Point-of-Care Transesophageal Echocardiography in Emergency and Intensive Care: An Evolving Imaging Modality
Abstract
1. Introduction
2. Materials and Methods
3. Relevant Sections
3.1. Introduction to the Physical Principles of Transesophageal Echocardiography
3.2. Clinical Advantages in the Critical Care and Emergency Setting
3.3. Reproducibility and Methodological Reliability of Quantitative TEE/TTE
3.4. The Role of TEE in Shock States
3.5. TEE in Pulmonary Embolism and Obstructive Shock
3.6. TEE in Cardiac Arrest
3.7. TEE in Cardiac Tamponade
3.8. TEE in ECMO Cannulation and Management
3.9. TEE in Aortic Dissection
3.10. Clinical Scenarios Where TEE Provides Incremental Value over TTE
- Prosthetic valve dysfunction represents one of the clearest scenarios where TEE surpasses TTE. In mechanical or bioprosthetic valves, acoustic shadowing frequently obscures leaflet motion and thrombus detection on TTE. TEE, by providing en face and longitudinal views, allows the detection of abnormal masses suggestive of thrombus, pannus, or vegetations. Although definitive differentiation among these entities may require multimodality imaging, TEE remains essential for helping to guide management decisions, including the choice between fibrinolysis (in cases of confirmed prosthetic valve thrombosis), urgent surgery, or conservative therapy, depending on the underlying lesion [70,71,72].
- Infective endocarditis remains a major field in which TEE is considered the gold standard. It provides superior sensitivity and specificity for detecting vegetations, periannular abscesses, pseudoaneurysms, and prosthetic valve involvement, especially in patients with inconclusive TTE or systemic embolization. In this setting, early TEE can change the therapeutic approach by expediting antimicrobial therapy or surgical referral in high-risk cases [73].
- In post-myocardial infarction or post-interventional mechanical complications, such as ventricular septal rupture or free wall rupture, TEE enables immediate diagnostic clarification and dynamic hemodynamic assessment at the bedside. Its continuous monitoring capability is particularly valuable during hemodynamic instability or extracorporeal support, allowing real-time evaluation of shunt direction, pericardial effusion, and ventricular interdependence [74].
- In anomalous coronary artery origin, particularly anomalous left or right coronary arteries arising from the opposite sinus (anomalous aortic origin of the left coronary artery, AAOCA-L, or anomalous aortic origin of the right coronary artery, AAOCA-R), TEE can complement CT angiography or coronary angiography by providing rapid confirmation of the coronary course. This is especially relevant in young patients presenting with exertional syncope, ventricular arrhythmias, or cardiac arrest, in whom prompt recognition may be lifesaving [75].
3.11. Contraindications and Complications of TEE
3.12. Three-Dimensional TEE in Emergency and Critical Care
3.13. Miniaturized and Disposable TEE Probes
3.14. Artificial Intelligence and Image Processing with TEE
3.15. Cost-Effectiveness and Practical Limitations
3.16. Comparative and Critical Appraisal of Contemporary TEE Techniques
4. Discussion
Clinical Implications and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| TTE | Transthoracic echocardiography |
| TEE | Transesophageal echocardiography |
| ECMO | Extracorporeal membrane oxygenation |
| PE | Pulmonary embolism |
| CA | Cardiac arrest |
| ME | Mid-esophageal |
| TG | Trans-gastric |
References
- Liang, J.; Ma, X.; Liang, G. Transesophageal echocardiography: Revolutionizing perioperative cardiac care. Biomol. Biomed. 2025, 25, 314–326. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bora, V.; Pulijal, S.V. Transesophageal Echocardiography in Critical Care. Curr. Pulmonol. Rep. 2024, 13, 152–172. [Google Scholar] [CrossRef]
- Teran, F.; Prats, M.I.; Nelson, B.P.; Kessler, R.; Blaivas, M.; Peberdy, M.A.; Shillcutt, S.K.; Arntfield, R.T.; Bahner, D. Focused Transesophageal Echocardiography During Cardiac Arrest Resuscitation: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2020, 76, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.O.; Jung, W.J.; Roh, Y.I.; Cha, K.C. Intra-arrest transesophageal echocardiography during cardiopulmonary resuscitation. Clin. Exp. Emerg. Med. 2022, 9, 271–280. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jung, W.J.; Cha, K.C.; Kim, Y.W.; Kim, Y.S.; Roh, Y.I.; Kim, S.J.; Kim, H.S.; Hwang, S.O. Intra-arrest transoesophageal echocardiographic findings and resuscitation outcomes. Resuscitation 2020, 154, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Hussey, P.T.; von Mering, G.; Nanda, N.C.; Ahmed, M.I.; Addis, D.R. Echocardiography for extracorporeal membrane oxygenation. Echocardiography 2022, 39, 339–370. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Farina, J.M.; Barry, T.; Arsanjani, R.; Ayoub, C.; Naqvi, T.Z. Three-Dimensional Transesophageal Echocardiography in Percutaneous Catheter-Based Cardiac Interventions. J. Clin. Med. 2023, 12, 5664. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cioccari, L.; Baur, H.R.; Berger, D.; Wiegand, J.; Takala, J.; Merz, T.M. Hemodynamic assessment of critically ill patients using a miniaturized transesophageal echocardiography probe. Crit. Care 2013, 17, R121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kagiyama, N.; Abe, Y.; Kusunose, K.; Kato, N.; Kaneko, T.; Murata, A.; Ota, M.; Shibayama, K.; Izumo, M.; Watanabe, H. Multicenter validation study for automated left ventricular ejection fraction assessment using a handheld ultrasound with artificial intelligence. Sci. Rep. 2024, 14, 15359. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jaidka, A.; Hobbs, H.; Koenig, S.; Millington, S.J.; Arntfield, R.T. Better with Ultrasound: Transesophageal Echocardiography. Chest. 2019, 155, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Kaynar, A.; Phillips, D.; Gomez, H.; Lischner, M.; Melhem, S.; Subramaniam, K.; Pinsky, M. Utility of transesophageal echocardiography in the ICU: A preliminary US perspective. Crit. Care 2013, 17 (Suppl. S2), P182. [Google Scholar] [CrossRef] [PubMed Central]
- Prager, R.; Bowdridge, J.; Pratte, M.; Cheng, J.; McInnes, M.D.; Arntfield, R. Indications, Clinical Impact, and Complications of Critical Care Transesophageal Echocardiography: A Scoping Review. J. Intensive Care Med. 2023, 38, 245–272. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grotberg, J.C.; McDonald, R.K.; Co, I.N. Point-of-Care Echocardiography in the Difficult-to-Image Patient in the ICU: A Narrative Review. Crit. Care Explor. 2024, 6, e1035. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boissier, F.; Bagate, F.; Dessap, A.M. Hemodynamic monitoring using trans esophageal echocardiography in patients with shock. Ann. Transl. Med. 2020, 8, 791. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cha, S.; Kostibas, M.P. Echocardiographic and Point-of-Care Ultrasonography (POCUS) Guidance in the Management of the ECMO Patient. J. Clin. Med. 2024, 13, 2630. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kegel, F.; Chenkin, J. Resuscitative transesophageal echocardiography in the emergency department: A single-centre case series. Scand. J. Trauma Resusc. Emerg. Med. 2023, 31, 24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krammel, M.; Hamp, T.; Hafner, C.; Magnet, I.; Poppe, M.; Marhofer, P. Feasibility of resuscitative transesophageal echocardiography at out-of-hospital emergency scenes of cardiac arrest. Sci. Rep. 2023, 13, 20085. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, T.Y.; Wang, Y.C.; Lien, W.C. Enhancing resuscitative transesophageal echocardiography training by integrating clinical scenarios. Resusc. Plus 2024, 21, 100861. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teran, F.; Dean, A.J.; Centeno, C.; Panebianco, N.L.; Zeidan, A.J.; Chan, W.; Abella, B.S. Evaluation of out-of-hospital cardiac arrest using transesophageal echocardiography in the emergency department. Resuscitation 2019, 137, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Mauriello, A.; Marrazzo, G.; Del Vecchio, G.E.; Ascrizzi, A.; Roma, A.S.; Correra, A.; Sabatella, F.; Gioia, R.; Desiderio, A.; Russo, V.; et al. Echocardiography in Cardiac Arrest: Incremental Diagnostic and Prognostic Role During Resuscitation Care. Diagnostics 2024, 14, 2107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deutsch, H.J.; Curtius, J.M.; Leischik, R.; Sechtem, U.; Maschler, C.; de Vivie, E.R.; Hilger, H.H. Reproducibility of assessment of left-ventricular function using intraoperative transesophageal echocardiography. Thorac. Cardiovasc. Surg. 1993, 41, 54–58. [Google Scholar] [CrossRef] [PubMed]
- De Geer, L.; Oscarsson, A.; Engvall, J. Variability in echocardiographic measurements of left ventricular function in septic shock patients. Cardiovasc. Ultrasound 2015, 13, 19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Villavicencio, C.; Leache, J.; Marin, J.; Oliva, I.; Rodriguez, A.; Bodí, M.; Soni, N.J. Basic critical care echocardiography training of intensivists allows reproducible and reliable measurements of cardiac output. Ultrasound J. 2019, 11, 5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Daley, J.; Grotberg, J.; Pare, J.; Medoro, A.; Liu, R.; Hall, M.K.; Taylor, A.; Moore, C.L. Emergency physician performed tricuspid annular plane systolic excursion in the evaluation of suspected pulmonary embolism. Am. J. Emerg. Med. 2017, 35, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Korshin, A.; Grønlykke, L.; Nilsson, J.C.; Møller-Sørensen, H.; Ihlemann, N.; Kjøller, M.; Damgaard, S.; Lehnert, P.; Hassager, C.; Kjaergaard, J.; et al. The feasibility of tricuspid annular plane systolic excursion performed by transesophageal echocardiography throughout heart surgery and its interchangeability with transthoracic echocardiography. Int. J. Cardiovasc. Imaging 2018, 34, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.E.; Ernande, L.; Garbi, M.; et al. 2016–2018 EACVI Scientific Documents Committee; 2016–2018 EACVI Scientific Documents Committee. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging. 2017, 18, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Raksamani, K.; Noirit, A.; Chaikittisilpa, N. Comparison of visual estimation and quantitative measurement of left ventricular ejection fraction in untrained perioperative echocardiographers. BMC Anesthesiol. 2023, 23, 106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713; quiz 786-788. [Google Scholar] [CrossRef] [PubMed]
- Descorps-Declere, A.; Smail, N.; Vigue, B.; Duranteau, J.; Mimoz, O.; Edouard, A.; Samii, K. Transgastric, pulsed Doppler echocardiographic determination of cardiac output. Intensive Care Med. 1996, 22, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Sanborn, D.Y.; Oh, J.K.; Anderson, B.; Billick, K.; Derumeaux, G.; Klein, A.; Koulogiannis, K.; Mitchell, C.; Shah, A.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography and for Heart Failure With Preserved Ejection Fraction Diagnosis: An Update from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2025, 38, 537–569. [Google Scholar] [CrossRef] [PubMed]
- Monnet, X.; Shi, R.; Teboul, J.L. Prediction of fluid responsiveness. What’s new? Ann. Intensive Care 2022, 12, 46. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Adi, O.; Ahmad, A.H.; Fong, C.P.; Ranga, A.; Panebianco, N. Resuscitative transesophageal echocardiography in the diagnosis of post-CABG loculated pericardial clot causing cardiac tamponade. Ultrasound J. 2021, 13, 22. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van der Wouw, P.A.; Koster, R.W.; Delemarre, B.J.; de Vos, R.; Lampe-Schoenmaeckers, A.J.; Lie, K.I. Diagnostic accuracy of transesophageal echocardiography during cardiopulmonary resuscitation. J. Am. Coll. Cardiol. 1997, 30, 780–783. [Google Scholar] [CrossRef] [PubMed]
- Perrino, A.C., Jr.; Harris, S.N.; Luther, M.A. Intraoperative determination of cardiac output using multiplane transesophageal echocardiography: A comparison to thermodilution. Anesthesiology 1998, 89, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Critchley, L.A.; Critchley, J.A. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J. Clin. Monit. Comput. 1999, 15, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Dabaghi, S.F.; Rokey, R.; Rivera, J.M.; Saliba, W.I.; Majid, P.A. Comparison of echocardiographic assessment of cardiac hemodynamics in the intensive care unit with right-sided cardiac catheterization. Am. J. Cardiol. 1995, 76, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Pruszczyk, P.; Torbicki, A.; Pacho, R.; Chlebus, M.; Kuch-Wocial, A.; Pruszynski, B.; Gurba, H. Noninvasive diagnosis of suspected severe pulmonary embolism: Transesophageal echocardiography vs. spiral CT. Chest 1997, 112, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Jelic, T.; Baimel, M.; Chenkin, J. Bedside Identification of Massive Pulmonary Embolism with Point-of-Care Transesophageal Echocardiography. J. Emerg. Med. 2017, 53, 722–725. [Google Scholar] [CrossRef] [PubMed]
- Tsipis, A.; Petropoulou, E. Echocardiography in the Evaluation of the Right Heart. US Cardiol. 2022, 16, e08. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horowitz, J.M.; Yuriditsky, E.; Henderson, I.J.; Stachel, M.W.; Kwok, B.; Saric, M. Clot in Transit on Transesophageal Echocardiography in a Prone Patient with COVID-19 Acute Respiratory Distress Syndrome. CASE 2020, 4, 200–203. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, V.I.; Miles, M.; Shahangian, S.; Javien, J. McConnell’s sign: Echocardiography in the management of acute pulmonary embolism. Clin. Case Rep. 2021, 9, e04994. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shah, B.R.; Velamakanni, S.M.; Patel, A.; Khadkikar, G.; Patel, T.M.; Shah, S.C. Analysis of the 60/60 Sign and Other Right Ventricular Parameters by 2D Transthoracic Echocardiography as Adjuncts to Diagnosis of Acute Pulmonary Embolism. Cureus 2021, 13, e13800. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krivec, B.; Voga, G.; Zuran, I.; Skale, R.; Pareznik, R.; Podbregar, M.; Noc, M. Diagnosis and treatment of shock due to massive pulmonary embolism: Approach with transesophageal echocardiography and intrapulmonary thrombolysis. Chest 1997, 112, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Triggiani, S.; Pellegrino, G.; Mortellaro, S.; Bubba, A.; Lanza, C.; Carriero, S.; Biondetti, P.; Angileri, S.A.; Fusco, R.; Granata, V.; et al. Comprehensive review of pulmonary embolism imaging: Past, present and future innovations in computed tomography (CT) and other diagnostic techniques. Jpn. J. Radiol. 2025, 43, 1575–1589. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef] [PubMed]
- Winkelmann, M.T.; Walter, S.S.; Stock, E.; Brendlin, A.; Kolb, M.; Othman, A.E.; Afat, S. Effects of radiation dose reduction on diagnostic performance of 3rd generation Dual Source CT pulmonary angiography. Eur. J. Radiol. 2021, 134, 109426. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.M.; Harahsheh, Y. Predicting contrast-induced nephropathy after CT pulmonary angiography in the critically ill: A retrospective cohort study. J. Intensive Care 2018, 6, 3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katzenschlager, S.; Hamp, T.; Dietrich, M.; Edmunds, C.T.; Kaltschmidt, N.; Weigand, M.A.; Krammel, M.; Weilbacher, F.; Popp, E. Assess, improve, detect, guide: A narrative review and proposal for a standardized protocol for prehospital transesophageal echocardiography during out-of-hospital cardiac arrest. Ultrasound J. 2025, 17, 18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teran, F.; Owyang, C.G.; Martin-Flores, M.; Lao, D.; King, A.; Palasz, J.; Araos, J.D. Hemodynamic impact of chest compression location during cardiopulmonary resuscitation guided by transesophageal echocardiography. Crit. Care 2023, 27, 319. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hussein, L.; Rehman, M.A.; Sajid, R.; Annajjar, F.; Al-Janabi, T. Bedside ultrasound in cardiac standstill: A clinical review. Ultrasound J. 2019, 11, 35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chan, B.; Sieg, S.; Singh, Y. Unveiling pseudo-pulseless electrical activity (pseudo-PEA) in ultrasound-integrated infant resuscitation. Eur. J. Pediatr. 2023, 182, 5285–5291. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pérez-Casares, A.; Cesar, S.; Brunet-Garcia, L.; Sanchez-de-Toledo, J. Echocardiographic Evaluation of Pericardial Effusion and Cardiac Tamponade. Front. Pediatr. 2017, 5, 79. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, T.K.M.; Klein, A.L.; Cremer, P.C.; Imazio, M.; Kohnstamm, S.; Luis, S.A.; Mardigyan, V.; Mukherjee, M.; Ordovas, K.; Vakamudi, S.; et al. 2025 Concise Clinical Guidance: An ACC Expert Consensus Statement on the Diagnosis and Management of Pericarditis: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Douflé, G.; Roscoe, A.; Billia, F.; Fan, E. Echocardiography for adult patients supported with extracorporeal membrane oxygenation. Crit. Care 2015, 19, 326, Erratum in: Crit Care 2016, 20, 34. https://doi.org/10.1186/s13054-016-1214-8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fair, J.; Tonna, J.; Ockerse, P.; Galovic, B.; Youngquist, S.; McKellar, S.H.; Mallin, M. Emergency physician-performed transesophageal echocardiography for extracorporeal life support vascular cannula placement. Am. J. Emerg. Med. 2016, 34, 1637–1639. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, M.; Katz, J.N. Contemporary Comprehensive Monitoring of Veno-Arterial Extracorporeal Membrane Oxygenation Patients. Can. J. Cardiol. 2020, 36, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Hemamalini, P.; Dutta, P.; Attawar, S. Transesophageal Echocardiography Compared to Fluoroscopy for Avalon Bicaval Dual-Lumen Cannula Positioning for Venovenous ECMO. Ann. Card. Anaesth. 2020, 23, 283–287. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morales Castro, D.; Abdelnour-Berchtold, E.; Urner, M.; Dragoi, L.; Cypel, M.; Fan, E.; Douflé, G. Transesophageal Echocardiography-Guided Extracorporeal Membrane Oxygenation Cannulation in COVID-19 Patients. J. Cardiothorac. Vasc. Anesth. 2022, 36, 4296–4304. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ranasinghe, A.M.; Peek, G.J.; Roberts, N.; Chin, D.; Killer, H.M.; Sosnowski, A.W.; Firmin, R.K. The use of transesophageal echocardiography to demonstrate obstruction of venous drainage cannula during ECMO. ASAIO J. 2004, 50, 619–620. [Google Scholar] [CrossRef] [PubMed]
- Winiszewski, H.; Perrotti, A.; Chocron, S.; Capellier, G.; Piton, G. Malposition of the Extracorporeal Membrane Oxygenation Venous Cannula in an Accessory Hepatic Vein. J. Extra Corpor. Technol. 2018, 50, 167–169. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tigano, S.; Casolaro, G.; Bianchini, A.; Bernardi, E.; Laici, C.; Ramahi, L.; Vitale, G.; Siniscalchi, A. Hemodynamic Monitoring During Liver Transplantation for Patients on Perioperative Extracorporeal Membrane Oxygenation (ECMO) Support: A Narrative Review. Medicina 2025, 61, 768. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vardhanabhuti, V.; Nicol, E.; Morgan-Hughes, G.; Roobottom, C.A.; Roditi, G.; Hamilton, M.C.; Bull, R.K.; Pugliese, F.; Williams, M.C.; Stirrup, J.; et al. Recommendations for accurate CT diagnosis of suspected acute aortic syndrome (AAS)--on behalf of the British Society of Cardiovascular Imaging (BSCI)/British Society of Cardiovascular CT (BSCCT). Br. J. Radiol. 2016, 89, 20150705. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shiga, T.; Wajima, Z.; Apfel, C.C.; Inoue, T.; Ohe, Y. Diagnostic Accuracy of Transesophageal Echocardiography, Helical Computed Tomography, and Magnetic Resonance Imaging for Suspected Thoracic Aortic Dissection: Systematic Review and Meta-Analysis. Arch. Intern. Med. 2006, 166, 1350–1356. [Google Scholar] [CrossRef]
- Evangelista, A.; Maldonado, G.; Gruosso, D.; Gutiérrez, L.; Granato, C.; Villalva, N.; Galian, L.; González-Alujas, T.; Teixido, G.; Rodríguez-Palomares, J. The current role of echocardiography in acute aortic syndrome. Echo Res. Pract. 2019, 6, R53–R63. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baliga, R.R.; Nienaber, C.A.; Bossone, E.; Oh, J.K.; Isselbacher, E.M.; Sechtem, U.; Fattori, R.; Raman, S.V.; Eagle, K.A. The role of imaging in aortic dissection and related syndromes. JACC Cardiovasc. Imaging 2014, 7, 406–424. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, A.; Tateiwa, H.; Orihashi, K.; Kawano, T. Progressive coronary stenosis detected by intraoperative TEE after acute type-A aortic dissection repair: A case report. JA Clin. Rep. 2025, 11, 38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kelava, M.; Alfirevic, A.; Geube, M.; Bauer, A.; Skubas, N.J.; Zakaria, L.; Roselli, E.E.; Vargo, P.R.; Bakaeen, F.G.; Lou, X.; et al. Intraoperative Transesophageal Echocardiography in Acute Type A Aortic Dissection: Contemporary Approach. J. Am. Soc. Echocardiogr. 2025, 38, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Oren-Grinberg, A.; Talmor, D.; Brown, S.M. Focused critical care echocardiography. Crit. Care Med. 2013, 41, 2618–2626. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soria Jiménez, C.E.; Papolos, A.I.; Kenigsberg, B.B.; Ben-Dor, I.; Satler, L.F.; Waksman, R.; Cohen, J.E.; Rogers, T. Management of Mechanical Prosthetic Heart Valve Thrombosis: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023, 81, 2115–2127. [Google Scholar] [CrossRef] [PubMed]
- Zoghbi, W.A.; Jone, P.N.; Chamsi-Pasha, M.A.; Chen, T.; Collins, K.A.; Desai, M.Y.; Grayburn, P.; Groves, D.W.; Hahn, R.T.; Little, S.H.; et al. Guidelines for the Evaluation of Prosthetic Valve Function with Cardiovascular Imaging: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance and the Society of Cardiovascular Computed Tomography. J. Am. Soc. Echocardiogr. 2024, 37, 2–63. [Google Scholar] [CrossRef] [PubMed]
- Ababneh, M.; Al-Kasasbeh, A.; Algorani, E. Mechanical Aortic Valve Thrombosis with Heart Failure Successfully Treated with Oral Anticoagulation: A Case Report. Vasc. Health Risk Manag. 2023, 19, 617–620. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Delgado, V.; Ajmone Marsan, N.; de Waha, S.; Bonaros, N.; Brida, M.; Burri, H.; Caselli, S.; Doenst, T.; Ederhy, S.; Erba, P.A.; et al. 2023 ESC Guidelines for the management of endocarditis. Eur. Heart J. 2023, 44, 3948–4042, Erratum in: Eur. Heart J. 2023, 44, 4780. https://doi.org/10.1093/eurheartj/ehad625. Erratum in: Eur. Heart J. 2024, 45, 56. https://doi.org/10.1093/eurheartj/ehad776. Erratum in: Eur. Heart J. 2025, 46, 1082. https://doi.org/10.1093/eurheartj/ehae877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.S.; Ro, R.; Bamira, D.; Vainrib, A.; Zhang, L.; Nayar, A.C.; Saric, M.; Bernard, S. Echocardiography in the Recognition and Management of Mechanical Complications of Acute Myocardial Infarction. Curr. Cardiol. Rep. 2024, 26, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.; Alam, M.; Smith, S.; Khaja, F. The role of transesophageal echocardiography in identifying anomalous coronary arteries. Circulation 1993, 88, 2532–2540. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R.T.; Abraham, T.; Adams, M.S.; Bruce, C.J.; Glas, K.E.; Lang, R.M.; Reeves, S.T.; Shanewise, J.S.; Siu, S.C.; Stewart, W.; et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination: Recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J. Am. Soc. Echocardiogr. 2013, 26, 921–964. [Google Scholar] [CrossRef] [PubMed]
- Mishra, K.L.; Baker, M.T.; Siegrist, K.K.; Liao, A.; Scanga, A.E.; Naik, R.; Izzy, M.; Spann, M.D.; Gillaspie, E.A.; Gonzales, H.M.; et al. Multidisciplinary Approach to Improving Safety in Transesophageal Echocardiography in Patients with Relative Contraindications. J. Am. Soc. Echocardiogr. 2022, 35, 1195–1197. [Google Scholar] [CrossRef] [PubMed]
- De Luca, V.M.; Cammalleri, V.; Antonelli, G.; Bombace, S.; Ruf, T.F.; Gößler, T.A.M.; Lurz, P.; von Bardeleben, R.S.; Grigioni, F.; Ussia, G.P. The Other Side of the Coin: Transesophageal Echocardiography Complications following Cardiac Surgery and Transcatheter Structural Heart Interventions. J. Clin. Med. 2024, 13, 4291. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.; Xie, Y.; Ren, Z.; Xie, M. Transesophageal echocardiography related complications. Front. Cardiovasc. Med. 2024, 11, 1410594. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, K.M.; Desai, R.G.; Trivedi, K.; Neuburger, P.J.; Krishnan, S.; Potestio, C.P. Complications of Transesophageal Echocardiography: A Review of Injuries, Risk Factors, and Management. J. Cardiothorac. Vasc. Anesth. 2022, 36 Pt B, 3292–3302. [Google Scholar] [CrossRef] [PubMed]
- Higny, J.; Forêt, F.; Laterre, P.F. Three-dimensional critical care transesophageal echocardiography: A bedside tool in the diagnosis and management of shock. Clin. Case Rep. 2021, 9, e05164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, C.C.; Lee, D.; Yen, H.T.; Lien, W.C. Personalized resuscitation using 3D transesophageal echocardiography. Resuscitation 2024, 199, 110220. [Google Scholar] [CrossRef] [PubMed]
- Rong, L.Q. An update on intraoperative three-dimensional transesophageal echocardiography. J. Thorac. Dis. 2017, 9 (Suppl. S4), S271–S282. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mor-Avi, V.; Sugeng, L.; Lang, R.M. Real-time 3-dimensional echocardiography: An integral component of the routine echocardiographic examination in adult patients? Circulation 2009, 119, 314–329. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, C.; Bricknell, K.; Chan, J.; Hanekom, L.; Marwick, T.H. Comparison of two- and three-dimensional echocardiography with sequential magnetic resonance imaging for evaluating left ventricular volume and ejection fraction over time in patients with healed myocardial infarction. Am. J. Cardiol. 2007, 99, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Mor-Avi, V.; Sugeng, L.; Weinert, L.; MacEneaney, P.; Caiani, E.G.; Koch, R.; Salgo, I.S.; Lang, R.M. Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: Comparison with magnetic resonance imaging. Circulation 2004, 110, 1814–1818. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.T.T.; Kirkpatrick, J.N.; Duong, H.D.; Pham, H.M.; Vu, T.T.; Giap, N.T.M.; Trinh, H.V.; Nguyen, Y.T.H.; Hoang, M.T.N.; Nguyen, H.T.T. Diagnostic accuracy of two-dimensional and three-dimensional transesophageal echocardiography in detecting pannus and thrombus in left mechanical valve obstruction. Ann. Med. Surg. 2023, 85, 1358–1365. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Landolt, L.; Janelle, G.M.; Ricks, W.; Rackauskas, M.; Maybauer, M.O. Transesophageal Echocardiography Guided Veno-Pulmonary Extracorporeal Membrane Oxygenation Cannula Insertion Technique. ASAIO J. 2024, 70, e99–e100. [Google Scholar] [CrossRef] [PubMed]
- Addis, D.R.; Wang, B.; Prejean, S.P.; Watts, T.E., 3rd; Nanda, N.C.; Ahmed, M.I. Utility of three-dimensional transesophageal echocardiography to guide transseptal positioning of a single multistage venous cannula to provide both venous drainage and indirect left ventricular venting in veno-arterial extracorporeal membrane oxygenation. Echocardiography 2020, 37, 1860–1863. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Begot, E.; Dalmay, F.; Etchecopar, C.; Clavel, M.; Pichon, N.; Francois, B.; Lang, R.; Vignon, P. Hemodynamic assessment of ventilated ICU patients with cardiorespiratory failure using a miniaturized multiplane transesophageal echocardiography probe. Intensive Care Med. 2015, 41, 1886–1894. [Google Scholar] [CrossRef] [PubMed]
- Barki, M.; Hahn, R.T. Mini 3D transesophageal probe: Technical advances and clinical applications. Cardiovasc. Ultrasound 2025, 23, 17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hastie, J.; Panzer, O.P.F.; Weyker, P.; Flynn, B.C. Miniaturized Echocardiography in the Cardiac Intensive Care Unit. J. Cardiothorac. Vasc. Anesth. 2019, 33, 1540–1547. [Google Scholar] [CrossRef] [PubMed]
- Hlaing, M.; He, J.; Haglund, N.; Takayama, H.; Flynn, B.C. Impact of a Monoplane Hemodynamic TEE (hTEE) Monitoring Device on Decision Making in a Heterogeneous Hemodynamically Unstable Intensive Care Unit Population: A Prospective, Observational Study. J. Cardiothorac. Vasc. Anesth. 2018, 32, 1308–1313. [Google Scholar] [CrossRef] [PubMed]
- Vieillard-Baron, A.; Slama, M.; Mayo, P.; Charron, C.; Amiel, J.B.; Esterez, C.; Leleu, F.; Repesse, X.; Vignon, P. A pilot study on safety and clinical utility of a single-use 72-h indwelling transesophageal echocardiography probe. Intensive Care Med. 2013, 39, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Merz, T.M.; Cioccari, L.; Frey, P.M.; Bloch, A.; Berger, D.; Zante, B.; Jakob, S.M.; Takala, J. Continual hemodynamic monitoring with a single-use transesophageal echocardiography probe in critically ill patients with shock: A randomized controlled clinical trial. Intensive Care Med. 2019, 45, 1093–1102, Erratum in: Intensive Care Med. 2019, 45, 1330. https://doi.org/10.1007/s00134-019-05700-3. [Google Scholar] [CrossRef] [PubMed]
- Raissi-Dehkordi, N.; Raissi-Dehkordi, N.; Xu, B. Contemporary applications of artificial intelligence and machine learning in echocardiography. NPJ Cardiovasc. Health 2025, 2, 30. [Google Scholar] [CrossRef]
- Tian, Y.; Qin, W.; Zhao, Z.; Wang, C.; Tian, Y.; Zhang, Y.; He, K.; Zhang, Y.; Shen, L.; Zhou, Z.; et al. Deep Learning Based Automatic Left Ventricle Segmentation from the Transgastric Short-Axis View on Transesophageal Echocardiography: A Feasibility Study. Diagnostics 2024, 14, 1655. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Liu, B.; Bunting, K.V.; Brind, D.; Thorley, A.; Karwath, A.; Lu, W.; Zhou, D.; Wang, X.; Mobley, A.R.; et al. Development of automated neural network prediction for echocardiographic left ventricular ejection fraction. Front. Med. 2024, 11, 1354070. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, W.; Wu, J.; Zhang, Z.; Gao, Z.; Chen, X.; Zhang, Y.; Lin, Z.; Tang, Z.; Yu, W.; Fan, S.; et al. Artificial intelligence-assisted echocardiographic monitoring in pediatric patients on extracorporeal membrane oxygenation. Front. Cardiovasc. Med. 2024, 11, 1418741. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Myhre, P.L.; Grenne, B.; Asch, F.M.; Delgado, V.; Khera, R.; Lafitte, S.; Lang, R.M.; Pellikka, P.A.; Sengupta, P.P.; Vemulapalli, S.; et al. Artificial intelligence-enhanced echocardiography in cardiovascular disease management. Nat. Rev. Cardiol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Du, M.; Chang, S.; Chen, Z. Artificial intelligence in echocardiography: Detection, functional evaluation, and disease diagnosis. Cardiovasc. Ultrasound 2021, 19, 29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seto, T.B.; Taira, D.A.; Tsevat, J.; Manning, W.J. Cost-effectiveness of transesophageal echocardiographic-guided cardioversion: A decision analytic model for patients admitted to the hospital with atrial fibrillation. J. Am. Coll. Cardiol. 1997, 29, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Rosen, A.B.; Fowler, V.G., Jr.; Corey, G.R.; Downs, S.M.; Biddle, A.K.; Li, J.; Jollis, J.G. Cost-effectiveness of transesophageal echocardiography to determine the duration of therapy for intravascular catheter-associated Staphylococcus aureus bacteremia. Ann. Intern. Med. 1999, 130, 810–820. [Google Scholar] [CrossRef] [PubMed]
- Harvey, S.; Stevens, K.; Harrison, D.; Young, D.; Brampton, W.; McCabe, C.; Singer, M.; Rowan, K. An evaluation of the clinical and cost-effectiveness of pulmonary artery catheters in patient management in intensive care: A systematic review and a randomised controlled trial. Health Technol. Assess. 2006, 10, iii–iv, ix–xi, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Wiegers, S.E.; Ryan, T.; Arrighi, J.A.; Brown, S.M.; Canaday, B.; Damp, J.B.; Diaz-Gomez, J.L.; Figueredo, V.M.; Garcia, M.J.; Gillam, L.D.; et al. 2019 ACC/AHA/ASE Advanced Training Statement on Echocardiography (Revision of the 2003 ACC/AHA Clinical Competence Statement on Echocardiography): A Report of the ACC Competency Management Committee. J. Am. Coll Cardiol. 2019, 74, 377–402. [Google Scholar] [CrossRef] [PubMed]
- AIUM Official Statement: Guidelines for Cleaning and Preparing External- and Internal-Use Ultrasound Transducers and Equipment Between Patients as Well as Safe Handling and Use of Ultrasound Coupling Gel. J. Ultrasound Med. 2023, 42, E13–E22. [CrossRef] [PubMed]
- Kanagala, P.; Bradley, C.; Hoffman, P.; Steeds, R.P.; British Society of Echocardiography. Guidelines for transoesophageal echocardiographic probe cleaning and disinfection from the British Society of Echocardiography. Eur. J. Echocardiogr. 2011, 12, i17–i23. [Google Scholar] [CrossRef] [PubMed]
- Steffner, K.R.; Christensen, M.; Gill, G.; Bowdish, M.; Rhee, J.; Kumaresan, A.; He, B.; Zou, J.; Ouyang, D. Deep learning for transesophageal echocardiography view classification. Sci. Rep. 2024, 14, 11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kulkarni, A.P.; Govil, D.; Samavedam, S.; Srinivasan, S.; Ramasubban, S.; Venkataraman, R.; Pichamuthu, K.; Jog, S.A.; Divatia, J.V.; Myatra, S.N. ISCCM Guidelines for Hemodynamic Monitoring in the Critically Ill. Indian. J. Crit. Care Med. 2022, 26 (Suppl. S2), S66–S76. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Font, V.E.; Obarski, T.P.; Klein, A.L.; Bartlett, J.C.; Nemec, J.J.; Stewart, W.J.; Salcedo, E.E. Transesophageal echocardiography in the critical care unit. Cleve Clin. J. Med. 1991, 58, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Pirri, C.; Torre, D.E.; Cisico, S.; Tini, L.; Stecco, C.; Mangino, D.; De Caro, R. Transesophageal Echocardiography: Timely Resolution of an Urgent Right Atrial Mass/Hepatocellular Carcinoma Thrombosis. J. Diagn. Med. Sonogr. 2024, 40, 509–512. [Google Scholar] [CrossRef]
- Fazlinezhad, A.; Narayanasamy, H.; Wilansky, S.; Naqvi, T.Z. Detection of LV apical thrombus by three-dimensional transesophageal echocardiography. Echocardiography 2020, 37, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Addetia, K.; Narang, A.; Mor-Avi, V. 3-Dimensional Echocardiography: Latest Developments and Future Directions. JACC Cardiovasc. Imaging 2018, 11, 1854–1878. [Google Scholar] [CrossRef] [PubMed]
- Dinh, A.; Yin, A.L.; Estrin, D.; Greenwald, P.; Fortenko, A. Augmented Reality in Real-Time Telemedicine and Telementoring: Scoping Review. JMIR Mhealth Uhealth. 2023, 11, e45464. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mitchell-Heggs, L.; Lim, P.; Bensaid, A.; Kloeckner, M.; Monin, J.L.; Castanie, J.B.; Hosseini, H.; Nahum, J.; Teiger, E.; Dubois-Randé, J.L.; et al. Usefulness of trans-oesophageal echocardiography using intracardiac echography probe in guiding patent foramen ovale percutaneous closure. Eur. J. Echocardiogr. 2010, 11, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Laterra, G.; Sacchetta, G.; Artale, C.; Barrano, G.; Mazzone, P.; Ruscica, G.; Guarneri, M.C.; Costa, S.; Barbanti, M.; Contarini, M. Intracardiac Echocardiographic Probe Used Via Transesophageal to Guide Left Atrial Appendage Occlusion: The DIONISO Study. JACC Cardiovasc. Interv. 2024, 17, 1855–1857. [Google Scholar] [CrossRef] [PubMed]
- Laterra, G.; Dattilo, G.; Correale, M.; Brunetti, N.D.; Artale, C.; Sacchetta, G.; Pistelli, L.; Borgi, M.; Campanella, F.; Cocuzza, F.; et al. Imaging Modality to Guide Left Atrial Appendage Closure: Current Status and Future Perspectives. J. Clin. Med. 2023, 12, 3756. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]




| Feature | TTE | TEE |
|---|---|---|
| Portability | High | Moderate |
| Invasiveness | Non-invasive | Semi-invasive |
| Imaging during CPR | Limited | Continuous, uninterrupted |
| Image quality | Window-dependent | Consistently high |
| Typical applications | First-line screening | Definitive diagnosis/monitoring |
| Parameter | Setting/Modality | Study | Variability (Statistical Index) | Main Evidence/Remarks |
|---|---|---|---|---|
| LVEF | TEE (intraoperative) | Deutsch HJ et al., 1993, Thorac Cardiovasc Surg [21] | r = 0.97 (inter-observer); segmental motion discrepancy ~9% | Early validation of intraoperative TEE reproducibility under controlled anesthetic conditions |
| LVEF | TTE (ICU, septic shock) | De Geer L et al., 2015, Cardiovasc ultrasound [22] | r = 0.78; ICC = 0.87 (95% CI 0.77–0.93) | Low variability even in mechanically ventilated patients |
| LV GLPS | TTE (ICU, ventilated patients) | De Geer L et al., 2015, Cardiovasc ultrasound [22] | k: 0.71 r: 0.84 ICC: 0.91 (95% CI 0.74–0.95) | Acceptable reproducibility for mitral annular tissue Doppler velocities |
| LVOT, VTI, CO | TTE (intensivist performing critical care echo) | Villavicencio C et al., 2019, Ultrasound J [23] | Intra-observer: excellent; inter-observer: good agreement for LVOT diameter, VTI, and CO (Fleiss index) | Validated reproducibility of VTI-based cardiac output among ICU physicians |
| TAPSE in PE | TTE (emergency department, physician-performed) | Daley J et al., 2017, Am J Emerg [24] | High inter-observer reliability (visual and quantitative TAPSE) k = 0.94 (95% CI, 0.87–0.98) ICC = 0.87 (95% CI, 0.79–0.93) | Emergency-physician-performed TAPSE proved accurate and reproducible in acute settings |
| TAPSE | TEE (perioperative cardiac surgery) | Korshin A et al., 2018, Int J Cardiovasc Imaging [25] | High feasibility (>90% and good agreement between TEE and TTE TAPSE) | Reliable quantification of RV function by TEE in surgical patients |
| Absolute Contraindications | Relative Contraindications |
|---|---|
| Esophageal perforation | Esophageal varices |
| Active upper gastrointestinal bleeding | Severe coagulopathy |
| Esophageal tumor/malignancy | Large hiatal hernia |
| Esophageal diverticulum | Recent upper gastrointestinal or esophageal surgery |
| History of esophageal strictures or dysphagia | |
| Cervical spine instability or severe arthritis (limiting neck extension) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torre, D.E.; Pirri, C. Point-of-Care Transesophageal Echocardiography in Emergency and Intensive Care: An Evolving Imaging Modality. Biomedicines 2025, 13, 2680. https://doi.org/10.3390/biomedicines13112680
Torre DE, Pirri C. Point-of-Care Transesophageal Echocardiography in Emergency and Intensive Care: An Evolving Imaging Modality. Biomedicines. 2025; 13(11):2680. https://doi.org/10.3390/biomedicines13112680
Chicago/Turabian StyleTorre, Debora Emanuela, and Carmelo Pirri. 2025. "Point-of-Care Transesophageal Echocardiography in Emergency and Intensive Care: An Evolving Imaging Modality" Biomedicines 13, no. 11: 2680. https://doi.org/10.3390/biomedicines13112680
APA StyleTorre, D. E., & Pirri, C. (2025). Point-of-Care Transesophageal Echocardiography in Emergency and Intensive Care: An Evolving Imaging Modality. Biomedicines, 13(11), 2680. https://doi.org/10.3390/biomedicines13112680
