Liver Machine Perfusion: Past, Present and Future Directions
Abstract
1. Introduction
1.1. Historical Development of Liver Machine Perfusion (LMP)
1.2. Why Do We Need LMP?
1.3. Basic Concepts and Technical Aspects of LMP
1.3.1. Perfusion Solutions
1.3.2. Oxygenation
2. Types of Machine Perfusion
2.1. Hypothermic Machine Perfusion (HMP)
2.2. Subnormothermic Machine Perfusion (SNMP)
2.3. Normothermic Machine Perfusion (NMP)
2.4. Normothermic Regional Perfusion (NRP)
2.5. Controlled Oxygenated Rewarming (COR)
2.6. Is There an Ideal LMP Strategy?
3. Current State of LMP
3.1. Duration of Perfusion
3.2. Viability Assessment
3.3. Rationale for LMP and Current Evidence
3.4. Cholangiopathy Prevention
3.5. Improved Graft Function
4. Current Guidelines and Recommendations
5. Discussion
6. Future Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| LMP | Liver machine perfusion |
| SCS | Static cold storage |
| UW | University of Wisconsin |
| IRI | Ischemia–reperfusion injury |
| HMP | Hypothermic machine perfusion |
| SNMP | Subnormothermic machine perfusion |
| NMP | Normothermic machine perfusion |
| IVC | Inferior vena cava |
| ECD | Extended criteria donors |
| NRP | Normothermic Regional Perfusion |
| COR | Controlled Oxygenated Rewarming |
| HOPE | Hypothermic oxygenated machine perfusion |
| D-HOPE | Dual hypothermic oxygenated machine perfusion |
References
- Cui, E.Y.; Gouchoe, D.A.; Salmon-Rekhi, S.T.; Whitson, B.A.; Black, S.M. An Unexpected Partnership: Alexis Carrel, Charles Lindbergh, and Normothermic Machine Perfusion. ASAIO J. 2024, 70, 904–909. [Google Scholar] [CrossRef]
- Semash, K.; Salimov, U.; Dzhanbekov, T.; Sabirov, D. Liver Graft Machine Perfusion: From History Perspective to Modern Approaches in Transplant Surgery. Exp. Clin. Transplant. 2024, 22, 497–508. [Google Scholar] [CrossRef]
- Gurusamy, K.S.; Gonzalez, H.D.; Davidson, B.R. Current protective strategies in liver surgery. World J. Gastroenterol. 2010, 16, 6098–6103. [Google Scholar] [CrossRef] [PubMed]
- Guarrera, J.V.; Henry, S.D.; Samstein, B.; Odeh-Ramadan, R.; Kinkhabwala, M.; Goldstein, M.J.; Ratner, L.E.; Renz, J.F.; Lee, H.T.; Brown, R.S., Jr.; et al. Hypothermic machine preservation in human liver transplantation: The first clinical series. Am. J. Transplant. 2010, 10, 372–381. [Google Scholar] [CrossRef] [PubMed]
- op den Dries, S.; Karimian, N.; Sutton, M.E.; Westerkamp, A.C.; Nijsten, M.W.; Gouw, A.S.; Wiersema-Buist, J.; Lisman, T.; Leuvenink, H.G.; Porte, R.J. Ex vivo normothermic machine perfusion and viability testing of discarded human donor livers. Am. J. Transplant. 2013, 13, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Boteon, Y.L.; Martins, P.N.; Muiesan, P.; Schlegel, A. Machine perfusion of the liver: Putting the puzzle pieces together. World J. Gastroenterol. 2021, 27, 5727–5736. [Google Scholar] [CrossRef]
- Longchamp, A.; Nakamura, T.; Uygun, K.; Markmann, J.F. Role of Machine Perfusion in Liver Transplantation. Surg. Clin. N. Am. 2024, 104, 45–65. [Google Scholar] [CrossRef]
- Karangwa, S.A.; Dutkowski, P.; Fontes, P.; Friend, P.J.; Guarrera, J.V.; Markmann, J.F.; Mergental, H.; Minor, T.; Quintini, C.; Selzner, M.; et al. Machine perfusion of donor livers: Standardized nomenclature and reporting. Am. J. Transplant. 2016, 16, 2932–2942. [Google Scholar] [CrossRef]
- Detelich, D.; Markmann, J. The dawn of liver perfusion machines. Curr. Opin. Organ Transplant. 2018, 23, 171–178. [Google Scholar] [CrossRef]
- van Rijn, R.; de Vries, Y.; Schurink, I.J.; van den Berg, A.P.; Cortes Cerisuelo, M.; Darwish Murad, S.; Erdmann, J.I.; Gilbo, N.; de Haas, R.J.; Heaton, N.; et al. Hypothermic machine perfusion in liver transplantation—A randomized trial. N. Engl. J. Med. 2021, 384, 1391–1401. [Google Scholar] [CrossRef]
- Karangwa, S.; Panayotova, G.; Dutkowski, P.; Porte, R.J.; Guarrera, J.V.; Schlegel, A. Hypothermic machine perfusion in liver transplantation. Int. J. Surg. 2020, 82, 44–51. [Google Scholar] [CrossRef]
- Southard, J.H.; van Gulik, T.M.; Ametani, M.S.; Vreugdenhil, P.K.; Lindell, S.L.; Pienaar, B.L.; Belzer, F.O. Important components of the UW solution. Transplantation 1990, 49, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Leber, B.; Stimmeder, S.; Briendl, K.; Weber, J.; Rohrhofer, L.; Aigelsreiter, A.; Niedrist, T.; Sucher, R.; Stiegler, P. Equal performance of HTK-based and UW-based perfusion solutions in sub-normothermic liver machine perfusion. Sci. Rep. 2025, 15, 7601. [Google Scholar] [CrossRef] [PubMed]
- Stegemann, J.; Hirner, A.; Rauen, U.; Minor, T. Use of a new modified HTK solution for machine preservation of marginal liver grafts. J. Surg. Res. 2010, 160, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Soo, E.; Marsh, C.; Steiner, R.; Stocks, L.; McKay, D.B. Optimizing organs for transplantation; advancements in perfusion and preservation methods. Transplant. Rev. 2020, 34, 100514. [Google Scholar] [CrossRef]
- Selzner, M.; Goldaracena, N.; Echeverri, J.; Kaths, J.M.; Linares, I.; Selzner, N.; Serrick, C.; Marquez, M.; Sapisochin, G.; Renner, E.L.; et al. Normothermic ex vivo liver perfusion using steen solution as perfusate for human liver transplantation: First North American results. Liver Transplant. 2016, 22, 1501–1508. [Google Scholar] [CrossRef]
- Matton, A.P.M.; Burlage, L.C.; van Rijn, R.; de Vries, Y.; Karangwa, S.A.; Nijsten, M.W.; Gouw, A.S.H.; Wiersema-Buist, J.; Adelmeijer, J.; Westerkamp, A.C.; et al. Normothermic machine perfusion of donor livers without the need for human blood products. Liver Transplant. 2018, 24, 528–538. [Google Scholar] [CrossRef]
- Brüggenwirth, I.M.A.; van Leeuwen, O.B.; Müller, M.; Dutkowski, P.; Monbaliu, D.; Martins, P.N.; Porte, R.J.; de Meijer, V.E. The importance of adequate oxygenation during hypothermic machine perfusion. JHEP Rep. 2020, 3, 100194. [Google Scholar] [CrossRef]
- Karakaya, O.F.; Satish, S.; Müller, P.C.; Dutkowski, P.; Schlegel, A. Single versus dual hypothermic oxygenated perfusion in liver transplantation: A call for risk-matched outcome analyses. Int. J. Surg. 2025, 111, 4043–4049. [Google Scholar] [CrossRef]
- Schlegel, A.; Muller, X.; Dutkowski, P. Hypothermic liver perfusion. Curr. Opin. Organ Transplant. 2017, 22, 563–570. [Google Scholar] [CrossRef]
- Elgosbi, M.; Kurt, A.S.; Londoño, M.C.; Caballero-Marcos, A.; Lim, T.Y.; Lozano, J.J.; Dave, M.; Heaton, N.; Sánchez-Fueyo, A.; Cortes-Cerisuelo, M. Hypothermic oxygenated machine perfusion influences the immunogenicity of donor livers in humans. Liver Transplant. 2025, 31, 311–322. [Google Scholar] [CrossRef]
- Nishimaki, H.; Miyagi, S.; Kashiwadate, T.; Tokodai, K.; Fujio, A.; Miyazawa, K.; Sasaki, K.; Kamei, T.; Unno, M. Optimal Conditions for Oxygenated Subnormothermic Machine Perfusion for Liver Grafts Using a Novel Perfusion Device. Transplant. Proc. 2022, 54, 217–224. [Google Scholar] [CrossRef]
- Lascaris, B.; Schlegel, A.; Clavien, P.A. Normothermic liver machine perfusion as a dynamic platform for regenerative purposes. J. Hepatol. 2022, 77, 825–836. [Google Scholar] [CrossRef] [PubMed]
- van Beekum, C.J.; Vilz, T.O.; Glowka, T.R.; von Websky, M.W.; Kalff, J.C.; Manekeller, S. Normothermic Machine Perfusion (NMP) of the Liver-Current Status and Future Perspectives. Ann. Transplant. 2021, 26, e931664. [Google Scholar] [CrossRef] [PubMed]
- Croome, K.P.; Subramanian, V.; Mathur, A.K.; Aqel, B.; Mao, S.A.; Clendenon, J.N.; Perry, D.K.; Dhanireddy, K.; Taner, C.B. Outcomes of DCD Liver Transplant Using Sequential Normothermic Regional Perfusion and Normothermic Machine Perfusion or NRP Alone Versus Static Cold Storage. Transplantation 2025, 109, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Minor, T.; von Horn, C.; Zlatev, H.; Saner, F.; Grawe, M.; Lüer, B.; Huessler, E.M.; Kuklik, N.; Paul, A. Controlled oxygenated rewarming as novel end-ischemic therapy for cold stored liver grafts. A randomized controlled trial. Clin. Transl. Sci. 2022, 15, 2918–2927. [Google Scholar] [CrossRef]
- Wehrle, C.J.; Mao, S.; Satish, S.; Hashimoto, K.; Nassar, A.; Zari, M.R.; Foley, D.; Florman, S.; DeVera, M.; Pinna, A.; et al. Hypothermic-oxygenated and normothermic machine perfusion: A risk-matched post-hoc comparison of the bridge to hope randomized trial with prospectively collected institutional outcomes. Am. J. Transplant. 2025, 25, S86. [Google Scholar] [CrossRef]
- Patrono, D.; Del Prete, L.; Eden, J.; Dutkowski, P.; Guarrera, J.V.; Quintini, C.; Romagnoli, R. Machine perfusion of liver grafts: Hypothermic versus normothermic versus normothermic regional perfusion. Int. J. Surg. 2025, 111, 5768–5782. [Google Scholar] [CrossRef]
- Kotsiliti, E. Long-term normothermic liver perfusion. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 694. [Google Scholar] [CrossRef]
- Buchwald, J.E.; Xu, J.; Bozorgzadeh, A.; Martins, P.N. Therapeutics administered during ex vivo liver machine perfusion: An overview. World J. Transplant. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Eshmuminov, D.; Becker, D.; Bautista Borrego, L.; Hefti, M.; Schuler, M.J.; Hagedorn, C.; Muller, X.; Mueller, M.; Onder, C.; Graf, R.; et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat. Biotechnol. 2020, 38, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.; Hefti, M.; Eshmuminov, D.; Schuler, M.J.; Sousa Da Silva, R.X.; Petrowsky, H.; De Oliveira, M.L.; Oberkofler, C.E.; Hagedorn, C.; Mancina, L.; et al. Long-term Normothermic Machine Preservation of Partial Livers: First Experience with 21 Human Hemi-livers. Ann. Surg. 2021, 274, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Pavan-Guimaraes, J.; Devos, L.; Lascaris, B.; de Meijer, V.E.; Monbaliu, D.; Jochmans, I.; Pulitano, C.; Porte, R.J.; Martins, P.N. Long-Term Liver Machine Perfusion Preservation: A Review of Recent Advances, Benefits and Logistics. Artif. Organs 2025, 49, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Niu, A.; Lau, N.S.; Ly, M.; Babekuhl, D.; Yousif, P.; Risbey, C.; Thomas, G.; George, M.; Lin, Y.S.; McKenzie, C.; et al. Is It Time to Introduce Ex-Situ Normothermic Machine Perfusion in Paediatric Liver Transplantation? J. Pediatr. Surg. 2025, 60, 162236. [Google Scholar] [CrossRef]
- Jeddou, H.; Tzedakis, S.; Chaouch, M.A.; Sulpice, L.; Samson, M.; Boudjema, K. Viability Assessment During Normothermic Machine Liver Perfusion: A Literature Review. Liver Int. 2025, 45, e16244. [Google Scholar] [CrossRef]
- Hessheimer, A.J.; Hartog, H.; Marcon, F.; Schlegel, A.; Adam, R.; Alwayn, I.; Angelico, R.; Antoine, C.; Berlakovich, G.; Bruggenwirth, I.; et al. Deceased donor liver utilisation and assessment: Consensus guidelines from the European Liver and Intestine Transplant Association. J. Hepatol. 2025, 82, 1089–1109. [Google Scholar] [CrossRef]
- Eden, J.; Thorne, A.M.; Bodewes, S.B.; Patrono, D.; Roggio, D.; Breuer, E.; Lonati, C.; Dondossola, D.; Panayotova, G.; Boteon, A.P.C.S.; et al. Assessment of liver graft quality during hypothermic oxygenated perfusion: The first international validation study. J. Hepatol. 2025, 82, 523–534. [Google Scholar] [CrossRef]
- Dingfelder, J.; Kollmann, D.; Rauter, L.; Pereyra, D.; Kacar, S.; Weijler, A.M.; Saffarian Zadeh, T.; Tortopis, C.; Silberhumer, G.; Salat, A.; et al. Validation of mitochondrial FMN as a predictor for early allograft dysfunction and patient survival measured during hypothermic oxygenated perfusion. Liver Transplant. 2025, 31, 476–488. [Google Scholar] [CrossRef]
- Wehrle, C.J.; Satish, S.; Dewey, E.; Nadeem, M.A.; Sun, K.; Jiao, C.; Khalil, M.; Pita, A.; Kim, J.; Aucejo, F.; et al. A New Era of Decision-making in Liver Transplantation: A Prospective Validation and Cost-effectiveness Analysis of FMN-guided Liver Viability Assessment During Normothermic Machine Perfusion. Ann. Surg. 2025, 282, 479–493. [Google Scholar] [CrossRef]
- Caballero-Marcos, A.; Rodríguez-Bachiller, L.; Baroja-Mazo, A.; Morales, Á.; Fernández-Cáceres, P.; Fernández-Martínez, M.; DíazFontenla, F.; Velasco, E.; Fernández-Yunquera, A.; Díaz-Zorita, B.; et al. Dynamics of Ischemia/Reperfusion Injury Markers During Normothermic Liver Machine Perfusion. Transplant. Direct 2024, 10, e1728. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Gao, W.; Liu, L.; Shi, Y.; Ma, N.; Huai, M.S.; Shen, Z.Y. Normothermic Machine Perfusion Protects Against Liver Ischemia-Reperfusion Injury During Reduced-Size Liver Transplantation in Pigs. Ann. Transplant. 2019, 24, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Garcia, K.B.; Hussein, A.; Satish, S.; Wehrle, C.J.; Karakaya, O.; Panconesi, R.; Sun, K.; Jiao, C.; Fernandes, E.; Pinna, A.; et al. Machine Perfusion as a Strategy to Decrease Ischemia-Reperfusion Injury and Lower Cancer Recurrence Following Liver Transplantation. Cancers 2024, 16, 3959. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, A.; Muller, X.; Mueller, M.; Stepanova, A.; Kron, P.; de Rougemont, O.; Muiesan, P.; Clavien, P.A.; Galkin, A.; Meierhofer, D.; et al. Hypothermic oxygenated perfusion protects from mitochondrial injury before liver transplantation. EBioMedicine 2020, 60, 103014. [Google Scholar] [CrossRef] [PubMed]
- Boteon, Y.L.; Attard, J.; Boteon, A.P.C.S.; Wallace, L.; Reynolds, G.; Hubscher, S.; Mirza, D.F.; Mergental, H.; Bhogal, R.H.; Afford, S.C. Manipulation of Lipid Metabolism During Normothermic Machine Perfusion: Effect of Defatting Therapies on Donor Liver Functional Recovery. Liver Transplant. 2019, 25, 1007–1022. [Google Scholar] [CrossRef]
- Sousa Da Silva, R.X.; Bautista Borrego, L.; Lenggenhager, D.; Huwyler, F.; Binz, J.; Mancina, L.; Breuer, E.; Wernlé, K.; Hefti, M.; Mueller, M.; et al. Defatting of Human Livers During Long-Term ex situ Normothermic Perfusion: Novel Strategy to Rescue Discarded Organs for Transplantation. Ann. Surg. 2023, 278, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Patrono, D.; De Stefano, N.; Vissio, E.; Apostu, A.L.; Petronio, N.; Vitelli, G.; Catalano, G.; Rizza, G.; Catalano, S.; Colli, F.; et al. How to Preserve Steatotic Liver Grafts for Transplantation. J. Clin. Med. 2023, 12, 3982. [Google Scholar] [CrossRef]
- Cirelli, R.; Thorne, A.M.; van Leeuwen, O.B.; Lascaris, B.; Lantinga, V.A.; Bodewes, S.B.; van den Heuvel, M.C.; Porte, R.J.; de Meijer, V.E. Transplantation of Severely Steatotic Liver Grafts After Machine Perfusion Remains a Risky Challenge. Clin. Transplant. 2025, 39, e70260. [Google Scholar] [CrossRef]
- Abbas, S.H.; Ceresa, C.D.L.; Hodson, L.; Nasralla, D.; Watson, C.J.E.; Mergental, H.; Coussios, C.; Kaloyirou, F.; Brusby, K.; Mora, A.; et al. Defatting of donor transplant livers during normothermic perfusion-a randomised clinical trial: Study protocol for the DeFat study. Trials 2024, 25, 386. [Google Scholar] [CrossRef]
- Lai, Q.; Angelico, R.; Guglielmo, N.; Pagano, D.; Martins, P.N.; Ghinolfi, D. Ex-situ normothermic machine perfusion prevents ischemic cholangiopathy after liver transplantation: A meta-regression analysis. Transplant. Rev. 2025, 39, 100915. [Google Scholar] [CrossRef]
- Patrono, D.; Zanierato, M.; Vergano, M.; Magaton, C.; Diale, E.; Rizza, G.; Catalano, S.; Mirabella, S.; Cocchis, D.; Potenza, R.; et al. Normothermic Regional Perfusion and Hypothermic Oxygenated Machine Perfusion for Livers Donated After Controlled Circulatory Death with Prolonged Warm Ischemia Time: A Matched Comparison With Livers From Brain-Dead Donors. Transpl. Int. 2022, 35, 10390. [Google Scholar] [CrossRef]
- Ghinolfi, D.; Melandro, F.; Torri, F.; Esposito, M.; Bindi, M.; Biancofiore, G.; Basta, G.; Del Turco, S.; Lazzeri, C.; Rotondo, M.I.; et al. The role of sequential normothermic regional perfusion and end-ischemic normothermic machine perfusion in liver transplantation from very extended uncontrolled donation after cardiocirculatory death. Artif. Organs 2023, 47, 432–440. [Google Scholar] [CrossRef]
- Sousa Da Silva, R.X.; Weber, A.; Dutkowski, P.; Clavien, P.A. Machine perfusion in liver transplantation. Hepatology 2022, 76, 1531–1549. [Google Scholar] [CrossRef] [PubMed]
- Parente, A.; Tirotta, F.; Pini, A.; Eden, J.; Dondossola, D.; Manzia, T.M.; Dutkowski, P.; Schlegel, A. Machine perfusion techniques for liver transplantation—A meta-analysis of the first seven randomized-controlled trials. J. Hepatol. 2023, 79, 1201–1213. [Google Scholar] [CrossRef]
- Ravaioli, M.; Germinario, G.; Dajti, G.; Sessa, M.; Vasuri, F.; Siniscalchi, A.; Morelli, M.C.; Serenari, M.; Del Gaudio, M.; Zanfi, C.; et al. Hypothermic Oxygenated Perfusion in Extended Criteria Donor Liver Transplantation-A Randomized Clinical Trial. Am. J. Transplant. 2022, 22, 2401–2408. [Google Scholar] [CrossRef] [PubMed]
- Czigany, Z.; Pratschke, J.; Froněk, J.; Guba, M.; Schöning, W.; Raptis, D.A.M.; Andrassy, J.; Kramer, M.; Strnad, P.; Tolba, R.H.; et al. Hypothermic Oxygenated Machine Perfusion Reduces Early Allograft Injury and Improves Post-Transplant Outcomes in Extended Criteria Donation Liver Transplantation from Donation After Brain Death: Results From a Multicenter Randomized Controlled Trial (HOPE ECD-DBD). Ann. Surg. 2021, 274, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Grąt, M.; Morawski, M.; Zhylko, A.; Rykowski, P.; Krasnodębski, M.; Wyporski, A.; Borkowski, J.; Lewandowski, Z.; Kobryń, K.; Stankiewicz, R.; et al. Routine End-Ischemic Hypothermic Oxygenated Machine Perfusion in Liver Transplantation from Donors After Brain Death: A Randomized Controlled Trial. Ann. Surg. 2023, 278, 662–668. [Google Scholar] [CrossRef]
- Panayotova, G.G.; Lunsford, K.E.; Quillin, R.C., III; Rana, A.; Agopian, V.G.; Lee-Riddle, G.S.; Markovic, D.; Paterno, F.; Griesemer, A.D.; Amin, A.; et al. Portable Hypothermic Oxygenated Machine Perfusion for Organ Preservation in Liver Transplantation: A Randomized, Open-Label, Clinical Trial. Hepatology 2024, 79, 1033–1047. [Google Scholar] [CrossRef]
- Endo, C.; van Rijn, R.; Huurman, V.; Schurink, I.; van den Berg, A.; Murad, S.D.; van Hoek, B.; de Meijer, V.E.; de Jonge, J.; van der Hilst, C.S.; et al. Cost-effectiveness of Dual Hypothermic Oxygenated Machine Perfusion Versus Static Cold Storage in DCD Liver Transplantation. Transplantation 2025, 109, e101–e108. [Google Scholar] [CrossRef]
- Morawski, M.; Zhylko, A.; Rykowski, P.; Krasnodębski, M.; Hołówko, W.; Lewandowski, Z.; Mielczarek-Puta, M.; Struga, M.; Szczepankiewicz, B.; Górnicka, B.; et al. Routine end-ischemic hypothermic machine perfusion in liver transplantation from donors after brain death: Results of 2-year follow-up of a randomized controlled trial. Int. J. Surg. 2024, 110, 7003–7010. [Google Scholar] [CrossRef]
- Czigany, Z.; Uluk, D.; Pavicevic, S.; Lurje, I.; Froněk, J.; Keller, T.; Strnad, P.; Jiang, D.; Gevers, T.; Koliogiannis, D.; et al. Improved outcomes after hypothermic oxygenated machine perfusion in liver transplantation-Long-term follow-up of a multicenter randomized controlled trial. Hepatol. Commun. 2024, 8, e0376. [Google Scholar] [CrossRef]
- Chapman, W.C.; Barbas, A.S.; D’Alessandro, A.M.; Vianna, R.; Kubal, C.A.; Abt, P.; Sonnenday, C.; Barth, R.; Alvarez-Casas, J.; Yersiz, H.; et al. Normothermic Machine Perfusion of Donor Livers for Transplantation in the United States: A Randomized Controlled Trial. Ann. Surg. 2023, 278, e912–e921. [Google Scholar] [CrossRef] [PubMed]
- Pradat, P.; Pantel, S.; Maynard, M.; Lalande, L.; Thevenon, S.; Adam, R.; Allard, M.A.; Robin, F.; Rayar, M.; Boleslawski, E.; et al. End-ischemic hypothermic oxygenated perfusion for extended criteria donors in liver transplantation: A multicenter, randomized controlled trial-HOPExt. Trials 2023, 24, 379. [Google Scholar] [CrossRef]
- Schlegel, A.; Mueller, M.; Muller, X.; Eden, J.; Panconesi, R.; von Felten, S.; Steigmiller, K.; Sousa Da Silva, R.X.; de Rougemont, O.; Mabrut, J.Y.; et al. A multicenter randomized-controlled trial of hypothermic oxygenated perfusion (HOPE) for human liver grafts before transplantation. J. Hepatol. 2023, 78, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Ghinolfi, D.; Rreka, E.; De Tata, V.; Franzini, M.; Pezzati, D.; Fierabracci, V.; Masini, M.; Cacciatoinsilla, A.; Bindi, M.L.; Marselli, L.; et al. Pilot, Open, Randomized, Prospective Trial for Normothermic Machine Perfusion Evaluation in Liver Transplantation From Older Donors. Liver Transplant. 2019, 25, 436–449. [Google Scholar] [CrossRef] [PubMed]
- Nasralla, D.; Coussios, C.C.; Mergental, H.; Akhtar, M.Z.; Butler, A.J.; Ceresa, C.D.L.; Chiocchia, V.; Dutton, S.J.; García-Valdecasas, J.C.; Heaton, N.; et al. A randomized trial of normothermic preservation in liver transplantation. Nature 2018, 557, 50–56. [Google Scholar] [CrossRef]
- Czigany, Z.; Schöning, W.; Ulmer, T.F.; Bednarsch, J.; Amygdalos, I.; Cramer, T.; Rogiers, X.; Popescu, I.; Botea, F.; Froněk, J.; et al. Hypothermic oxygenated machine perfusion (HOPE) for orthotopic liver transplantation of human liver allografts from extended criteria donors (ECD) in donation after brain death (DBD): A prospective multicentre randomised controlled trial (HOPE ECD-DBD). BMJ Open 2017, 7, e017558. [Google Scholar] [CrossRef]
- Markmann, J.F.; Abouljoud, M.S.; Ghobrial, R.M.; Bhati, C.S.; Pelletier, S.J.; Lu, A.D.; Ottmann, S.; Klair, T.; Eymard, C.; Roll, G.R.; et al. Impact of Portable Normothermic Blood-Based Machine Perfusion on Outcomes of Liver Transplant: The OCS Liver PROTECT Randomized Clinical Trial. JAMA Surg. 2022, 157, 189–198. [Google Scholar] [CrossRef]
- van Leeuwen, O.B.; Bodewes, S.B.; Lantinga, V.A.; Haring, M.P.D.; Thorne, A.M.; Brüggenwirth, I.M.A.; van den Berg, A.P.; de Boer, M.T.; de Jong, I.E.M.; de Kleine, R.H.J.; et al. Sequential hypothermic and normothermic machine perfusion enables safe transplantation of high-risk donor livers. Am. J. Transplant. 2022, 22, 1658–1670. [Google Scholar] [CrossRef]
- Mergental, H.; Laing, R.W.; Kirkham, A.J.; Perera, M.T.P.R.; Boteon, Y.L.; Attard, J.; Barton, D.; Curbishley, S.; Wilkhu, M.; Neil, D.A.H.; et al. Transplantation of discarded livers following viability testing with normothermic machine perfusion. Nat. Commun. 2020, 11, 2939. [Google Scholar] [CrossRef]
- Wisel, S.A.; Steggerda, J.A.; Kim, I.K. Use of Machine Perfusion in the United States Increases Organ Utilization and Improves DCD Graft Survival in Liver Transplantation. Transplant. Direct. 2024, 10, e1726. [Google Scholar] [CrossRef]
- Garzali, I.U.; Aloun, A.; Abuzeid, E.E.D.; Sheshe, A.A. Early outcome of machine perfusion vs static cold storage of liver graft: A systemic review and meta-analysis of randomized controlled trials. Hepatol. Forum 2024, 5, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Jaber, F.; Abuelazm, M.; Soliman, Y.; Madi, M.; Abusuilik, H.; Mazen Amin, A.; Saeed, A.; Gowaily, I.; Abdelazeem, B.; Rana, A.; et al. Machine perfusion strategies in liver transplantation: A systematic review, pairwise, and network meta-analysis of randomized controlled trials. Liver Transplant. 2025, 31, 596–615. [Google Scholar] [CrossRef] [PubMed]
- Tingle, S.J.; Dobbins, J.J.; Thompson, E.R.; Figueiredo, R.S.; Mahendran, B.; Pandanaboyana, S.; Wilson, C. Machine perfusion in liver transplantation. Cochrane Database Syst. Rev. 2023, 9, CD014685. [Google Scholar] [CrossRef] [PubMed]
- Risbey, C.W.G.; Thomas, C.; Niu, A.; Liu, K.; Crawford, M.; Pulitano, C. Hypothermic Oxygenated machine PErfusion for high-risk liver grafts for transplantation: A systematic review and meta-analysis. Artif. Organs 2024, 48, 1085–1099. [Google Scholar] [CrossRef]
- Viana, P.; Castillo-Flores, S.; Mora, M.M.R.; Cabral, T.D.D.; Martins, P.N.; Kueht, M., II; Faria, I. Normothermic Machine Perfusion vs. Static Cold Storage in Liver Transplantation: A Systematic Review and Meta-Analysis. Artif. Organs 2025, 49, 945–954. [Google Scholar] [CrossRef]
- Quintini, C.; Martins, P.N.; Shah, S.; Killackey, M.; Reed, A.; Guarrera, J.; Axelrod, D.A.; American Society of Transplant Surgeons Standards Committee. Implementing an innovated preservation technology: The American Society of Transplant Surgeons’ (ASTS) Standards Committee White Paper on Ex Situ Liver Machine Perfusion. Am. J. Transplant. 2018, 18, 1865–1874. [Google Scholar] [CrossRef]
- Krendl, F.J.; Faria, I.; Singh, J.; Oberhuber, R.; Martins, P.N. Machine Perfusion Liver Preservation: Highlights from the International Liver Transplant Society 2024. Artif. Organs 2025, 49, 911–916. [Google Scholar] [CrossRef]
- Coquelle, A.; Tzedakis, S.; Vazeux, C.; Wautier, A.; Chebaro, A.; Merdrignac, A.; Desfourneaux, V.; Robin, F.; Sulpice, L.; Boudjema, K.; et al. Long-term outcomes of hypothermic oxygenated machine perfusion in extended criteria donor liver transplantation. Br. J. Surg. 2025, 112, znaf202. [Google Scholar] [CrossRef]
- Torri, F.; Balzano, E.; Melandro, F.; Maremmani, P.; Bertini, P.; Lo Pane, P.; Masini, M.; Rotondo, M.I.; Babboni, S.; Del Turco, S.; et al. Sequential Normothermic Regional Perfusion and End-ischemic Ex Situ Machine Perfusion Allow the Safe Use of Very Old DCD Donors in Liver Transplantation. Transplantation 2024, 108, 1394–1402. [Google Scholar] [CrossRef]
- Jochmans, I.; Hessheimer, A.J.; Neyrinck, A.P.; Paredes, D.; Bellini, M.I.; Dark, J.H.; Kimenai, H.J.A.N.; Pengel, L.H.M.; Watson, C.J.E.; ESOT Workstream 04 of the TLJ (Transplant Learning Journey) project. Consensus statement on normothermic regional perfusion in donation after circulatory death: Report from the European Society for Organ Transplantation’s Transplant Learning Journey. Transpl. Int. 2021, 34, 2019–2030. [Google Scholar] [CrossRef]
- American College of Physicians. Ethics, Determination of Death, and Organ Transplantation in Normothermic Regional Perfusion (NRP) with Controlled Donation After Circulatory Determination of Death (cDCD): American College of Physicians Statement of Concern; ACP: Philadelphia, PA, USA, 2021. [Google Scholar]
- Wall, A.E.; Merani, S.; Batten, J.; Lonze, B.; Mekeel, K.; Nurok, M.; Prinz, J.; Gil, J.; Pomfret, E.A.; Guarrera, J.V. American Society of Transplant Surgeons Normothermic Regional Perfusion Standards: Ethical, Legal, and Operational Conformance. Transplantation 2024, 108, 1655–1659. [Google Scholar] [CrossRef]
- Parent, B.; Caplan, A.; Moazami, N.; Montgomery, R.A. Regarding normothermic regional perfusion: Arguing by insistence is not a strong argument. Am. J. Transplant. 2022, 22, 1729–1730. [Google Scholar] [CrossRef]
- Lau, N.S.; Ly, M.; Dennis, C.; Liu, K.; Kench, J.; Crawford, M.; Pulitano, C. Long-term normothermic perfusion of human livers for longer than 12 days. Artif. Organs 2022, 46, 2504–2510. [Google Scholar] [CrossRef]
- Schlegel, A.; Mergental, H.; Fondevila, C.; Porte, R.J.; Friend, P.J.; Dutkowski, P. Machine perfusion of the liver and bioengineering. J. Hepatol. 2023, 78, 1181–1198. [Google Scholar] [CrossRef]




| HMP/HOPE | NMP | NRP | COR | |
|---|---|---|---|---|
| General concept | Hypothermic, oxygenated perfusion that focuses on mitochondrial protection | Ex vivo normothermic perfusion maintaining near-physiologic metabolism for assessment/conditioning | In situ regional perfusion at normothermia, often pre-transplant, aims to extend viability in situ | Transitional, controlled rewarming with oxygenation between HOPE and NMP |
| Temperature | 4–12 °C | 35–38 °C | 35–37 °C | 12–35 °C |
| Viability criteria | Transaminases, LDH or lactate levels; FMN. | Functional metabolism and hemodynamics. | Functional viability indicators in situ. | Early metabolic indicators at subnormothermia. |
| Advantages | Mitochondrial protection; reduced IRI; simpler logistics | Direct functional assessment; potential for conditioning and repair during long-term NMP | In situ viability assessment and extended preservation | Smoother transition; preserves oxygen delivery during warming |
| Disadvantages | Limited assessment of full metabolic function; limited interventions during perfusion | Resource-intensive; more complex to operate; risk of inflammatory response; longer perfusion times; requires blood products | Invasive/logistical complexity; ethical questions; in situ exposure may have limits on conditioning | Limited standardization; interpretation of intermediate markers is evolving |
| Future perspectives | Better standardization; development of reliable biomarkers; technological integration | Therapeutic conditioning; automation and AI | In situ functional conditioning; expanded adoption | Better standardization of sequential protocols; early-phase markers development |
| Marker/Parameter | Perfusion Type | Common Threshold/Time Window | Clinical Relevance |
|---|---|---|---|
| Lactate clearance | NMP | <2.5 mmol/L, within 2–3 h | Hepatocellular metabolic activity |
| Bile volume | NMP | >10 mL in 2–4 h | Billiar viability |
| Bile pH | NMP | >7.4 during perfusion | Cholangiocellular integrity |
| Bile bicarbonate | NMP | >18–20 mmol/L | Cholangiocyte transport activity |
| Bile glucose | NMP | Lower than perfusate glucose | Intact biliary epithelium |
| Hemodynamic stability | NMP/HMP | Stable flows with physiological pressure | Vascular integrity |
| FMN release | HOPE | Early rise within 5 min is a negative predictor | Mitochondrial injury, graft loss risk |
| Region/Country | Status of NRP | Notes |
|---|---|---|
| Spain, Italy, UK | Routine, national protocol | Prospective multicenter evidence; part of standard DCD practice |
| France, Belgium, Netherlands | Permitted, variable adoption | Defined within DCD framework, but regional uptake differs |
| Austria, Denmark, Sweden | Pilot/limited | Small single-center experiences |
| Germany, Switzerland | Not routinely used but there is ongoing discussion | Legal/ethical constraints; definition of death precludes in situ reperfusion |
| East Europe, Asia, South America | Unclear, but evolving in some countries | No clear regulatory basis; exploratory phases in most centers |
| USA | Adopted and piloted at multiple centers, but case volume is small | No single national standard governing NRP; ongoing debate on ethical and legal issues |
| Greece, Slovakia, Bulgaria, Slovenia | No documented NRP cases in public sources | Implementation of NRP depends on evolution of DCD programs |
| Croatia | No DCD program by now No LMP implementation | Initial phase of needs assessment; multidisciplinary dialogs recently started |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romic, I.; Mijatovic, D.; Petrovic, I.; Vrbanovic Mijatovic, V.; Pavlek, G.; Strajher, I.M.; Silic, V.; Jericevic, K.; Kolak, J.; Basic, J.; et al. Liver Machine Perfusion: Past, Present and Future Directions. Biomedicines 2025, 13, 2729. https://doi.org/10.3390/biomedicines13112729
Romic I, Mijatovic D, Petrovic I, Vrbanovic Mijatovic V, Pavlek G, Strajher IM, Silic V, Jericevic K, Kolak J, Basic J, et al. Liver Machine Perfusion: Past, Present and Future Directions. Biomedicines. 2025; 13(11):2729. https://doi.org/10.3390/biomedicines13112729
Chicago/Turabian StyleRomic, Ivan, Davor Mijatovic, Igor Petrovic, Vilena Vrbanovic Mijatovic, Goran Pavlek, Iva Martina Strajher, Vanja Silic, Karmen Jericevic, Juraj Kolak, Josip Basic, and et al. 2025. "Liver Machine Perfusion: Past, Present and Future Directions" Biomedicines 13, no. 11: 2729. https://doi.org/10.3390/biomedicines13112729
APA StyleRomic, I., Mijatovic, D., Petrovic, I., Vrbanovic Mijatovic, V., Pavlek, G., Strajher, I. M., Silic, V., Jericevic, K., Kolak, J., Basic, J., Barta, L., & Silovski, H. (2025). Liver Machine Perfusion: Past, Present and Future Directions. Biomedicines, 13(11), 2729. https://doi.org/10.3390/biomedicines13112729

