Insights from the Evolution of Coagulation: A New Perspective on Anti-Inflammatory Strategies in the ICU—Focus on the Contact Activation System
Abstract
1. Evolution of the Coagulation System: From Hemostasis to Non-Self Recognition
1.1. Coagulation in Early-Diverging Animals
1.2. From Land to Sea: FXII’s Role in Non-Self Recognition
2. Composition of CAS and KKS
2.1. Coagulation Factor XII
2.2. The FXII–αFXIIa–FXIa Axis
2.3. The FXII–βFXIIa–KKS Axis
3. Significance of CAS in Sepsis
3.1. FXII and Immunothrombosis: The FXII–uPAR Axis
3.2. Hereditary Angioedema and the Kallikrein-Kinin System (KKS) Storm
3.3. Pathogen Exploitation of KKS Activation Facilitates Virulence
3.4. FXII Responses to Altered Self: Implications for Extracorporeal Organ Support
3.5. Non-Coagulation Functions of Factors in the Contact Activation System
4. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doolittle, R.F. The evolution of vertebrate blood coagulation: A case of Yin and Yang. Thromb. Haemost. 1993, 70, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Cerenius, L.; Söderhäll, K. Coagulation in invertebrates. J. Innate Immun. 2011, 3, 3–8. [Google Scholar] [CrossRef]
- Jiang, Y.; Doolittle, R.F. The evolution of vertebrate blood coagulation as viewed from a comparison of puffer fish and sea squirt genomes. Proc. Natl. Acad. Sci. USA 2003, 100, 7527–7532. [Google Scholar] [CrossRef] [PubMed]
- Doolittle, R.F. Coagulation in vertebrates with a focus on evolution and inflammation. J. Innate Immun. 2011, 3, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Davidson, C.J.; Hirt, R.P.; Lal, K.; Snell, P.; Elgar, G.; Tuddenham, E.G.; McVey, J.H. Molecular evolution of the vertebrate blood coagulation network. Thromb. Haemost. 2003, 89, 420–428. [Google Scholar] [CrossRef]
- Doolittle, R.F.; Jiang, Y.; Nand, J. Genomic evidence for a simpler clotting scheme in jawless vertebrates. J. Mol. Evol. 2008, 66, 185–196. [Google Scholar] [CrossRef]
- Davidson, C.J.; Tuddenham, E.G.; McVey, J.H. 450 million years of hemostasis. J. Thromb. Haemost. 2003, 1, 1487–1494. [Google Scholar] [CrossRef]
- Opal, S.M. Phylogenetic and functional relationships between coagulation and the innate immune response. Crit. Care Med. 2000, 28 (Suppl. 9), S77–S80. [Google Scholar] [CrossRef]
- Ponczek, M.B.; Bijak, M.Z.; Nowak, P.Z. Evolution of thrombin and other hemostatic proteases by survey of protochordate, hemichordate, and echinoderm genomes. J. Mol. Evol. 2012, 74, 319–331. [Google Scholar] [CrossRef]
- Gailani, D.; Renné, T. The intrinsic pathway of coagulation: A target for treating thromboembolic disease? J. Thromb. Haemost. 2007, 5, 1106–1112. [Google Scholar] [CrossRef]
- Cooley, B.C. The dirty side of the intrinsic pathway of coagulation. Thromb. Res. 2016, 145, 159–160. [Google Scholar] [CrossRef]
- Raghunathan, V.; Zilberman-Rudenko, J.; Olson, S.R.; Lupu, F.; McCarty, O.J.T.; Shatzel, J.J. The contact pathway and sepsis. Res. Pract. Thromb. Haemost. 2019, 3, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Krem, M.M.; Di Cera, E. Evolution of enzyme cascades from embryonic development to blood coagulation. Trends Biochem. Sci. 2002, 27, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.L.; Xia, J.M.; Wang, J.S.; Lin, D.H.; Yang, X.W. Metabolomic Investigations on Nesterenkonia flava Revealed Significant Differences between Marine and Terrestrial Actinomycetes. Mar. Drugs 2018, 16, 356. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Gu, L.; Guo, B.; Rong, W.; Xu, S.; Yang, G.; Ren, W. Molecular evolution of wound healing-related genes during cetacean secondary aquatic adaptation. Integr. Zool. 2024, 19, 898–912. [Google Scholar] [CrossRef]
- Huelsmann, M.; Hecker, N.; Springer, M.S.; Gatesy, J.; Sharma, V.; Hiller, M. Genes lost during the transition from land to water in cetaceans highlight genomic changes associated with aquatic adaptations. Sci. Adv. 2019, 5, eaaw6671. [Google Scholar] [CrossRef]
- Maas, C.; Oschatz, C.; Renné, T. The plasma contact system 2.0. Semin. Thromb. Hemost. 2011, 37, 375–381. [Google Scholar] [CrossRef]
- Shamanaev, A.; Litvak, M.; Ivanov, I.; Srivastava, P.; Sun, M.F.; Dickeson, S.K.; Kumar, S.; He, T.Z.; Gailani, D. Factor XII Structure-Function Relationships. Semin. Thromb. Hemost. 2024, 50, 937–952. [Google Scholar] [CrossRef]
- Schousboe, I.; Thomsen, P.; van Deurs, B. Factor XII binding to endothelial cells depends on caveolae. Eur. J. Biochem. 2004, 271, 2998–3005. [Google Scholar] [CrossRef]
- de Maat, S.; Maas, C. Factor XII: Form determines function. J. Thromb. Haemost. 2016, 14, 1498–1506. [Google Scholar] [CrossRef]
- Drulyte, I.; Ghai, R.; Ow, S.Y.; Kapp, E.A.; Quek, A.J.; Panousis, C.; Wilson, M.J.; Nash, A.D.; Pelzing, M. Structural basis for the inhibition of βFXIIa by garadacimab. Structure 2024, 32, 1705–1710.e3. [Google Scholar] [CrossRef]
- Frunt, R.; El Otmani, H.; Smits, S.; Clark, C.C.; Maas, C. Factor XII contact activation can be prevented by targeting 2 unique patches in its epidermal growth factor-like 1 domain with a nanobody. J. Thromb. Haemost. 2024, 22, 2562–2575. [Google Scholar] [CrossRef]
- Konrath, S.; Mailer, R.K.; Renné, T. Mechanism, Functions, and Diagnostic Relevance of FXII Activation by Foreign Surfaces. Hamostaseologie 2021, 41, 489–501. [Google Scholar] [CrossRef]
- Rezvani-Sharif, A.; Lioe, H.; Dower, S.K.; Pelzing, M.; Panousis, C.; Harvie, D.J.E.; Muir, I.L. A mechanistic model of in vitro plasma activation to evaluate therapeutic kallikrein-kinin system inhibitors. PLoS Comput. Biol. 2024, 20, e1012552. [Google Scholar] [CrossRef] [PubMed]
- Ponczek, M.B. High Molecular Weight Kininogen: A Review of the Structural Literature. Int. J. Mol. Sci. 2021, 22, 13370. [Google Scholar] [CrossRef] [PubMed]
- Motta, G.; Juliano, L.; Chagas, J.R. Human plasma kallikrein: Roles in coagulation, fibrinolysis, inflammation pathways, and beyond. Front. Physiol. 2023, 14, 1188816. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.K.; Zhang, H.T. Function and structure of bradykinin receptor 2 for drug discovery. Acta Pharmacol. Sin. 2023, 44, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Du, J.; Tan, X.; Chen, H.; Cong, B. Bradykinin attenuates endothelial-mesenchymal transition following cardiac ischemia-reperfusion injury. Eur. J. Pharmacol. 2024, 971, 176556. [Google Scholar] [CrossRef]
- Theobald, D.; de Castro Braz, L.E.; Akula, S.M.; Eells, J.B.; Sriramula, S. Inhibition of kinin B1 receptor alleviates SARS-CoV-2-induced long-lasting cardiovascular complications. Am. J. Physiol. Heart Circ. Physiol. 2025, 328, H711–H718. [Google Scholar] [CrossRef]
- Rex, D.A.B.; Vaid, N.; Deepak, K.; Dagamajalu, S.; Prasad, T.S.K. A comprehensive review on current understanding of bradykinin in COVID-19 and inflammatory diseases. Mol. Biol. Rep. 2022, 49, 9915–9927. [Google Scholar] [CrossRef]
- Quintão, N.L.M.; Rocha, L.W.; da Silva, G.F.; Paszcuk, A.F.; Manjavachi, M.N.; Bento, A.F.; da Silva, K.A.B.S.; Campos, M.M.; Calixto, J.B. The kinin B1 and B2 receptors and TNFR1/p55 axis on neuropathic pain in the mouse brachial plexus. Inflammopharmacology 2019, 27, 573–586, Erratum in Inflammopharmacology 2019, 27, 587–588. https://doi.org/10.1007/s10787-019-00590-9. [Google Scholar] [CrossRef]
- Sun, D.P.; Lee, Y.W.; Chen, J.T.; Lin, Y.W.; Chen, R.M. The Bradykinin-BDKRB1 Axis Regulates Aquaporin 4 Gene Expression and Consequential Migration and Invasion of Malignant Glioblastoma Cells via a Ca2+-MEK1-ERK1/2-NF-κB Mechanism. Cancers 2020, 12, 667. [Google Scholar] [CrossRef]
- Shi, R.; Yuan, K.; Hu, B.; Sang, H.; Zhou, L.; Xie, Y.; Xu, L.; Cao, Q.; Chen, X.; Zhao, L.; et al. Tissue Kallikrein Alleviates Cerebral Ischemia-Reperfusion Injury by Activating the B2R-ERK1/2-CREB-Bcl-2 Signaling Pathway in Diabetic Rats. Oxid. Med. Cell. Longev. 2016, 2016, 1843201. [Google Scholar] [CrossRef]
- Tsou, P.S.; Ali, R.A.; Lu, C.; Sule, G.; Carmona-Rivera, C.; Lucotti, S.; Ikari, Y.; Wu, Q.; Campbell, P.L.; Gurrea-Rubio, M.; et al. Soluble CD13 is a potential mediator of neutrophil-induced thrombogenic inflammation in SARS-CoV-2 infection. JCI Insight 2025, 10, e184975. [Google Scholar] [CrossRef]
- Marceau, F.; Regoli, D. Bradykinin receptor ligands: Therapeutic perspectives. Nat. Rev. Drug Discov. 2004, 3, 845–852. [Google Scholar] [CrossRef]
- Schmaier, A.H. The contact activation and kallikrein/kinin systems: Pathophysiologic and physiologic activities. J. Thromb. Haemost. 2016, 14, 28–39. [Google Scholar] [CrossRef]
- Kaplan, A.P.; Joseph, K. Pathogenic mechanisms of bradykinin mediated diseases: Dysregulation of an innate inflammatory pathway. Adv. Immunol. 2014, 121, 41–89. [Google Scholar] [CrossRef] [PubMed]
- Elwakiel, A.; Gupta, D.; Rana, R.; Manoharan, J.; Al-Dabet, M.M.; Ambreen, S.; Fatima, S.; Zimmermann, S.; Mathew, A.; Li, Z.; et al. Factor XII signaling via uPAR-integrin β1 axis promotes tubular senescence in diabetic kidney disease. Nat. Commun. 2024, 15, 7963. [Google Scholar] [CrossRef] [PubMed]
- Blasi, F.; Carmeliet, P. uPAR: A versatile signalling orchestrator. Nat. Rev. Mol. Cell Biol. 2002, 3, 932–943. [Google Scholar] [CrossRef] [PubMed]
- Stavrou, E.X.; Fang, C.; Bane, K.L.; Long, A.T.; Naudin, C.; Kucukal, E.; Gandhi, A.; Brett-Morris, A.; Mumaw, M.M.; Izadmehr, S.; et al. Factor XII and uPAR upregulate neutrophil functions to influence wound healing. J. Clin. Investig. 2018, 128, 944–959. [Google Scholar] [CrossRef]
- LaRusch, G.A.; Mahdi, F.; Shariat-Madar, Z.; Adams, G.; Sitrin, R.G.; Zhang, W.M.; McCrae, K.R.; Schmaier, A.H. Factor XII stimulates ERK1/2 and Akt through uPAR, integrins, and the EGFR to initiate angiogenesis. Blood 2010, 115, 5111–5120. [Google Scholar] [CrossRef]
- Shariati, M.; Meric-Bernstam, F. Targeting AKT for cancer therapy. Expert Opin. Investig. Drugs 2019, 28, 977–988. [Google Scholar] [CrossRef]
- Henderson, L.M.; Figueroa, C.D.; Müller-Esterl, W.; Bhoola, K.D. Assembly of contact-phase factors on the surface of the human neutrophil membrane. Blood 1994, 84, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Renné, T.; Stavrou, E.X. Roles of Factor XII in Innate Immunity. Front. Immunol. 2019, 10, 2011. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, H.; Qu, M.; Nan, K.; Cao, H.; Cata, J.P.; Chen, W.; Miao, C. Review: The Emerging Role of Neutrophil Extracellular Traps in Sepsis and Sepsis-Associated Thrombosis. Front. Cell. Infect. Microbiol. 2021, 11, 653228. [Google Scholar] [CrossRef]
- Saravanan, R.; Choong, Y.K.; Lim, C.H.; Lim, L.M.; Petrlova, J.; Schmidtchen, A. Cell-Free DNA Promotes Thrombin Autolysis and Generation of Thrombin-Derived C-Terminal Fragments. Front. Immunol. 2021, 12, 593020. [Google Scholar] [CrossRef]
- Oehmcke, S.; Mörgelin, M.; Herwald, H. Activation of the human contact system on neutrophil extracellular traps. J. Innate Immun. 2009, 1, 225–230. [Google Scholar] [CrossRef]
- Dinc, R.; Ardic, N. Relationship Between Neutrophil Extracellular Traps and Venous Thromboembolism: Pathophysiological and Therapeutic Role. Br. J. Hosp. Med. 2025, 86, 5. [Google Scholar] [CrossRef]
- Yu, S.; Sui, Y.; Wang, J.; Li, Y.; Li, H.; Cao, Y.; Chen, L.; Jiang, L.; Yuan, C.; Huang, M. Crystal structure and cellular functions of uPAR dimer. Nat. Commun. 2022, 13, 1665. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, H.; Wang, Y.; Gu, Y. Activated NETosis of bone marrow neutrophils up-regulates macrophage osteoclastogenesis via cGAS-STING/AKT2 pathway to promote osteoporosis. Exp. Cell Res. 2025, 446, 114477. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Junho, C.V.C.; Bernhard, S.M.; Schindewolf, M.; Noels, H.; Döring, Y. NETs-Induced Thrombosis Impacts on Cardiovascular and Chronic Kidney Disease. Circ. Res. 2023, 132, 933–949. [Google Scholar] [CrossRef] [PubMed]
- Sinnathamby, E.S.; Issa, P.P.; Roberts, L.; Norwood, H.; Malone, K.; Vemulapalli, H.; Ahmadzadeh, S.; Cornett, E.M.; Shekoohi, S.; Kaye, A.D. Hereditary Angioedema: Diagnosis, Clinical Implications, and Pathophysiology. Adv. Ther. 2023, 40, 814–827. [Google Scholar] [CrossRef] [PubMed]
- Csuka, D.; Veszeli, N.; Varga, L.; Prohászka, Z.; Farkas, H. The role of the COB—Plement system in hereditary angioedema. Mol. Immunol. 2017, 89, 59–68. [Google Scholar] [CrossRef]
- Karnaukhova, E. C1-Inhibitor: Structure, Functional Diversity and Therapeutic Development. Curr. Med. Chem. 2022, 29, 467–488. [Google Scholar] [CrossRef]
- Bjorkqvist, J.; Sala-Cunill, A.; Renne, T. Hereditary Angioedema: A Bradykinin Mediated Swelling Disorder. Thromb. Haemost. 2013, 109, 368–374. [Google Scholar] [CrossRef]
- Memon, R.J.; Tiwari, V. Angioedema. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Beyerstedt, S.; Casaro, E.B.; Rangel, É.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 905–919. [Google Scholar] [CrossRef]
- Heurich, A.; Hofmann-Winkler, H.; Gierer, S.; Liepold, T.; Jahn, O.; Pöhlmann, S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 2014, 88, 1293–1307. [Google Scholar] [CrossRef]
- Bourgonje, A.R.; Abdulle, A.E.; Timens, W.; Hillebrands, J.L.; Navis, G.J.; Gordijn, S.J.; Bolling, M.C.; Dijkstra, G.; Voors, A.A.; Osterhaus, A.D. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol. 2020, 251, 228–248. [Google Scholar] [CrossRef]
- van de Veerdonk, F.L.; Netea, M.G.; van Deuren, M.; van der Meer, J.W.; de Mast, Q.; Brüggemann, R.J.; van der Hoeven, H. Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome. eLife 2020, 9, e57555. [Google Scholar] [CrossRef]
- Jin, H.Y.; Song, B.; Oudit, G.Y.; Davidge, S.T.; Yu, H.M.; Jiang, Y.Y.; Gao, P.J.; Zhu, D.L.; Ning, G.; Kassiri, Z.; et al. ACE2 deficiency enhances angiotensin II-mediated aortic profilin-1 expression, inflammation and peroxynitrite production. PLoS ONE 2012, 7, e38502. [Google Scholar] [CrossRef]
- Wysocki, J.; Ortiz-Melo, D.I.; Mattocks, N.K.; Xu, K.; Prescott, J.; Evora, K.; Ye, M.; Sparks, M.A.; Haque, S.K.; Batlle, D.; et al. ACE2 deficiency increases NADPH-mediated oxidative stress in the kidney. Physiol. Rep. 2014, 2, e00264. [Google Scholar] [CrossRef]
- Fodor, A.; Tiperciuc, B.; Login, C.; Orasan, O.H.; Lazar, A.L.; Buchman, C.; Hanghicel, P.; Sitar-Taut, A.; Suharoschi, R.; Vulturar, R. Endothelial Dysfunction, Inflammation, and Oxidative Stress in COVID-19-Mechanisms and Therapeutic Targets. Oxid. Med. Cell. Longev. 2021, 2021, 8671713. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, A.; Iqbal, M.S.; Sultan, S.; Alhuthali, R.A.; Alshubaili, D.I.; Sayyam, R.S.; Abyad, L.M.; Qasem, A.H.; Arbaeen, A.F. Dysregulated Bradykinin: Mystery in the Pathogenesis of COVID-19. Mediat. Inflamm. 2022, 2022, 7423537. [Google Scholar] [CrossRef]
- van de Veerdonk, F.L.; Kouijzer, I.J.E.; de Nooijer, A.H.; van der Hoeven, H.G.; Maas, C.; Netea, M.G.; Brüggemann, R.J.M. Outcomes Associated with Use of a Kinin B2 Receptor Antagonist Among Patients with COVID-19. JAMA Netw. Open 2020, 3, e2017708. [Google Scholar] [CrossRef] [PubMed]
- Urwyler, P.; Leimbacher, M.; Charitos, P.; Moser, S.; Heijnen, I.A.F.M.; Trendelenburg, M.; Thoma, R.; Sumer, J.; Camacho-Ortiz, A.; Bacci, M.R.; et al. Three-Day Icatibant on Top of Standard Care in Patients with Coronavirus Disease 2019 Pneumonia: A Randomized, Open-Label, Phase 2, Proof-of-Concept Trial. Clin. Infect. Dis. 2023, 76, 1784–1792. [Google Scholar] [CrossRef]
- Urwyler, P.; Leimbacher, M.; Charitos, P.; Moser, S.; Heijnen, I.A.F.M.; Trendelenburg, M.; Thoma, R.; Sumer, J.; Camacho-Ortiz, A.; Bacci, M.R.; et al. Recombinant C1 inhibitor in the prevention of severe COVID-19: A randomized, open-label, multi-center phase IIa trial. Front. Immunol. 2023, 14, 1255292. [Google Scholar] [CrossRef]
- Papi, A.; Stapleton, R.D.; Shore, P.M.; Bica, M.A.; Chen, Y.; Larbig, M.; Welte, T. Efficacy and Safety of Garadacimab in Combination with Standard of Care Treatment in Patients with Severe COVID-19. Lung 2023, 201, 159–170. [Google Scholar] [CrossRef]
- Lira, A.L.; Puy, C.; Shatzel, J.J.; Lupu, F.; McCarty, O.J.T. Bacterial infection and activation of the contact pathway of coagulation. Blood Vessel. Thromb. Hemost. 2025, 2, 100091. [Google Scholar] [CrossRef]
- Nickel, K.F.; Jämsä, A.; Konrath, S.; Papareddy, P.; Butler, L.M.; Stavrou, E.X.; Frye, M.; Gelderblom, M.; Nieswandt, B.; Hammerschmidt, S.; et al. Factor XII-driven coagulation traps bacterial infections. J. Exp. Med. 2025, 222, e20250049. [Google Scholar] [CrossRef]
- McAdow, M.; Missiakas, D.M.; Schneewind, O. Staphylococcus aureus secretes coagulase and von Willebrand factor binding protein to modify the coagulation cascade and establish host infections. J. Innate Immun. 2012, 4, 141–148. [Google Scholar] [CrossRef]
- Cheng, A.G.; McAdow, M.; Kim, H.K.; Bae, T.; Missiakas, D.M.; Schneewind, O. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog. 2010, 6, e1001036. [Google Scholar] [CrossRef]
- Imamura, T.; Pike, R.N.; Potempa, J.; Travis, J. Pathogenesis of periodontitis: A major arginine-specific cysteine proteinase from Porphyromonas gingivalis induces vascular permeability enhancement through activation of the kallikrein/kinin pathway. J. Clin. Investig. 1994, 94, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Rapala-Kozik, M.; Bras, G.; Chruscicka, B.; Karkowska-Kuleta, J.; Sroka, A.; Herwald, H.; Nguyen, K.-A.; Eick, S.; Potempa, J.; Kozik, A. Adsorption of components of the plasma kinin-forming system on the surface of Porphyromonas gingivalis involves gingipains as the major docking platforms. Infect. Immun. 2011, 79, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Oehmcke, S.; Shannon, O.; Mörgelin, M.; Herwald, H. Streptococcal M proteins and their role as virulence determinants. Clin. Chim. Acta 2010, 411, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, S.; Vardon-Bounes, F.; Buléon, M.; Guilbeau-Frugier, C.; Séguelas, M.H.; Conil, J.M.; Girolami, J.P.; Tack, I.; Minville, V. Kinin B1 receptor: A potential therapeutic target in sepsis-induced vascular hyperpermeability. J. Transl. Med. 2020, 18, 174. [Google Scholar] [CrossRef]
- von Brühl, M.L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Köllnberger, M.; et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 2012, 209, 819–835. [Google Scholar] [CrossRef]
- Kim, J.E.; Yoo, H.J.; Gu, J.Y.; Kim, H.K. Histones Induce the Procoagulant Phenotype of Endothelial Cells through Tissue Factor Up-Regulation and Thrombomodulin Down-Regulation. PLoS ONE 2016, 11, e0156763. [Google Scholar] [CrossRef]
- Berends, E.T.; Horswill, A.R.; Haste, N.M.; Monestier, M.; Nizet, V.; von Köckritz-Blickwede, M. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J. Innate Immun. 2010, 2, 576–586. [Google Scholar] [CrossRef]
- Meyers, S.; Crescente, M.; Verhamme, P.; Martinod, K. Staphylococcus aureus and Neutrophil Extracellular Traps: The Master Manipulator Meets Its Match in Immunothrombosis. Arterioscler. Thromb. Vasc. Biol. 2022, 42, 261–276. [Google Scholar] [CrossRef]
- Tweddell, J.S.; Kharnaf, M.; Zafar, F.; Riggs, K.W.; Reagor, J.A.; Monia, B.P.; Revenko, A.; Leino, D.G.; Owens, A.P.; Martin, J.K.; et al. Targeting the contact system in a rabbit model of extracorporeal membrane oxygenation. Blood Adv. 2023, 7, 1404–1417. [Google Scholar] [CrossRef]
- Kharnaf, M.; Zafar, F.; Hogue, S.; Rosenfeldt, L.; Cantrell, R.L.; Sharma, B.K.; Pearson, A.; Sprague, C.; Leino, D.; Abplanalp, W.A.; et al. Factor XII promotes the thromboinflammatory response in a rat model of venoarterial extracorporeal membrane oxygenation. J. Thorac. Cardiovasc. Surg. 2024, 168, e37–e53. [Google Scholar] [CrossRef]
- Moellmer, S.A.; Puy, C.; McCarty, O.J.T. Biology of factor XI. Blood 2024, 143, 1445–1454. [Google Scholar] [CrossRef] [PubMed]
- Lira, A.L.; Kohs, T.C.L.; Moellmer, S.A.; Shatzel, J.J.; McCarty, O.J.T.; Puy, C. Substrates, Cofactors, and Cellular Targets of Coagulation Factor XIa. Semin. Thromb. Hemost. 2024, 50, 962–969. [Google Scholar] [CrossRef]
- Puy, C.; Moellmer, S.A.; Pang, J.; Vu, H.H.; Melrose, A.R.; Lorentz, C.U.; Tucker, E.I.; Shatzel, J.J.; Keshari, R.S.; Lupu, F.; et al. Coagulation factor XI regulates endothelial cell permeability and barrier function In Vitro and In Vivo. Blood 2024, 144, 1821–1833. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Hashimoto, T.; Yamashita, T.; Hirano, K. Coagulation factor XI induces Ca2+ response and accelerates cell migration in vascular smooth muscle cells via proteinase-activated receptor 1. Am. J. Physiol. Cell Physiol. 2019, 316, C377–C392. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, D.; Pan, S.; Song, X. Coagulation Factor XII Is an Antibacterial Protein That Acts Against Bacterial Infection via Its Heavy Chain. Int. J. Mol. Sci. 2025, 26, 6009. [Google Scholar] [CrossRef]
- Badimon, J.J.; Escolar, G.; Zafar, M.U. Factor XI/XIa Inhibition: The Arsenal in Development for a New Therapeutic Target in Cardio-and Cerebrovascular Disease. J. Cardiovasc. Dev. Dis. 2022, 9, 437. [Google Scholar] [CrossRef]



| Drug Type | Representative Drug | Development Stage (as of 2022, Projected to 2025) | Developer | Main Applications (Thrombosis/Sepsis-Related) | Key Findings (2015–2022) |
|---|---|---|---|---|---|
| Antisense Oligonucleotide (ASO) | Fitusiran (AT977) | Phase II completed, Phase III ongoing | Sanofi/IONIS | AF stroke prevention, VTE, sickle cell disease stroke | Liver-targeted FXI knockdown, reduced VTE by 70%, low bleeding risk; Phase II trials since 2017. |
| Antisense Oligonucleotide (ASO) | IONIS-FXI Rx | Phase II completed | IONIS | Post-surgical VTE, ESRD dialysis thrombosis | 2015 knee replacement trial: VTE reduced to 4–27% (vs. 30% enoxaparin), no severe bleeding. |
| Small Molecule Inhibitor | Asundexian (BAY 2433334) | Phase II completed, Phase III initiated (OCEANIC) | Bayer | Stroke/AF prevention, post-MI thrombosis, potential sepsis inflammation | 2022 PACIFIC trial: 30% stroke risk reduction, 3–4% bleeding (vs. 2% placebo); Phase III recruiting to 2025. |
| Small Molecule Inhibitor | Milvexian (JNJ-70033093) | Phase II completed, Phase III planned | Janssen/BMS | Stroke/VTE prevention, cancer-associated thrombosis, sepsis DIC | 2021 AXIOMATIC trial: VTE reduced to 8–21% (vs. 21% enoxaparin), moderate bleeding at high doses. |
| Monoclonal Antibody | Abelacimab (MAA868) | Phase II completed, Phase III recruiting (MAGNOLIA/ASTER) | Anthos Therapeutics | AF stroke, cancer VTE, ECMO-related thrombosis | 2021 knee trial: VTE 4–13% (vs. 22% enoxaparin); Phase III vs. dabigatran to 2025. |
| Monoclonal Antibody | Osocimab (BAY 1213790) | Phase II completed | Bayer | Surgical VTE, ESRD dialysis | 2020 FOXTROT trial: superior to enoxaparin, low bleeding; 2022 ESRD trial results pending. |
| Other (Aptamer) | FELIAP | Preclinical | Research Institutions | Potential reversible FXIa inhibition, sepsis/inflammatory thrombosis | In vitro FXIa-FIX activation suppression; no clinical advancement post-2015, needs reversal agents. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Zhu, F. Insights from the Evolution of Coagulation: A New Perspective on Anti-Inflammatory Strategies in the ICU—Focus on the Contact Activation System. Biomedicines 2025, 13, 2726. https://doi.org/10.3390/biomedicines13112726
Wang R, Zhu F. Insights from the Evolution of Coagulation: A New Perspective on Anti-Inflammatory Strategies in the ICU—Focus on the Contact Activation System. Biomedicines. 2025; 13(11):2726. https://doi.org/10.3390/biomedicines13112726
Chicago/Turabian StyleWang, Ruihua, and Feng Zhu. 2025. "Insights from the Evolution of Coagulation: A New Perspective on Anti-Inflammatory Strategies in the ICU—Focus on the Contact Activation System" Biomedicines 13, no. 11: 2726. https://doi.org/10.3390/biomedicines13112726
APA StyleWang, R., & Zhu, F. (2025). Insights from the Evolution of Coagulation: A New Perspective on Anti-Inflammatory Strategies in the ICU—Focus on the Contact Activation System. Biomedicines, 13(11), 2726. https://doi.org/10.3390/biomedicines13112726

