Compensatory Failure of Autonomic Regulation in Phantom Limb Pain and Its Correlation with Maladaptive Plasticity: A Cross-Sectional HRV Study in Amputees
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Main Outcomes
2.3. Main Exposure
2.4. Covariates
2.5. Statistical Analyses
3. Results
3.1. Sample Characteristics and PLP-PLS Index—Group Comparisons
3.2. Univariate Analyses
3.3. Multivariate Analyses
3.4. PLP-PLS Index and HRV
3.5. PLP-PLS Index and Psychosocial Covariates
4. Discussion
Strengths and Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CAN | Central Autonomic Network |
| PLP | Phantom Limb Pain |
| PLP-PLS Index | Phantom Limb Pain-Phantom Limb Sensation Index |
| HF | High Frequency |
| HRV | Heart Rate Variability |
| LF | Low Frequency |
| pNN50 | Percentage of Successive Normal RR intervals >50 ms |
| RMSSD | Root Mean Square of Successive Differences |
| RRi | R-R interval |
| SDDN | Standard Deviation of NN Intervals |
References
- Erlenwein, J.; Diers, M.; Ernst, J.; Schulz, F.; Petzke, F. Clinical updates on phantom limb pain. PAIN Rep. 2021, 6, e888. [Google Scholar] [CrossRef] [PubMed]
- Flor, H. Phantom-limb pain: Characteristics, causes, and treatment. Lancet Neurol. 2002, 1, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, A.T.; Simis, M.; Fregni, F.; Battistella, L.R. Characterisation of Phantom Limb Pain in Traumatic Lower-Limb Amputees. Pain Res. Manag. 2021. [Google Scholar] [CrossRef]
- Andoh, J.; Diers, M.; Milde, C.; Frobel, C.; Kleinböhl, D.; Flor, H. Neural correlates of evoked phantom limb sensations. Biol. Psychol. 2017, 126, 89–97. [Google Scholar] [CrossRef]
- Granata, G.; Di Iorio, R.; Ilari, S.; Angeloni, B.M.; Tomasello, F.; Cimmino, A.T.; Carrarini, C.; Marrone, A.; Iodice, F. Phantom limb syndrome: From pathogenesis to treatment. A narrative review. Neurol. Sci. 2024, 45, 4741–4755. [Google Scholar] [CrossRef]
- Kikkert, S.; Johansen-Berg, H.; Tracey, I.; Makin, T.R. Reaffirming the link between chronic phantom limb pain and maintained missing hand representation. Cortex 2018, 106, 174–184. [Google Scholar] [CrossRef]
- Makin, T.R.; Scholz, J.; Filippini, N.; Slater, D.H.; Tracey, I.; Johansen-Berg, H. Phantom pain is associated with preserved structure and function in the former hand area. Nat. Commun. 2013, 4, 1570. [Google Scholar] [CrossRef]
- Bai, Y.; Pacheco-Barrios, K.; Pacheco-Barrios, N.; Liang, G.; Fregni, F. Neurocircuitry basis of motor cortex-related analgesia as an emerging approach for chronic pain management. Nat. Ment. Health 2024, 2, 496–513. [Google Scholar] [CrossRef]
- Foell, J.; Bekrater-Bodmann, R.; Diers, M.; Flor, H. Mirror therapy for phantom limb pain: Brain changes and the role of body representation. Eur. J. Pain 2014, 18, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Barrios, K.; Pinto, C.; Velez, F.S.; Duarte, D.; Gunduz, M.; Simis, M.; Gianlorenco, A.L.; Barouh, J.; Crandell, D.; Guidetti, M.; et al. Structural and functional motor cortex asymmetry in unilateral lower limb amputation with phantom limb pain. Clin. Neurophysiol. 2020, 131, 2375–2382. [Google Scholar] [CrossRef]
- Arslan, D. Interactions between the painful disorders and the autonomic nervous system. Ağrı 2022, 34, 155–165. [Google Scholar] [CrossRef]
- Benarroch, E.E. Pain-autonomic interactions. Neurol. Sci. 2006, 27 (Suppl. S2), s130–s133. [Google Scholar] [CrossRef]
- Cohen, S.P.; Gambel, J.M.; Raja, S.N.; Galvagno, S.J. The Contribution of Sympathetic Mechanisms to Postamputation Phantom and Residual Limb Pain: A Pilot Study. Pain 2011, 12, 859–867. [Google Scholar] [CrossRef]
- Boomgaardt, J.; Dastan, K.; Chan, T.; Shilling, A.; Abd-Etlsayed, A.; Kohan, L.J. An Algorithm Approach to Phantom Limb Pain. Pain Res. 2022, 15, 3349–3367. [Google Scholar] [CrossRef] [PubMed]
- Karcz, M.; Abd-Elsayed, A.; Chakravarthy, K.; Mansoor, A.; Strand, N.; Malinowski, M.; Latif, U.; Dickerson, D.; Suvar, T.; Lubenow, T.; et al. Pathophysiology of Pain and Mechanisms of Neuromodulation: A Narrative Review (A Neuron Project). J. Pain Res. 2024, 17, 3757–3790. [Google Scholar] [CrossRef] [PubMed]
- Moens, M.; Billet, B.; Molenberghs, G.; De Smedt, A.; Pilitsis, J.G.; De Vos, R.; Hanssens, K.; Billot, M.; Roulaud, M.; Rigoard, P.; et al. Heart rate variability is not suitable as a surrogate marker for pain intensity in patients with chronic pain. Pain 2023, 164, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [CrossRef] [PubMed]
- Chuang, C.-H.; Li, J.-Y.; King, J.-T.; Chen, W.-T.; Chen, S.-P.; Wang, Y.-F.; Liu, H.-Y.; Hsiao, F.-J.; Pan, L.-L.H.; Wang, S.-J.; et al. Abnormal heart rate variability and its application in predicting treatment efficacy in patients with chronic migraine: An exploratory study. Cephalalgia 2023, 43, 03331024231206781. [Google Scholar] [CrossRef]
- Meeus, M.; Goubert, D.; De Backer, F.; Struyf, F.; Hermans, L.; Coppieters, I.; De Wandele, I.; Da Silva, H.; Calders, P. Heart rate variability in patients with fibromyalgia and patients with chronic fatigue syndrome: A systematic review. Semin. Arthritis Rheum. 2013, 43, 279–287. [Google Scholar] [CrossRef]
- Zamunér, A.R.; Barbic, F.; Dipaola, F.; Bulgheroni, M.; Diana, A.; Atzeni, F.; Marchi, A.; Sarzi-Puttini, P.; Porta, A.; Furlan, R. Relationship between sympathetic activity and pain intensity in fibromyalgia. Clin. Exp. Rheumatol. 2015, 33 (Suppl. S88), S53–S57. [Google Scholar]
- Tan, G.; Dao, T.K.; Farmer, L.; Sutherland, R.J.; Gevirtz, R. Heart Rate Variability (HRV) and Posttraumatic Stress Disorder (PTSD): A Pilot Study. Appl. Psychophysiol. Biofeedback 2011, 36, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Kemp, A.H.; Quintana, D.S.; Gray, M.A.; Felmingham, K.L.; Brown, K.; Gatt, J.M. Impact of Depression and Antidepressant Treatment on Heart Rate Variability: A Review and Meta-Analysis. Biol. Psychiatry 2010, 67, 1067–1074. [Google Scholar] [CrossRef]
- Koenig, J.; Falvay, D.; Clamor, A.; Wagner, J.; Jarczok, M.N.; Ellis, R.J.; Weber, C.; Thayer, J.F. Pneumogastric (Vagus) Nerve Activity Indexed by Heart Rate Variability in Chronic Pain Patients Compared to Healthy Controls: A Systematic Review and Meta-Analysis. Pain Physician 2016, 19, E55–E78. [Google Scholar] [CrossRef]
- Cachadiña, E.S.; Garcia, P.G.; Da Luz, S.T.; Esteban, R.G.; Perez, O.B.; Orellana, J.N.; de la Rosa, F.B. Heart rate variability and phantom pain in male amputees: Application of linear and nonlinear methods. J. Rehabil. Res. Dev. 2013, 50, 449. [Google Scholar] [CrossRef]
- Amekran, Y.; Damoun, N.; El Hangouche, A.J. Analysis of frequency-domain heart rate variability using absolute versus normalized values: Implications and practical concerns. Front. Physiol. 2024, 15, 1470684. [Google Scholar] [CrossRef]
- Ortega-Márquez, J.; Garnier, J.; Mena, L.; Palagi Vigano, A.V.; Grützmacher, E.B.; Vallejos-Penaloza, G.; Costa, V.; Martinez-Magallanes, D.; Vaz de Macedo, A.; de Paula-Garcia, W.N.; et al. Clinical Characteristics Associated with the PLP-PLS Index, a New Potential Metric to Phenotype Phantom Limb Pain. Biomedicines 2024, 12, 2035. [Google Scholar] [CrossRef] [PubMed]
- Bursac, Z.; Gauss, C.H.; Williams, D.K.; Hosmer, D.W. Purposeful selection of variables in logistic regression. Source Code Biol. Med. 2008, 3, 17. [Google Scholar] [CrossRef]
- Thayer, J.F.; Hansen, A.L.; Saus-Rose, E.; Johnsen, B.H. Purposeful selection of variables in logistic regression. Ann. Behav. Med. 2009, 37, 141–153. [Google Scholar] [CrossRef]
- Urien, L.; Wang, J. Top-Down Cortical Control of Acute and Chronic Pain. Psychosom. Med. 2019, 81, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Thayer, J.F.; Khalsa, S.S.; Lane, R.D. The hierarchical basis of neurovisceral integration. Neurosci. Biobehav. Rev. 2017, 75, 274–296. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. Perseverative Thinking and Health: Neurovisceral Concomitants. Psychol. Health 2002, 17, 685–695. [Google Scholar] [CrossRef]
- Gibler, R.C.; Jastrowski Mano, K.E. Systematic Review of Autonomic Nervous System Functioning in Pediatric Chronic Pain. Clin. J. Pain 2021, 37, 281–294. [Google Scholar] [CrossRef]
- Williams, D.P.; Chelimsky, G.; McCabe, N.P.; Koenig, J.; Singh, P.; Janata, J.; Thayer, J.F.; Buffington, C.T.; Chelimsky, T.J. Effects of Chronic Pelvic Pain on Heart Rate Variability in Women. J. Urol. 2015, 194, 1289–1294. [Google Scholar] [CrossRef]
- Koenig, J.; Jarczok, M.N.; Warth, M.; Ellis, R.J.; Bach, C.; Hillecke, T.K.; Thayer, J.F. Body mass index is related to autonomic nervous system activity as measured by heart rate variability—A replication using short term measurements. J. Nutr. Health Aging 2014, 18, 300–302. [Google Scholar] [CrossRef] [PubMed]
- Gianlorenço, A.C.; Costa, V.; Fabris-Moraets, W.; Menacho, M.; Alves, L.G.; Martinez-Magallanes, D.; Fregni, F. Cluster analysis in fibromyalgia: A systematic review. Rheumatol. Int. 2024, 44, 2389–2402. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, G.J.M.; Pacheco-Barrios, K.; Fregni, F.J. High Body Mass Index Disrupts the Homeostatic Effects of Pain Inhibitory Control in the Symptomatology of Patients with Fibromyalgia. Pain 2024, 25, 104691. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, G.J.M.; Fregni, F.; Battistella, L.R.; Imamura, M. High Body Mass Index Disrupts the Homeostatic Relationship Between Pain Inhibitory Control and the Symptomatology in Patients with Knee Osteoarthritis—A Cross-Sectional Analysis from the DEFINE Study. NeuroSci 2025, 6, 14. [Google Scholar] [CrossRef]
- Imamura, M.; Gianloretnço, A.C.; Lacerda, G.J.M.; Battistella, L.R.; Fregni, F. Pain Pressure Threshold as a Non-Linear Marker of Neural Adaptation in Amputees: Evidence from the DEFINE Cohort. NeuroSci 2025, 6, 17. [Google Scholar] [CrossRef]
- Adlan, A.M.; van Zanten, J.J.V.; Lip, G.Y.; Paton, J.F.; Kitas, G.D.; Fisher, J.P. Cardiovascular autonomic regulation, inflammation and pain in rheumatoid arthritis. Auton. Neurosci. 2017, 208, 137–145. [Google Scholar] [CrossRef]
- Tracy, L.M.; Ioannou, L.; Baker, K.S.; Gibson, S.J.; Georgiou-Karistianis, N.; Giummarra, M.J. Meta-analytic evidence for decreased heart rate variability in chronic pain implicating parasympathetic nervous system dysregulation. Pain 2016, 157, 7–29. [Google Scholar] [CrossRef]
- Billet, B.; Goudman, L.; Rigoard, P.; Billot, M.; Roulaud, M.; Verstraete, S.; Nagels, W.; Moens, M. Effect of neuromodulation for chronic pain on the autonomic nervous system: A systematic review. BJA Open 2024, 11, 100305. [Google Scholar] [CrossRef]
- Forte, G.; Troisi, G.; Pazzaglia, M.; De Pascalis, V.; Casagrande, M. Heart Rate Variability and Pain: A Systematic Review. Brain Sci. 2022, 12, 153. [Google Scholar] [CrossRef]
- Ermis, N.; Gullu, H.; Caliskan, M.; Unsal, A.; Kulaksizoglu, M.; Muderrisoglu, H.J. Gabapentin therapy improves heart rate variability in diabetic patients with peripheral neuropathy. J. Diabetes Complicat. 2010, 24, 229–233. [Google Scholar] [CrossRef]
- Zeid, S.; Buch, G.; Velmeden, D.; Söhne, J.; Schulz, A.; Schuch, A.; Tröbs, S.-O.; Heidorn, M.W.; Müller, F.; Strauch, K.; et al. Heart rate variability: Reference values and role for clinical profile and mortality in individuals with heart failure. Clin. Res. Cardiol. 2024, 113, 1317–1330. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Tarumi, T.; Wang, C.; Vernino, S.; Zhang, R.; Zhu, D.C. Central autonomic network functional connectivity: Correlation with baroreflex function and cardiovascular variability in older adults. Brain Struct. Funct. 2020, 225, 1575–1585. [Google Scholar] [CrossRef] [PubMed]
- Ossipov, M.H.; Morimura, K.; Porreca, F. Descending pain modulation and chronification of pain. Curr. Opin. Support. Palliat. Care 2014, 8, 143–151. [Google Scholar] [CrossRef]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef] [PubMed]

| Variables | Total (n = 53) | Negative PLP-PLS Index (n = 24) | Positive PLP-PLS Index (n = 29) | p-Value |
|---|---|---|---|---|
| Age (yrs) | 57.72 ± 15.40 | 59.24 ± 13.39 | 55.88 ± 17.65 | 0.4 |
| Sex, male | 32 (60%) | 17 (59%) | 15 (63%) | >0.9 |
| BMI (kg/m2) | 29.26 ± 6.76 | 28.89 ± 6.87 | 29.74 ± 6.74 | 0.7 |
| Race | 0.6 | |||
| White | 38 (72%) | 20 (69%) | 18 (75%) | |
| African American | 7 (13%) | 5 (17%) | 2 (8.3%) | |
| More than 1 race | 6 (11%) | 3 (10%) | 3 (13%) | |
| Asian | 1 (1.9%) | 0 (0%) | 1 (4.2%) | |
| Not reported | 1 (1.9%) | 1 (3.4%) | 0 (0%) | |
| Ethnicity | >0.9 | |||
| Not Hispanic or Latino | 46 (87%) | 25 (86%) | 21 (88%) | |
| Hispanic or Latino | 7 (13%) | 4 (14%) | 3 (13%) | |
| Educational level | 0.2 | |||
| High School | 14 (26%) | 5 (17%) | 9 (38%) | |
| Undergraduate | 35 (66%) | 21 (72%) | 14 (58%) | |
| Graduate Degree | 4 (7.5%) | 2 (10%) | 1 (4.2%) | |
| Pain medication, yes | 41 (77%) | 24 (83%) | 17 (71%) | 0.5 |
| Time since amputation (yrs) | 3.50 (2–9) | 5.00 (2–12.50) | 3.00 (2–5.50) | 0.11 |
| Amputation side | 0.8 | |||
| Right | 24 (45%) | 14 (48%) | 10 (42%) | |
| Left | 29 (55%) | 15 (52%) | 14 (58%) | |
| Amputation site | >0.9 | |||
| Lower limb | 41 (77%) | 22 (76%) | 19 (79%) | |
| Upper limb | 12 (23%) | 7 (24%) | 5 (21%) | |
| Amputation level | 0.5 | |||
| Digits | 6 (11%) | 4 (14%) | 2 (8.3%) | |
| Partial foot | 1 (1.9%) | 1 (3.4%) | 0 (0%) | |
| Below knee | 19 (36%) | 9 (31%) | 10 (42%) | |
| Knee disarticulation | 2 (3.8%) | 1 (3.4%) | 1 (4.2%) | |
| Above knee | 16 (30%) | 11 (38%) | 5 (21%) | |
| Hip disarticulation | 3 (5.7%) | 1 (3.4%) | 2 (8.3%) | |
| Hemipelvectomy | 1 (1.9%) | 0 (0%) | 1 (4.2%) | |
| Upper arm | 2 (3.8%) | 0 (0%) | 2 (8.3%) | |
| Lower arm | 1 (1.9%) | 1 (3.4%) | 0 (0%) | |
| Other | 2 (3.8%) | 1 (3.4%) | 1 (4.2%) | |
| Traumatic amputation, yes | 31 (58%) | 15 (52%) | 16 (67%) | 0.4 |
| Reason for amputation | >0.9 | |||
| Traumatic | 21 (40%) | 13 (45%) | 8 (33%) | |
| Infection | 17 (32%) | 9 (31%) | 8 (33%) | |
| Diabetes | 7 (13%) | 3 (10%) | 4 (17%) | |
| Cancer | 2 (3.8%) | 1 (3.4%) | 1 (4.2%) | |
| Vascular | 2 (3.8%) | 1 (3.4%) | 1 (4.2%) | |
| Other | 4 (7.5%) | 2 (6.9%) | 2 (8.3%) | |
| Pain before amputation, yes | 29 (55%) | 16 (55%) | 13 (54%) | >0.9 |
| PLP frequency | 0.9 | |||
| A few times a year | 1 (1.9%) | 0 (0%) | 1 (4.2%) | |
| A few times a month | 3 (5.7%) | 2 (6.9%) | 1 (4.2%) | |
| A few times a week | 11 (21%) | 6 (21%) | 5 (21%) | |
| A few times a day | 29 (55%) | 16 (55%) | 13 (54%) | |
| A few times per hour | 3 (5.7%) | 2 (6.9%) | 1 (4.2%) | |
| Always | 6 (11%) | 3 (10%) | 3 (13%) | |
| Residual limb pain intensity | 3.19 ± 3.10 | 3.26 ± 3.43 | 3.13 ± 2.73 | 0.9 |
| Telescopic pain | 5.00 (5.00, 5.20) | 5.00 (5.00, 5.20) | 5.00 (5.00, 6.70) | 0.5 |
| Prosthesis use, yes | 39 (74%) | 21 (72%) | 18 (75%) | >0.9 |
| Variable | Mean RR Interval (R2 = 0.04) | SDNN (R2 = 0.17) | RMSSD (R2 = 0.30) | pNN50 (R2 = 0.23) | ||||
|---|---|---|---|---|---|---|---|---|
| β Coefficient (95%CI) | p-Value | β Coefficient (95%CI) | p-Value | β Coefficient (95%CI) | p-Value | β Coefficient (95%CI) | p-Value | |
| Phantom limb pain intensity | 1.46 (−0.15, 3.07) | 0.07 | −0.06 (−0.33, 0.2) | 0.62 | −0.07 (−0.33, 0.2) | 0.61 | −0.01 (−0.14, 0.11) | 0.823 |
| Age | 2.2 (−0.57, 4.96) | 0.11 | −0.2 (−0.67, 0.26) | 0.38 | ||||
| BMI | −3.65 (−10.48, 3.18) | 0.28 | 1.01 (−0.12, 2.13) | 0.07 | 1.46 (0.34, 2.57) | 0.01 * | 0.55 (0.03, 1.07) | 0.038 * |
| Depression | 1.95 (−6.14, 10.04) | 0.62 | −1.36 (−2.71, −0.01) | 0.04 * | −1.55 (−2.93, −0.18) | 0.02 * | −0.56 (−1.19, 0.07) | 0.082 |
| Anxiety | −2.2 (−8.18, 3.78) | 0.46 | 0.1 (−0.93, 1.14) | 0.83 | 0.36 (−0.67, 1.39) | 0.48 | 0.22 (−0.24, 0.68) | 0.34 |
| Pain catastrophizing | 1.62 (−2.2, 5.43) | 0.39 | 0.22 (−0.44, 0.87) | 0.50 | 0.25 (−0.43, 0.92) | 0.46 | 0.03 (−0.26, 0.33) | 0.812 |
| Cognition | −3.79 (−23.4, 15.81) | 0.69 | −0.94 (−4.18, 2.3) | 0.56 | −1.68 (−4.59, 1.22) | 0.24 | −0.71 (−2.06, 0.65) | 0.3 |
| Sleep quality | −8.09 (−17.73, 1.55) | 0.09 | 1.21 (−0.4, 2.82) | 0.13 | 1.33 (−0.28, 2.93) | 0.10 | 0.54 (−0.21, 1.29) | 0.15 |
| Use of pain medication | −20.49 (−35.59, −5.39) | 0.009 * | −25.86 (−41.04, −10.69) | 0.001 * | −12.3 (−19.25, −5.36) | <0.001 | ||
| Use of prosthesis | 13.95 (−1.18, 29.08) | 0.07 | 9.84 (−6.59, 26.27) | 0.23 | ||||
| Left amputation | 7.05 (−7.06, 21.16) | 0.31 | 4.7 (−1.31, 10.72) | 0.122 | ||||
| Variable | Low Frequency (R2 = 0.34) | High Frequency (R2 = 0.35) | LF/HF Ratio (R2 = 0.10) | |||
|---|---|---|---|---|---|---|
| β Coefficient (95%CI) | p-Value | β Coefficient (95%CI) | p-Value | β Coefficient (95%CI) | p-Value | |
| Phantom limb pain intensity | −0.71 (−11.02, 9.6) | 0.89 | −1.94 (−7.29, 3.4) | 0.467 | 0.03 (−0.05, 0.11) | 0.40 |
| Female | 641.97 (119.53, 1164.4) | 0.01 * | 213.9 (−54.77, 482.57) | 0.12 | ||
| BMI | 45.83 (2.88, 88.77) | 0.03 * | 35.46 (13.27, 57.64) | 0.002 * | ||
| Use of pain medication | −953.43 (−1523.86, −382.99) | 0.002 * | −473.01 (−767.56, −178.45) | 0.002 * | ||
| Traumatic amputation | −820.52 (−1383.37, −257.66) | 0.005 * | ||||
| Pain before amputation | 752.1 (172.18, 1332.01) | 0.01 * | ||||
| Use of prosthesis | 530.31 (−64.88, 1125.5) | 0.07 | 282.74 (−22.96, 588.45) | 0.06 | ||
| Depression | −58.16 (−112.07, −4.25) | 0.03 * | −38.68 (−65.65, −11.7) | 0.006 * | 0.19 (−0.2, 0.58) | 0.33 |
| Anxiety | −25.27 (−70.03, 19.49) | 0.26 | −3.51 (−26.84, 19.82) | 0.70 | −0.26 (−0.54, 0.02) | 0.06 |
| Pain catastrophizing | 10.67 (−15.8, 37.15) | 0.41 | 6.28 (−6.81, 19.37) | 0.33 | ||
| Cognition | −14.03 (−127.59, 99.53) | 0.80 | −34.45 (−93.35, 24.45) | 0.24 | −0.03 (−0.96, 0.9) | 0.95 |
| Sleep quality | 44.93 (−17.52, 107.39) | 0.15 | 33.4 (1.58, 65.22) | 0.04 * | 0.42 (−0.03, 0.87) | 0.06 |
| Age | −8.18 (−18.57, 2.21) | 0.12 | −0.08 (−0.22, 0.06) | 0.23 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranis, N.; Piña Mojica, E.; Matos Ribeiro, J.A.; Sparrow, D.; Crandell, D.; Gianlorenco, A.L.; Fregni, F. Compensatory Failure of Autonomic Regulation in Phantom Limb Pain and Its Correlation with Maladaptive Plasticity: A Cross-Sectional HRV Study in Amputees. Biomedicines 2025, 13, 2710. https://doi.org/10.3390/biomedicines13112710
Aranis N, Piña Mojica E, Matos Ribeiro JA, Sparrow D, Crandell D, Gianlorenco AL, Fregni F. Compensatory Failure of Autonomic Regulation in Phantom Limb Pain and Its Correlation with Maladaptive Plasticity: A Cross-Sectional HRV Study in Amputees. Biomedicines. 2025; 13(11):2710. https://doi.org/10.3390/biomedicines13112710
Chicago/Turabian StyleAranis, Nadine, Eneidy Piña Mojica, Jean Alex Matos Ribeiro, David Sparrow, David Crandell, Anna Lepesteur Gianlorenco, and Felipe Fregni. 2025. "Compensatory Failure of Autonomic Regulation in Phantom Limb Pain and Its Correlation with Maladaptive Plasticity: A Cross-Sectional HRV Study in Amputees" Biomedicines 13, no. 11: 2710. https://doi.org/10.3390/biomedicines13112710
APA StyleAranis, N., Piña Mojica, E., Matos Ribeiro, J. A., Sparrow, D., Crandell, D., Gianlorenco, A. L., & Fregni, F. (2025). Compensatory Failure of Autonomic Regulation in Phantom Limb Pain and Its Correlation with Maladaptive Plasticity: A Cross-Sectional HRV Study in Amputees. Biomedicines, 13(11), 2710. https://doi.org/10.3390/biomedicines13112710

