The Molecular Landscape of Inflammation in Inflammatory Bowel Disease (IBD): Targets for Precision Medicine
Abstract
1. Introduction
2. Interplay Among Inflammation, Oxidative Stress, and Senescence in IBD
3. Targeted Therapies in Inflammatory Bowel Diseases
3.1. Anti-TNFα Agents
3.2. Anti-Integrin Therapy
3.3. IL-12/23 and Selective IL-23 Blockade
3.4. Jak Inhibitors
3.5. Sphingosine-1-Phosphate (S1P) Receptor Modulators
4. Emerging and Adjunctive Strategies
4.1. Senotherapeutics and Senomorphics
4.2. MicroRNA Modulation
4.3. Mesenchymal Stromal Cell Therapy
4.4. Fecal Microbiota Transplantation and Microbiome Engineering
4.5. Combination and Dual-Targeted Therapy
4.6. Biomarker-Guided Precision Therapy
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CD | Crohn’s disease |
| cGAS | Cyclic GMP-AMP synthase |
| COX-2 | Cyclooxygenase-2 |
| CRC | Colorectal cancer |
| IBD | Inflammatory bowel disease |
| IL-12 | Interleukin-12 |
| IL-17 | Interleukin-17 |
| IL-6 | Interleukin-6 |
| miR | Micro-RNA |
| MSC | Mesenchymal stromal cells |
| NAC | N-acetyl-cysteine |
| NF-kB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| NOS | Nitrogen species |
| ROS | Reactive oxygen species |
| SASP | Senescence-associated secretory phenotype |
| STAT3 | Signal transducer and activator of transcription 3 |
| STING | Stimulator of interferon genes |
| TNF-a | Tumor necrosis factor alpha |
| UC | Ulcerative colitis |
References
- Hracs, L.; Windsor, J.W.; Gorospe, J.; Cummings, M.; Coward, S.; Buie, M.J.; Quan, J.; Goddard, Q.; Caplan, L.; Markovinović, A.; et al. Global Evolution of Inflammatory Bowel Disease across Epidemiologic Stages. Nature 2025, 642, 458–466. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, C.; Gong, R.; Jiang, W.; Ding, Y.; Yu, Y.; Chen, J.; Zhu, M.; Zuo, J.; Huang, X.; et al. From West to East: Dissecting the Global Shift in Inflammatory Bowel Disease Burden and Projecting Future Scenarios. BMC Public Health 2025, 25, 2696. [Google Scholar] [CrossRef]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21st Century: A Systematic Review of Population-Based Studies. Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef]
- Naser, S.A.; Arce, M.; Khaja, A.; Fernandez, M.; Naser, N.; Elwasila, S.; Thanigachalam, S. Role of ATG16L, NOD2 and IL23R in Crohn’s Disease Pathogenesis. World J. Gastroenterol. 2012, 18, 412–424. [Google Scholar] [CrossRef]
- Piovani, D.; Danese, S.; Peyrin-Biroulet, L.; Nikolopoulos, G.K.; Lytras, T.; Bonovas, S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-Analyses. Gastroenterology 2019, 157, 647–659.e4. [Google Scholar] [CrossRef] [PubMed]
- Racine, A.; Carbonnel, F.; Chan, S.S.M.; Hart, A.R.; Bueno-de-Mesquita, H.B.; Oldenburg, B.; Van Schaik, F.D.M.; Tjønneland, A.; Olsen, A.; Dahm, C.C.; et al. Dietary Patterns and Risk of Inflammatory Bowel Disease in Europe: Results from the EPIC Study. Inflamm. Bowel Dis. 2016, 22, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Narula, N.; Wong, E.C.L.; Dehghan, M.; Mente, A.; Rangarajan, S.; Lanas, F.; Lopez-Jaramillo, P.; Rohatgi, P.; Lakshmi, P.V.M.; Varma, R.P.; et al. Association of Ultra-Processed Food Intake with Risk of Inflammatory Bowel Disease: Prospective Cohort Study. BMJ 2021, 374, n1554. [Google Scholar] [CrossRef]
- Narula, N.; Chang, N.H.; Mohammad, D.; Wong, E.C.L.; Ananthakrishnan, A.N.; Chan, S.S.M.; Carbonnel, F.; Meyer, A. Food Processing and Risk of Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2023, 21, 2483–2495.e1. [Google Scholar] [CrossRef]
- Mahid, S.S.; Minor, K.S.; Soto, R.E.; Hornung, C.A.; Galandiuk, S. Smoking and Inflammatory Bowel Disease: A Meta-Analysis. Mayo Clin. Proc. 2006, 81, 1462–1471. [Google Scholar] [CrossRef]
- Gong, D.; Gong, X.; Wang, L.; Yu, X.; Dong, Q. Involvement of Reduced Microbial Diversity in Inflammatory Bowel Disease. Gastroenterol. Res. Pract. 2016, 2016, 6951091. [Google Scholar] [CrossRef]
- Caron, B.; Honap, S.; Peyrin-Biroulet, L. Epidemiology of Inflammatory Bowel Disease across the Ages in the Era of Advanced Therapies. J. Crohn’s Colitis 2024, 18, ii3–ii15. [Google Scholar] [CrossRef]
- Yu, S.; Sun, Y.; Shao, X.; Zhou, Y.; Yu, Y.; Kuai, X.; Zhou, C. Leaky Gut in IBD: Intestinal Barrier-Gut Microbiota Interaction. J. Microbiol. Biotechnol. 2022, 32, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.P.; Faubion, W.A.; Papadakis, K.A. Targeting Specific Immunologic Pathways in Crohn’s Disease. Gastroenterol. Clin. N. Am. 2017, 46, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Kałużna, A.; Olczyk, P.; Komosińska-Vassev, K. The Role of Innate and Adaptive Immune Cells in the Pathogenesis and Development of the Inflammatory Response in Ulcerative Colitis. J. Clin. Med. 2022, 11, 400. [Google Scholar] [CrossRef]
- Rogler, G.; Singh, A.; Kavanaugh, A.; Rubin, D.T. Extraintestinal Manifestations of Inflammatory Bowel Disease: Current Concepts, Treatment, and Implications for Disease Management. Gastroenterology 2021, 161, 1118–1132. [Google Scholar] [CrossRef]
- Rogler, G. Chronic Ulcerative Colitis and Colorectal Cancer. Cancer Lett. 2014, 345, 235–241. [Google Scholar] [CrossRef]
- Risques, R.A.; Lai, L.A.; Himmetoglu, C.; Ebaee, A.; Li, L.; Feng, Z.; Bronner, M.P.; Al-Lahham, B.; Kowdley, K.V.; Lindor, K.D.; et al. Ulcerative Colitis—Associated Colorectal Cancer Arises in a Field of Short Telomeres, Senescence, and Inflammation. Cancer Res. 2011, 71, 1669–1679. [Google Scholar] [CrossRef]
- Yao, B.; Zhang, Y.; Wu, Q.; Yao, H.; Peng, L.; Jiang, Z.; Yang, L.; Yuan, L. Comprehensive Assessment of Cellular Senescence in Intestinal Immunity and Biologic Therapy Response in Ulcerative Colitis. Sci. Rep. 2024, 14, 28127. [Google Scholar] [CrossRef]
- Ma, J.; Chen, C.; Wang, N.; Fang, T.; Liu, Y.; He, P.; Dong, W. Identification of Senescence-Related Genes for the Prediction of Ulcerative Colitis Based on Interpretable Machine Learning Models. J. Inflamm. Res. 2025, 18, 3431–3447. [Google Scholar] [CrossRef]
- Hernandez-Segura, A.; Nehme, J.; Demaria, M. Hallmarks of Cellular Senescence. Trends Cell Biol. 2018, 28, 436–453. [Google Scholar] [CrossRef]
- Pan, X.; Wang, J.; Zhu, J.; Wang, X.; Liu, Y.; Chen, S.; Wang, P. The Association between 4-HPR-Mediated LCN2 Suppression and Reduced Intestinal Cell Senescence in Ulcerative Colitis. Clin. Exp. Med. 2025, 25, 297. [Google Scholar] [CrossRef]
- Wang, X.; Bootsma, H.; Kroese, F.; Dijkstra, G.; Pringle, S. Senescent Stem and Transient Amplifying Cells in Crohn’s Disease Intestine. Inflamm. Bowel Dis. 2020, 26, e8–e9. [Google Scholar] [CrossRef]
- Torres, J.; Bonovas, S.; Doherty, G.; Kucharzik, T.; Gisbert, J.P.; Raine, T.; Adamina, M.; Armuzzi, A.; Bachmann, O.; Bager, P.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohn’s Colitis 2020, 14, 4–22. [Google Scholar] [CrossRef]
- Souza, R.F.; Caetano, M.A.F.; Magalhães, H.I.R.; Castelucci, P. Study of Tumor Necrosis Factor Receptor in the Inflammatory Bowel Disease. World J. Gastroenterol. 2023, 29, 2733–2746. [Google Scholar] [CrossRef]
- Kucharzik, T.; Ellul, P.; Greuter, T.; Rahier, J.F.; Verstockt, B.; Abreu, C.; Albuquerque, A.; Allocca, M.; Esteve, M.; Farraye, F.A.; et al. ECCO Guidelines on the Prevention, Diagnosis, and Management of Infections in Inflammatory Bowel Disease. J. Crohn’s Colitis 2021, 15, 879–913. [Google Scholar] [CrossRef]
- Gordon, H.; Minozzi, S.; Kopylov, U.; Verstockt, B.; Chaparro, M.; Buskens, C.; Warusavitarne, J.; Agrawal, M.; Allocca, M.; Atreya, R.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohn’s Colitis 2024, 18, 1531–1555. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, N.; Bai, A. Clinical Use and Mechanisms of Infliximab Treatment on Inflammatory Bowel Disease: A Recent Update. BioMed Res. Int. 2013, 2013, 581631. [Google Scholar] [CrossRef]
- Levin, A.D.; Wildenberg, M.E.; Van Den Brink, G.R. Mechanism of Action of Anti-TNF Therapy in Inflammatory Bowel Disease. J. Crohn’s Colitis 2016, 10, 989–997. [Google Scholar] [CrossRef]
- Atreya, R.; Zimmer, M.; Bartsch, B.; Waldner, M.J.; Atreya, I.; Neumann, H.; Hildner, K.; Hoffman, A.; Kiesslich, R.; Rink, A.D.; et al. Antibodies Against Tumor Necrosis Factor (TNF) Induce T-Cell Apoptosis in Patients with Inflammatory Bowel Diseases via TNF Receptor 2 and Intestinal CD14+ Macrophages. Gastroenterology 2011, 141, 2026–2038. [Google Scholar] [CrossRef]
- Rutgeerts, P.; Sandborn, W.J.; Feagan, B.G.; Reinisch, W.; Olson, A.; Johanns, J.; Travers, S.; Rachmilewitz, D.; Hanauer, S.B.; Lichtenstein, G.R.; et al. Infliximab for Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2005, 353, 2462–2476. [Google Scholar] [CrossRef]
- Wilhelm, S.M.; McKenney, K.A.; Rivait, K.N.; Kale-Pradhan, P.B. A Review of Infliximab Use in Ulcerative Colitis. Clin. Ther. 2008, 30, 223–230. [Google Scholar] [CrossRef]
- Hanauer, S.B.; Feagan, B.G.; Lichtenstein, G.R.; Mayer, L.F.; Schreiber, S.; Colombel, J.F.; Rachmilewitz, D.; Wolf, D.C.; Olson, A.; Bao, W.; et al. Maintenance Infliximab for Crohn’s Disease: The ACCENT I Randomised Trial. Lancet 2002, 359, 1541–1549. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Hanauer, S.B.; Rutgeerts, P.; Fedorak, R.N.; Lukas, M.; MacIntosh, D.G.; Panaccione, R.; Wolf, D.; Kent, J.D.; Bittle, B.; et al. Adalimumab for Maintenance Treatment of Crohn’s Disease: Results of the CLASSIC II Trial. Gut 2007, 56, 1232–1239. [Google Scholar] [CrossRef]
- Colombel, J.-F.; Sandborn, W.J.; Rutgeerts, P.; Enns, R.; Hanauer, S.B.; Panaccione, R.; Schreiber, S.; Byczkowski, D.; Li, J.; Kent, J.D.; et al. Adalimumab for Maintenance of Clinical Response and Remission in Patients with Crohn’s Disease: The CHARM Trial. Gastroenterology 2007, 132, 52–65. [Google Scholar] [CrossRef]
- Roda, G.; Jharap, B.; Neeraj, N.; Colombel, J.-F. Loss of Response to Anti-TNFs: Definition, Epidemiology, and Management. Clin. Transl. Gastroenterol. 2016, 7, e135. [Google Scholar] [CrossRef]
- Singh, S.; George, J.; Boland, B.S.; Vande Casteele, N.; Sandborn, W.J. Primary Non-Response to Tumor Necrosis Factor Antagonists Is Associated with Inferior Response to Second-Line Biologics in Patients with Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis. J. Crohns Colitis 2018, 12, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Cheifetz, A.S.; Abreu, M.T.; Afif, W.; Cross, R.K.; Dubinsky, M.C.; Loftus, E.V.; Osterman, M.T.; Saroufim, A.; Siegel, C.A.; Yarur, A.J.; et al. A Comprehensive Literature Review and Expert Consensus Statement on Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease. Am. J. Gastroenterol. 2021, 116, 2014–2025. [Google Scholar] [CrossRef]
- Keane, J.; Gershon, S.; Wise, R.P.; Mirabile-Levens, E.; Kasznica, J.; Schwieterman, W.D.; Siegel, J.N.; Braun, M.M. Tuberculosis Associated with Infliximab, a Tumor Necrosis Factor α–Neutralizing Agent. N. Engl. J. Med. 2001, 345, 1098–1104. [Google Scholar] [CrossRef]
- Wyant, T.; Fedyk, E.; Abhyankar, B. An Overview of the Mechanism of Action of the Monoclonal Antibody Vedolizumab. J. Crohn’s Colitis 2016, 10, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Feagan, B.G.; Rutgeerts, P.; Sands, B.E.; Hanauer, S.; Colombel, J.-F.; Sandborn, W.J.; Van Assche, G.; Axler, J.; Kim, H.-J.; Danese, S.; et al. Vedolizumab as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2013, 369, 699–710. [Google Scholar] [CrossRef]
- Sands, B.E.; Van Assche, G.; Tudor, D.; Akhundova-Unadkat, G.; Curtis, R.I.; Tan, T. Vedolizumab in Combination with Corticosteroids for Induction Therapy in Crohn’s Disease: A Post Hoc Analysis of GEMINI 2 and 3. Inflamm. Bowel Dis. 2019, 25, 1375–1382. [Google Scholar] [CrossRef]
- Schreiber, S.; Dignass, A.; Peyrin-Biroulet, L.; Hather, G.; Demuth, D.; Mosli, M.; Curtis, R.; Khalid, J.M.; Loftus, E.V. Systematic Review with Meta-Analysis: Real-World Effectiveness and Safety of Vedolizumab in Patients with Inflammatory Bowel Disease. J. Gastroenterol. 2018, 53, 1048–1064. [Google Scholar] [CrossRef]
- Kotze, P.G.; Ma, C.; Almutairdi, A.; Al-Darmaki, A.; Devlin, S.M.; Kaplan, G.G.; Seow, C.H.; Novak, K.L.; Lu, C.; Ferraz, J.G.P.; et al. Real-world Clinical, Endoscopic and Radiographic Efficacy of Vedolizumab for the Treatment of Inflammatory Bowel Disease. Aliment. Pharmacol. Ther. 2018, 48, 626–637. [Google Scholar] [CrossRef] [PubMed]
- Gros, B.; Ross, H.; Nwabueze, M.; Constantine-Cooke, N.; Derikx, L.A.A.P.; Lyons, M.; O’Hare, C.; Noble, C.; Arnott, I.D.; Jones, G.-R.; et al. Long-Term Outcomes and Predictors of Vedolizumab Persistence in Ulcerative Colitis. Ther. Adv. Gastroenterol. 2024, 17, 17562848241258372. [Google Scholar] [CrossRef]
- Wyant, T.; Yang, L.; Lirio, R.A.; Rosario, M. Vedolizumab Immunogenicity with Long-Term or Interrupted Treatment of Patients with Inflammatory Bowel Disease. J. Clin. Pharmacol. 2021, 61, 1174–1181. [Google Scholar] [CrossRef]
- Luo, J.; Wu, S.-J.; Lacy, E.R.; Orlovsky, Y.; Baker, A.; Teplyakov, A.; Obmolova, G.; Heavner, G.A.; Richter, H.-T.; Benson, J. Structural Basis for the Dual Recognition of IL-12 and IL-23 by Ustekinumab. J. Mol. Biol. 2010, 402, 797–812. [Google Scholar] [CrossRef]
- Feagan, B.G.; Sandborn, W.J.; Gasink, C.; Jacobstein, D.; Lang, Y.; Friedman, J.R.; Blank, M.A.; Johanns, J.; Gao, L.-L.; Miao, Y.; et al. Ustekinumab as Induction and Maintenance Therapy for Crohn’s Disease. N. Engl. J. Med. 2016, 375, 1946–1960. [Google Scholar] [CrossRef]
- Sands, B.E.; Sandborn, W.J.; Panaccione, R.; O’Brien, C.D.; Zhang, H.; Johanns, J.; Adedokun, O.J.; Li, K.; Peyrin-Biroulet, L.; Van Assche, G.; et al. Ustekinumab as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2019, 381, 1201–1214. [Google Scholar] [CrossRef]
- Efficacy and Safety of Mirikizumab as Induction Therapy in Patients with Moderately to Severely Active Ulcerative Colitis: Results from the Phase 3 LUCENT-1 Study. Gastroenterol. Hepatol. 2022, 18, 7–8.
- D’Haens, G.; Panaccione, R.; Baert, F.; Bossuyt, P.; Colombel, J.-F.; Danese, S.; Dubinsky, M.; Feagan, B.G.; Hisamatsu, T.; Lim, A.; et al. Risankizumab as Induction Therapy for Crohn’s Disease: Results from the Phase 3 ADVANCE and MOTIVATE Induction Trials. Lancet 2022, 399, 2015–2030. [Google Scholar] [CrossRef]
- Danese, S.; Panaccione, R.; Feagan, B.G.; Afzali, A.; Rubin, D.T.; Sands, B.E.; Reinisch, W.; Panés, J.; Sahoo, A.; Terry, N.A.; et al. Efficacy and Safety of 48 Weeks of Guselkumab for Patients with Crohn’s Disease: Maintenance Results from the Phase 2, Randomised, Double-Blind GALAXI-1 Trial. Lancet Gastroenterol. Hepatol. 2024, 9, 133–146. [Google Scholar] [CrossRef]
- Rubin, D.T.; Allegretti, J.R.; Panés, J.; Shipitofsky, N.; Yarandi, S.S.; Huang, K.-H.G.; Germinaro, M.; Wilson, R.; Zhang, H.; Johanns, J.; et al. Guselkumab in Patients with Moderately to Severely Active Ulcerative Colitis (QUASAR): Phase 3 Double-Blind, Randomised, Placebo-Controlled Induction and Maintenance Studies. Lancet 2025, 405, 33–49. [Google Scholar] [CrossRef]
- Gerlach, K.; Lechner, K.; Popp, V.; Offensperger, L.; Zundler, S.; Wiendl, M.; Becker, E.; Atreya, R.; Rath, T.; Neurath, M.F.; et al. The JAK1/3 Inhibitor Tofacitinib Suppresses T Cell Homing and Activation in Chronic Intestinal Inflammation. J. Crohn’s Colitis 2021, 15, jjaa162. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Su, C.; Sands, B.E.; D’Haens, G.R.; Vermeire, S.; Schreiber, S.; Danese, S.; Feagan, B.G.; Reinisch, W.; Niezychowski, W.; et al. Tofacitinib as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2017, 376, 1723–1736. [Google Scholar] [CrossRef]
- Mohamed, M.-E.F.; Bhatnagar, S.; Parmentier, J.M.; Nakasato, P.; Wung, P. Upadacitinib: Mechanism of Action, Clinical, and Translational Science. Clin. Transl. Sci. 2024, 17, e13688. [Google Scholar] [CrossRef] [PubMed]
- Danese, S.; Vermeire, S.; Zhou, W.; Pangan, A.L.; Siffledeen, J.; Greenbloom, S.; Hébuterne, X.; D’Haens, G.; Nakase, H.; Panés, J.; et al. Upadacitinib as Induction and Maintenance Therapy for Moderately to Severely Active Ulcerative Colitis: Results from Three Phase 3, Multicentre, Double-Blind, Randomised Trials. Lancet 2022, 399, 2113–2128. [Google Scholar] [CrossRef]
- Feagan, B.G.; Danese, S.; Loftus, E.V.; Vermeire, S.; Schreiber, S.; Ritter, T.; Fogel, R.; Mehta, R.; Nijhawan, S.; Kempiński, R.; et al. Filgotinib as Induction and Maintenance Therapy for Ulcerative Colitis (SELECTION): A Phase 2b/3 Double-Blind, Randomised, Placebo-Controlled Trial. Lancet 2021, 397, 2372–2384. [Google Scholar] [CrossRef]
- Analyses from the Phase 3 True North Study of Ozanimod in UC Patients. Gastroenterol. Hepatol. 2023, 19, 3–4.
- Sandborn, W.J.; Vermeire, S.; Peyrin-Biroulet, L.; Dubinsky, M.C.; Panes, J.; Yarur, A.; Ritter, T.; Baert, F.; Schreiber, S.; Sloan, S.; et al. Etrasimod as Induction and Maintenance Therapy for Ulcerative Colitis (ELEVATE): Two Randomised, Double-Blind, Placebo-Controlled, Phase 3 Studies. Lancet 2023, 401, 1159–1171. [Google Scholar] [CrossRef]
- Binsaleh, A.Y.; El-Haggar, S.M.; Hegazy, S.K.; Maher, M.M.; Bahgat, M.M.; Elmasry, T.A.; Alrubia, S.; Alsegiani, A.S.; Eldesoqui, M.; Bahaa, M.M. The Adjunctive Role of Metformin in Patients with Mild to Moderate Ulcerative Colitis: A Randomized Controlled Study. Front. Pharmacol. 2025, 16, 1507009. [Google Scholar] [CrossRef]
- Jiang, X.; Luo, X.; Cai, C.; Bai, Y.; Ding, H.; Yue, H.; Li, Y.; Yang, Z.; Zhang, H.; Liang, Y.; et al. Umbilical Cord Mesenchymal Stem Cells in Ulcerative Colitis Treatment: Efficacy and Possible Mechanisms. Stem Cell Res. Ther. 2024, 15, 272. [Google Scholar] [CrossRef]
- Ashiqueali, S.A.; Chaudhari, D.; Zhu, X.; Noureddine, S.; Siddiqi, S.; Garcia, D.N.; Gostynska, A.; Stawny, M.; Rubis, B.; Zanini, B.M.; et al. Fisetin Modulates the Gut Microbiota alongside Biomarkers of Senescence and Inflammation in a DSS-Induced Murine Model of Colitis. GeroScience 2024, 46, 3085–3103. [Google Scholar] [CrossRef]
- Lyu, Y.-L.; Zhou, H.-F.; Yang, J.; Wang, F.-X.; Sun, F.; Li, J.-Y. Biological Activities Underlying the Therapeutic Effect of Quercetin on Inflammatory Bowel Disease. Mediat. Inflamm. 2022, 2022, 5665778. [Google Scholar] [CrossRef]
- Gao, F.; Zhu, F.; Shuai, B.; Wu, M.; Wei, C.; Yuan, Y.; Gui, Y.; Tian, Y.; Fan, H.; Wu, H. Quercetin Ameliorates Ulcerative Colitis by Restoring the Balance of M2/M1 and Repairing the Intestinal Barrier via Downregulating cGAS—STING Pathway. Front. Pharmacol. 2024, 15, 1351538. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.-Y.; Dan, L.; Sun, S.; Fu, T.; Chen, J. Dietary Quercetin Intake Is Associated with Lower Ulcerative Colitis Risk but Not Crohn’s Disease in a Prospective Cohort Study and in Vivo Experiments. Food Funct. 2024, 15, 6553–6564. [Google Scholar] [CrossRef]
- Samsami-kor, M.; Daryani, N.E.; Asl, P.R.; Hekmatdoost, A. Anti-Inflammatory Effects of Resveratrol in Patients with Ulcerative Colitis: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. Arch. Med. Res. 2015, 46, 280–285. [Google Scholar] [CrossRef]
- Mathur, J.; Naing, S.; Mills, P.; Limsui, D. A Randomized Clinical Trial of Vitamin D3 (Cholecalciferol) in Ulcerative Colitis Patients with Hypovitaminosis D3. PeerJ 2017, 5, e3654. [Google Scholar] [CrossRef]
- Andriolo, I.R.L.; Venzon, L.; Da Silva, L.M. Perspectives About Ascorbic Acid to Treat Inflammatory Bowel Diseases. Drug Res. 2024, 74, 149–155. [Google Scholar] [CrossRef]
- You, Y.; Fu, J.-J.; Meng, J.; Huang, G.-D.; Liu, Y.-H. Effect of N-Acetylcysteine on the Murine Model of Colitis Induced by Dextran Sodium Sulfate Through Up-Regulating PON1 Activity. Dig. Dis. Sci. 2009, 54, 1643–1650. [Google Scholar] [CrossRef]
- Da Paz Martins, A.S.; De Andrade, K.Q.; De Araújo, O.R.P.; Da Conceição, G.C.M.; Da Silva Gomes, A.; Goulart, M.O.F.; Moura, F.A. Extraintestinal Manifestations in Induced Colitis: Controversial Effects of N-Acetylcysteine on Colon, Liver, and Kidney. Oxid. Med. Cell. Longev. 2023, 2023, 8811463. [Google Scholar] [CrossRef]
- Xiao, X.; Mao, X.; Chen, D.; Yu, B.; He, J.; Yan, H.; Wang, J. miRNAs Can Affect Intestinal Epithelial Barrier in Inflammatory Bowel Disease. Front. Immunol. 2022, 13, 868229. [Google Scholar] [CrossRef]
- Lightner, A.L.; Irving, P.M.; Lord, G.M.; Betancourt, A. Stem Cells and Stem Cell-Derived Factors for the Treatment of Inflammatory Bowel Disease with a Particular Focus on Perianal Fistulizing Disease: A Minireview on Future Perspectives. BioDrugs 2024, 38, 527–539. [Google Scholar] [CrossRef]
- Gefen, R.; Dourado, J.; Emile, S.H.; Wignakumar, A.; Rogers, P.; Aeschbacher, P.; Garoufalia, Z.; Horesh, N.; Wexner, S.D. Fecal Microbiota Transplantation for Patients with Ulcerative Colitis: A Systematic Review and Meta-Analysis of Randomized Control Trials. Tech. Coloproctol. 2025, 29, 103. [Google Scholar] [CrossRef]
- He, J.; Zhang, J.; Zhou, H.; Da, Y.; Liu, X.; Zhang, T.; Fan, Z.; Wu, T.; Shi, Y.; Liang, J. Dual-Targeted Therapy for the Management of Refractory Crohn’s Disease: A Retrospective Cohort Study. Clin. Exp. Med. 2025, 25, 257. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, C.; Niu, R.; Xiong, S.; He, J.; Wang, Y.; Zhang, P.; Su, F.; Liu, Z.; Zhou, L.; et al. Multi-Omics Biomarkers for Predicting Efficacy of Biologic and Small-Molecule Therapies in Adults with Inflammatory Bowel Disease: A Systematic Review. United Eur. Gastroenterol. J. 2025, 13, 517–530. [Google Scholar] [CrossRef]
- Hanaoka, M.; Ishikawa, T.; Ishiguro, M.; Tokura, M.; Yamauchi, S.; Kikuchi, A.; Uetake, H.; Yasuno, M.; Kawano, T. Expression of ATF6 as a marker of pre-cancerous atypical change in ulcerative colitis-associated colorectal cancer: A potential role in the management of dysplasia. J. Gastroenterol. 2018, 53, 631–641. [Google Scholar] [CrossRef]
- Costa, F. Calprotectin Is a Stronger Predictive Marker of Relapse in Ulceratquiive Colitis than in Crohn’s Disease. Gut 2005, 54, 364–368. [Google Scholar] [CrossRef]
- Kyle, B.D.; Agbor, T.A.; Sharif, S.; Chauhan, U.; Marshall, J.; Halder, S.L.S.; Ip, S.; Khan, W.I. Fecal Calprotectin, CRP and Leucocytes in IBD Patients: Comparison of Biomarkers with Biopsy Results. J. Can. Assoc. Gastroenterol. 2021, 4, 84–90. [Google Scholar] [CrossRef]
- Clarke, K.; Kang, M.; Gorrepati, V.S.; Stine, J.G.; Tinsley, A.; Williams, E.; Moyer, M.; Coates, M. Dysplasia Detection Is Similar between Chromoendoscopy and High-Definition White-Light Colonoscopy in Inflammatory Bowel Disease Patients: A US-Matched Case-Control Study. Int. J. Colorectal Dis. 2020, 35, 2301–2307. [Google Scholar] [CrossRef]
- Sinopoulou, V.; Nigam, G.B.; Gordon, M.; Ganeshan, M.; Tokonyai, M.R.; Dolwani, S.; Iacucci, M.; Rutter, M.; Subramanian, V.; Wilson, A.; et al. Comparative Efficacy and Safety of Endoscopic Modalities for Colorectal Cancer Screening in Inflammatory Bowel Disease: A Systematic Review and Network Meta-Analysis. Clin. Gastroenterol. Hepatol. 2025, 23, 2128–2143. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, M.; Shang, H.; Zou, L.; Shang, F. Long-Term Efficacy of Mesenchymal Stem Cell Treatment for Complex Perianal Fistulas: A Systematic Review and Meta-Analysis. Cent. Eur. J. Immunol. 2024, 49, 273–281. [Google Scholar] [CrossRef]
- Emile, S.H.; Dourado, J.; Rogers, P.; Wignakumar, A.; Horesh, N.; Garoufalia, Z.; Wexner, S.D. Systematic Review and Meta-Analysis of the Efficacy and Safety of Stem Cell Treatment of Anal Fistulas. Tech. Coloproctol. 2025, 29, 100. [Google Scholar] [CrossRef] [PubMed]
- Guillo, L.; Gravier Dumonceau, R.; Vélier, M.; Serrero, M.; Grimaud, F.; Sabatier, F.; Magalon, J. Efficacy of Mesenchymal Stem Cell-Based Therapies in the Treatment of Perianal Fistulizing Crohn’s Disease: A Systematic Review and Meta-Analysis. Stem Cell Res. Ther. 2025, 16, 152. [Google Scholar] [CrossRef]
- Wei, Z.-J.; Dong, H.-B.; Ren, Y.-T.; Jiang, B. Efficacy and Safety of Fecal Microbiota Transplantation for the Induction of Remission in Active Ulcerative Colitis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Ann. Transl. Med. 2022, 10, 802. [Google Scholar] [CrossRef]
- Caenepeel, C.; Deleu, S.; Vazquez Castellanos, J.F.; Arnauts, K.; Braekeleire, S.; Machiels, K.; Baert, F.; Mana, F.; Pouillon, L.; Hindryckx, P.; et al. Rigorous Donor Selection for Fecal Microbiota Transplantation in Active Ulcerative Colitis: Key Lessons from a Randomized Controlled Trial Halted for Futility. Clin. Gastroenterol. Hepatol. 2025, 23, 621–631.e7. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.L.; Taheri, N.; Chandra, A.; Hayashi, Y. Cellular Senescence, Inflammation, and Cancer in the Gastrointestinal Tract. Int. J. Mol. Sci. 2023, 24, 9810. [Google Scholar] [CrossRef]
- Lelarge, V.; Capelle, R.; Oger, F.; Mathieu, T.; Le Calvé, B. Senolytics: From Pharmacological Inhibitors to Immunotherapies, a Promising Future for Patients’ Treatment. NPJ Aging 2024, 10, 12. [Google Scholar] [CrossRef]
- Saito, Y.; Yamamoto, S.; Chikenji, T.S. Role of Cellular Senescence in Inflammation and Regeneration. Inflamm. Regen. 2024, 44, 28. [Google Scholar] [CrossRef]
- Saliev, T.; Singh, P.B. Targeting Senescence: A Review of Senolytics and Senomorphics in Anti-Aging Interventions. Biomolecules 2025, 15, 860. [Google Scholar] [CrossRef]
- Costa, C.M.; Pedrosa, S.S.; Kirkland, J.L.; Reis, F.; Madureira, A.R. The Senotherapeutic Potential of Phytochemicals for Age-Related Intestinal Disease. Ageing Res. Rev. 2025, 104, 102619. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopetuso, L.R.; Murgiano, M.; Mantuano, E.; Schiavone, V.; Costa, A.; Mascianà, G.; Bezzerri, V.; Costa, G. The Molecular Landscape of Inflammation in Inflammatory Bowel Disease (IBD): Targets for Precision Medicine. Biomedicines 2025, 13, 2738. https://doi.org/10.3390/biomedicines13112738
Lopetuso LR, Murgiano M, Mantuano E, Schiavone V, Costa A, Mascianà G, Bezzerri V, Costa G. The Molecular Landscape of Inflammation in Inflammatory Bowel Disease (IBD): Targets for Precision Medicine. Biomedicines. 2025; 13(11):2738. https://doi.org/10.3390/biomedicines13112738
Chicago/Turabian StyleLopetuso, Loris Riccardo, Marco Murgiano, Elisabetta Mantuano, Vincenzo Schiavone, Alessandro Costa, Gianluca Mascianà, Valentino Bezzerri, and Gianluca Costa. 2025. "The Molecular Landscape of Inflammation in Inflammatory Bowel Disease (IBD): Targets for Precision Medicine" Biomedicines 13, no. 11: 2738. https://doi.org/10.3390/biomedicines13112738
APA StyleLopetuso, L. R., Murgiano, M., Mantuano, E., Schiavone, V., Costa, A., Mascianà, G., Bezzerri, V., & Costa, G. (2025). The Molecular Landscape of Inflammation in Inflammatory Bowel Disease (IBD): Targets for Precision Medicine. Biomedicines, 13(11), 2738. https://doi.org/10.3390/biomedicines13112738

