CRISPR-Cas9 | Preclinical (iPSC/animal models) | [3,50,51] |
| Periodontitis | Gene pathway targeting, biofilm modulation | Exploratory preclinical | [65,66,67] |
| Salivary Gland Regeneration | Organoid modeling, iPSC regeneration | Preclinical studies | [40,53,56] |
| Oral Viral Infections (e.g., HPV, HIV) | Viral gene targeting, CRISPR-mediated immunity | Ongoing preclinical and trial development | [35,36,58] |
| Pathogen Detection (e.g., SARS-CoV-2, EBV) | CRISPR diagnostics (e.g., SHERLOCK, DETECTR) | Proof-of-concept and rapid testing prototypes | [58,61,62,63,64] |
| Model/System | CRISPR Target | Outcome | References |
|---|---|---|---|
| Murine models of oral cancer | p53, CD44, HuR, PD-1 | Tumor suppression, chemo-sensitization | [42,43,44,47] |
| iPSC-derived ameloblast cultures | AMELX, ENAM, FAM83H | Partial enamel regeneration, ameloblast-like cell differentiation | [50,57] |
| Coculture of iPSCs and salivary gland cells | Sox2, Nanog, Aqp5 | Improved epithelial regeneration in salivary organoids | [56] |
| Porphyromonas gingivalis gene knockout | cas3 | Reduced bacterial virulence and inflammation control | [66,67] |
| Craniofacial bone regeneration (mouse model) | BMP, RUNX2-related pathways | Enhanced bone formation and osteogenic differentiation | [53,54,55] |
| Category | Challenges | Implications | References |
|---|---|---|---|
| Ethical | Pediatric consent, germline risk, enhancement vs. therapy | Requires tailored ethics protocols and public debate | [8,68,69] |
| Technical | Off-target effects, delivery inefficiency, repair unpredictability | Need for improved Cas9 variants, better vectors | [13,15,16,70,71] |
| Economic | Cost of CRISPR tools, equipment, and licensing | Limited access in low-resource settings; scalability challenges | [72,73,74,75] |
| Feasibility Level | Focus Area | Rationale | References |
|---|---|---|---|
| High (near-term) | CRISPR-based diagnostics for oral pathogens | Low risk, portable, high specificity | [58,61,62,63,64] |
| Moderate | Ex vivo stem cell editing for regenerative therapy | Controlled editing, compatible with dental workflows | [53,55,56,57] |
| Low (long-term) | In vivo gene therapy for hereditary craniofacial disorders | Ethical and technical hurdles, complexity of delivery | [3,50,51,68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziedzic, A.; Kubina, R.; Skonieczna, M.; Madej, M.; Fiegler-Rudol, J.; Abid, M.; Nadhim, D.; Tanasiewicz, M. CRISPR Genome Editing in Personalized Therapy for Oral and Maxillofacial Diseases: A Scoping Review. Biomedicines 2025, 13, 2745. https://doi.org/10.3390/biomedicines13112745
Dziedzic A, Kubina R, Skonieczna M, Madej M, Fiegler-Rudol J, Abid M, Nadhim D, Tanasiewicz M. CRISPR Genome Editing in Personalized Therapy for Oral and Maxillofacial Diseases: A Scoping Review. Biomedicines. 2025; 13(11):2745. https://doi.org/10.3390/biomedicines13112745
Chicago/Turabian StyleDziedzic, Arkadiusz, Robert Kubina, Magdalena Skonieczna, Marcel Madej, Jakub Fiegler-Rudol, Mushriq Abid, Doaa Nadhim, and Marta Tanasiewicz. 2025. "CRISPR Genome Editing in Personalized Therapy for Oral and Maxillofacial Diseases: A Scoping Review" Biomedicines 13, no. 11: 2745. https://doi.org/10.3390/biomedicines13112745
APA StyleDziedzic, A., Kubina, R., Skonieczna, M., Madej, M., Fiegler-Rudol, J., Abid, M., Nadhim, D., & Tanasiewicz, M. (2025). CRISPR Genome Editing in Personalized Therapy for Oral and Maxillofacial Diseases: A Scoping Review. Biomedicines, 13(11), 2745. https://doi.org/10.3390/biomedicines13112745

