Beyond ER Stress: The Pleiotropic Roles of XBP1 in Development and Regeneration
Abstract
1. Introduction
2. The Regulatory Role of XBP1 in Organogenesis and Tissue Homeostasis
2.1. Nervous System
2.2. Cardiovascular System
2.3. Immune System
2.4. Skeletal System
2.5. Exocrine Glands
3. The Promises and Challenges of XBP1 in Regeneration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| XBP1 | X-box binding protein 1 |
| IRE1α | Inositol requiring enzyme 1 |
| ER | endoplasmic reticulum |
| bZIP | basic leucine zipper |
| UPR | unfolded protein response |
| NES | nuclear export signal |
| ERAD | ER-associated degradation |
| AD | Alzheimer’s disease |
| PD | Parkinson’s disease |
| HD | Huntington’s disease |
| ALS | amyotrophic lateral sclerosis |
| TMJ | temporomandibular joint |
References
- Sui, B.; Zheng, C.; Zhao, W.; Xuan, K.; Li, B.; Jin, Y. Mesenchymal Condensation in Tooth Development and Regeneration: A Focus on Translational Aspects of Organogenesis. Physiol. Rev. 2023, 103, 1899–1964. [Google Scholar] [CrossRef]
- Moiseeva, A.; Nikolenko, V.; Oganesyan, M.; Nikitina, A.; Rizaeva, N.; Zharikova, T.; Pontes-Silva, A.; Zharikov, Y. Neural Crest Cells: Bridging Embryology and Regenerative Medicine. Neuroscience 2025, 579, 259–266. [Google Scholar] [CrossRef]
- Hénon, P. Key Success Factors for Regenerative Medicine in Acquired Heart Diseases. Stem Cell Rev. Rep. 2020, 16, 441–458. [Google Scholar] [CrossRef]
- Miron, R.; Shirakata, Y.; Ahmad, P.; Romandini, M.; Estrin, N.; Farshidfar, N.; Bosshardt, D.; Sculean, A. 30 Years of Enamel Matrix Derivative: Mimicking Tooth Development as a Clinical Concept. Periodontol. 2000, 2025; Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Spitz, F.; Furlong, E. Transcription Factors: From Enhancer Binding to Developmental Control. Nat. Rev. Genet. 2012, 13, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Fei, L.; Chen, H.; Ma, L.; E, W.; Wang, R.; Fang, X.; Zhou, Z.; Sun, H.; Wang, J.; Jiang, M.; et al. Systematic Identification of Cell-Fate Regulatory Programs Using a Single-Cell Atlas of Mouse Development. Nat. Genet. 2022, 54, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.S.; Tomaz da Silva, M.; Roy, A.; Koike, T.E.; Wu, M.; Castillo, M.B.; Gunaratne, P.H.; Liu, Y.; Iwawaki, T.; Kumar, A. The IRE1α/XBP1 Signaling Axis Drives Myoblast Fusion in Adult Skeletal Muscle. EMBO Rep. 2024, 25, 3627–3650. [Google Scholar] [CrossRef]
- Lee, A.; Chu, G.; Iwakoshi, N.; Glimcher, L. XBP-1 Is Required for Biogenesis of Cellular Secretory Machinery of Exocrine Glands. EMBO J. 2005, 24, 4368–4380. [Google Scholar] [CrossRef]
- Hasegawa, D.; Calvo, V.; Avivar-Valderas, A.; Lade, A.; Chou, H.; Lee, Y.; Farias, F.; Aguirre-Ghiso, J.; Friedman, S. Epithelial Xbp1 Is Required for Cellular Proliferation and Differentiation during Mammary Gland Development. Mol. Cell Biol. 2015, 35, 1543–1556. [Google Scholar] [CrossRef]
- Cox, J.; Walter, P. A Novel Mechanism for Regulating Activity of a Transcription Factor That Controls the Unfolded Protein Response. Cell 1996, 87, 391–404. [Google Scholar] [CrossRef]
- Luo, X.; Alfason, L.; Wei, M.; Wu, S.; Kasim, V. Spliced or Unspliced, That Is the Question: The Biological Roles of XBP1 Isoforms in Pathophysiology. Int. J. Mol. Sci. 2022, 23, 2746. [Google Scholar] [CrossRef] [PubMed]
- Matus, S.; Nassif, M.; Glimcher, L.; Hetz, C. XBP-1 Deficiency in the Nervous System Reveals a Homeostatic Switch to Activate Autophagy. Autophagy 2009, 5, 1226–1228. [Google Scholar] [CrossRef]
- Hayashi, A.; Kasahara, T.; Kametani, M.; Kato, T. Attenuated BDNF-Induced Upregulation of GABAergic Markers in Neurons Lacking Xbp1. Biochem. Biophys. Res. Commun. 2008, 376, 758–763. [Google Scholar] [CrossRef]
- Martínez, G.; Vidal, R.; Mardones, P.; Serrano, F.; Ardiles, A.O.; Wirth, C.; Valdés, P.; Thielen, P.; Schneider, B.L.; Kerr, B.; et al. Regulation of Memory Formation by the Transcription Factor XBP1. Cell Rep. 2016, 14, 1382–1394. [Google Scholar] [CrossRef]
- Masaki, T.; Yoshida, M.; Noguchi, S. Targeted Disruption of CRE-Binding Factor TREB5 Gene Leads to Cellular Necrosis in Cardiac Myocytes at the Embryonic Stage. Biochem. Biophys. Res. Commun. 1999, 261, 350–356. [Google Scholar] [CrossRef]
- Zeng, L.; Xiao, Q.; Chen, M.; Margariti, A.; Martin, D.; Ivetic, A.; Xu, H.; Mason, J.; Wang, W.; Cockerill, G.; et al. Vascular Endothelial Cell Growth–Activated XBP1 Splicing in Endothelial Cells Is Crucial for Angiogenesis. Circulation 2013, 127, 1712–1722. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Dougan, S.; McGehee, A.; Love, J.; Ploegh, H. XBP-1 Regulates Signal Transduction, Transcription Factors and Bone Marrow Colonization in B Cells. EMBO J. 2009, 28, 1624–1636. [Google Scholar] [CrossRef]
- Iwakoshi, N.; Pypaert, M.; Glimcher, L. The Transcription Factor XBP-1 Is Essential for the Development and Survival of Dendritic Cells. J. Exp. Med. 2007, 204, 2267–2275. [Google Scholar] [CrossRef]
- Bettigole, S.; Lis, R.; Adoro, S.; Lee, A.; Spencer, L.; Weller, P.F.; Glimcher, L.H. The Transcription Factor XBP1 Is Selectively Required for Eosinophil Differentiation. Nat. Immunol. 2015, 16, 829–837. [Google Scholar] [CrossRef]
- Tohmonda, T.; Miyauchi, Y.; Ghosh, R.; Yoda, M.; Uchikawa, S.; Takito, J.; Morioka, H.; Nakamura, M.; Iwawaki, T.; Chiba, K.; et al. The IRE1α–XBP1 Pathway Is Essential for Osteoblast Differentiation through Promoting Transcription of Osterix. EMBO Rep. 2011, 12, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Cameron, T.; Gresshoff, I.; Bell, K.; Piróg, K.; Sampurno, L.; Hartley, C.; Sanford, E.; Wilson, R.; Ermann, J.; Boot-Handford, R.; et al. Cartilage-Specific Ablation of XBP1 Signaling in Mouse Results in a Chondrodysplasia Characterized by Reduced Chondrocyte Proliferation and Delayed Cartilage Maturation and Mineralization. Osteoarthr. Cartil. 2015, 23, 661–670. [Google Scholar] [CrossRef]
- Kaser, A.; Lee, A.; Franke, A.; Glickman, J.; Zeissig, S.; Tilg, H.; Nieuwenhuis, E.; Higgins, D.; Schreiber, S.; Glimcher, L.; et al. XBP1 Links ER Stress to Intestinal Inflammation and Confers Genetic Risk for Human Inflammatory Bowel Disease. Cell 2008, 134, 743–756. [Google Scholar] [CrossRef] [PubMed]
- Reimold, A.; Etkin, A.; Clauss, I.; Perkins, A.; Friend, D.; Zhang, J.; Horton, H.; Scott, A.; Orkin, S.; Byrne, M.; et al. An Essential Role in Liver Development for Transcription Factor XBP-1. Genes Dev. 2000, 14, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.; Giesy, S.; Long, Q.; Krumm, C.; Harvatine, K.; Boisclair, Y. XBP1 Regulates the Biosynthetic Capacity of the Mammary Gland During Lactation by Controlling Epithelial Expansion and Endoplasmic Reticulum Formation. Endocrinology 2016, 157, 417–428. [Google Scholar] [CrossRef]
- Duran-Aniotz, C.; Poblete, N.; Rivera-Krstulovic, C.; Ardiles, Á.O.; Díaz-Hung, M.L.; Tamburini, G.; Sabusap, C.M.P.; Gerakis, Y.; Cabral-Miranda, F.; Diaz, J.; et al. The Unfolded Protein Response Transcription Factor XBP1s Ameliorates Alzheimer’s Disease by Improving Synaptic Function and Proteostasis. Mol. Ther. 2023, 31, 2240–2256. [Google Scholar] [CrossRef]
- Valdés, P.; Mercado, G.; Vidal, R.; Molina, C.; Parsons, G.; Court, F.A.; Martinez, A.; Galleguillos, D.; Armentano, D.; Schneider, B.L.; et al. Control of Dopaminergic Neuron Survival by the Unfolded Protein Response Transcription Factor XBP1. Proc. Natl. Acad. Sci. USA 2014, 111, 6804–6809. [Google Scholar] [CrossRef]
- García-Huerta, P.; Troncoso-Escudero, P.; Wu, D.; Thiruvalluvan, A.; Cisternas-Olmedo, M.; Henríquez, D.R.; Plate, L.; Chana-Cuevas, P.; Saquel, C.; Thielen, P.; et al. Insulin-like Growth Factor 2 (IGF2) Protects against Huntington’s Disease through the Extracellular Disposal of Protein Aggregates. Acta Neuropathol. 2020, 140, 737–764. [Google Scholar] [CrossRef]
- Ozcan, L.; Ergin, A.; Lu, A.; Chung, J.; Sarkar, S.; Nie, D.; Myers, M.; Ozcan, U. Endoplasmic Reticulum Stress Plays a Central Role in Development of Leptin Resistance. Cell Metab. 2009, 9, 35–51. [Google Scholar] [CrossRef]
- Williams, K.; Liu, T.; Kong, X.; Fukuda, M.; Deng, Y.; Berglund, E.; Deng, Z.; Gao, Y.; Liu, T.; Sohn, J.; et al. Xbp1s in Pomc Neurons Connects ER Stress with Energy Balance and Glucose Homeostasis. Cell Metab. 2014, 20, 471–482. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Y.; Zhang, G.; Li, C.; Ding, G.; May, H.I.; Tran, D.H.; Luo, X.; Jiang, D.-S.; Li, D.L.; et al. Spliced X-Box Binding Protein 1 Stimulates Adaptive Growth Through Activation of mTOR. Circulation 2019, 140, 566–579. [Google Scholar] [CrossRef] [PubMed]
- Margariti, A.; Li, H.; Chen, T.; Martin, D.; Vizcay-Barrena, G.; Alam, S.; Karamariti, E.; Xiao, Q.; Zampetaki, A.; Zhang, Z.; et al. XBP1 mRNA Splicing Triggers an Autophagic Response in Endothelial Cells through BECLIN-1 Transcriptional Activation. J. Biol. Chem. 2013, 288, 859–872. [Google Scholar] [CrossRef]
- Liu, X.; Yu, J.; Xu, L.; Umphred-Wilson, K.; Peng, F.; Ding, Y.; Barton, B.; Lv, X.; Zhao, M.; Sun, S.; et al. Notch-Induced Endoplasmic Reticulum-Associated Degradation Governs Mouse Thymocyte Β−selection. eLife 2021, 10, e69975. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Xiao, X.; Hu, S.; He, W.; Wu, G.; Geng, X.; Fan, J.; Ma, L.; Liu, J.; Liu, Z.; et al. XBP1 Is Required in Th2 Polarization Induction in Airway Allergy. Theranostics 2022, 12, 5337–5349. [Google Scholar] [CrossRef] [PubMed]
- Duwaerts, C.; Siao, K.; Soon, R.; Her, C.; Iwawaki, T.; Kohno, K.; Mattis, A.; Maher, J. Hepatocyte-Specific Deletion of XBP1 Sensitizes Mice to Liver Injury through Hyperactivation of IRE1α. Cell Death Differ. 2021, 28, 1455–1465. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, H.; Bu, Q.; Wei, S.; Li, L.; Zhou, J.; Zhou, S.; Su, W.; Liu, M.; Liu, Z.; et al. Role of XBP1 in Regulating the Progression of Non-Alcoholic Steatohepatitis. J. Hepatol. 2022, 77, 312–325. [Google Scholar] [CrossRef]
- Hetz, C.; Zhang, K.; Kaufman, R. Mechanisms, Regulation and Functions of the Unfolded Protein Response. Nat. Rev. Mol. Cell Biol. 2020, 21, 421–438. [Google Scholar] [CrossRef]
- Hayashi, A.; Kasahara, T.; Iwamoto, K.; Ishiwata, M.; Kametani, M.; Kakiuchi, C.; Furuichi, T.; Kato, T. The Role of Brain-Derived Neurotrophic Factor (BDNF)-Induced XBP1 Splicing during Brain Development. J. Biol. Chem. 2007, 282, 34525–34534. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Q.; Kolls, B.J.; Mace, B.; Yu, S.; Li, X.; Liu, W.; Chaparro, E.; Shen, Y.; Dang, L.; et al. Sustained Overexpression of Spliced X-Box-Binding Protein-1 in Neurons Leads to Spontaneous Seizures and Sudden Death in Mice. Commun. Biol. 2023, 6, 252. [Google Scholar] [CrossRef]
- Wang, C.; Chang, Y.; Zhu, J.; Ma, R.; Li, G. Dual Role of Inositol-Requiring Enzyme 1α–X-Box Binding Protein 1 Signaling in Neurodegenerative Diseases. Neuroscience 2022, 505, 157–170. [Google Scholar] [CrossRef]
- Wu, J.; Yarmey, V.R.; Yang, O.J.; Soderblom, E.J.; San-Miguel, A.; Yan, D. Heat Shock Proteins Function as Signaling Molecules to Mediate Neuron-Glia Communication in C. Elegans during Aging. Nat. Neurosci. 2025, 28, 1635–1648. [Google Scholar] [CrossRef] [PubMed]
- Safra, M.; Ben-Hamo, S.; Kenyon, C.; Henis-Korenblit, S. The Ire-1 ER Stress-Response Pathway Is Required for Normal Secretory-Protein Metabolism in C. elegans. J. Cell Sci. 2013, 126, 4136–4146. [Google Scholar] [CrossRef]
- Yokota, T.; Li, J.; Huang, J.; Xiong, Z.; Zhang, Q.; Chan, T.; Ding, Y.; Rau, C.; Sung, K.; Ren, S.; et al. P38 Mitogen-Activated Protein Kinase Regulates Chamber-Specific Perinatal Growth in Heart. J. Clin. Investig. 2020, 130, 5287–5301. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, Y.; Gao, N.; Pedrozo, Z.; Li, D.L.; Morales, C.; Criollo, A.; Luo, X.; Tan, W.; Jiang, N.; et al. Spliced X-Box Binding Protein 1 Couples the Unfolded Protein Response to Hexosamine Biosynthetic Pathway. Cell 2014, 156, 1179–1192. [Google Scholar] [CrossRef]
- Ghosh, R.; Lipson, K.L.; Sargent, K.E.; Mercurio, A.M.; Hunt, J.S.; Ron, D.; Urano, F. Transcriptional Regulation of VEGF-A by the Unfolded Protein Response Pathway. PLoS ONE 2010, 5, e9575. [Google Scholar] [CrossRef] [PubMed]
- von Freeden-Jeffry, U.; Solvason, N.; Howard, M.; Murray, R. The Earliest T Lineage-Committed Cells Depend on IL-7 for Bcl-2 Expression and Normal Cell Cycle Progression. Immunity 1997, 7, 147–154. [Google Scholar] [CrossRef]
- Pramanik, J.; Chen, X.; Kar, G.; Henriksson, J.; Gomes, T.; Park, J.-E.; Natarajan, K.; Meyer, K.B.; Miao, Z.; McKenzie, A.N.J.; et al. Genome-Wide Analyses Reveal the IRE1a-XBP1 Pathway Promotes T Helper Cell Differentiation by Resolving Secretory Stress and Accelerating Proliferation. Genome Med. 2018, 10, 76. [Google Scholar] [CrossRef]
- Brucklacher-Waldert, V.; Ferreira, C.; Stebegg, M.; Fesneau, O.; Innocentin, S.; Marie, J.C.; Veldhoen, M. Cellular Stress in the Context of an Inflammatory Environment Supports TGF-β-Independent T Helper-17 Differentiation. Cell Rep. 2017, 19, 2357–2370. [Google Scholar] [CrossRef]
- Kamimura, D.; Bevan, M. Endoplasmic Reticulum Stress Regulator XBP-1 Contributes to Effector CD8+ T Cell Differentiation during Acute Infection. J. Immunol. 2008, 181, 5433–5441. [Google Scholar] [CrossRef]
- Shaffer, A.; Shapiro-Shelef, M.; Iwakoshi, N.; Lee, A.; Qian, S.; Zhao, H.; Yu, X.; Yang, L.; Tan, B.K.; Rosenwald, A.; et al. XBP1, Downstream of Blimp-1, Expands the Secretory Apparatus and Other Organelles, and Increases Protein Synthesis in Plasma Cell Differentiation. Immunity 2004, 21, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Adams, N.; Xu, Y.; Cao, J.; Allan, D.; Carlyle, J.; Chen, X.; Sun, J.; Glimcher, L. The IRE1 Endoplasmic Reticulum Stress Sensor Activates Natural Killer Cell Immunity in Part by Regulating C-Myc. Nat. Immunol. 2019, 20, 865–878. [Google Scholar] [CrossRef] [PubMed]
- Martinon, F.; Chen, X.; Lee, A.; Glimcher, L. TLR Activation of the Transcription Factor XBP1 Regulates Innate Immune Responses in Macrophages. Nat. Immunol. 2010, 11, 411–418. [Google Scholar] [CrossRef]
- Tian, P.; Jiang, Z.; Li, J.; Zhou, Z.; Zhang, Q.-H. Spliced XBP1 Promotes Macrophage Survival and Autophagy by Interacting with Beclin-1. Biochem. Biophys. Res. Commun. 2015, 463, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, Y.; Zhu, L.; Du, S.; Mao, J.; Wang, Y.; Wang, S.; Bo, Q.; Tu, Y.; Yi, Q. The P300/XBP1s/Herpud1 Axis Promotes Macrophage M2 Polarization and the Development of Choroidal Neovascularization. J. Cell. Mol. Med. 2021, 25, 6709–6720. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhou, J.; Zhang, P.; Song, F.; Jiang, R.; Li, M.; Xia, F.; Guo, F.-J. IRE1α Dissociates with BiP and Inhibits ER Stress-Mediated Apoptosis in Cartilage Development. Cell Signal 2013, 25, 2136–2146. [Google Scholar] [CrossRef]
- Hauser, B.; Aure, M.; Kelly, M.; Hoffman, M.P.; Chibly, A.M. Generation of a Single-Cell RNAseq Atlas of Murine Salivary Gland Development. iScience 2020, 23, 101838. [Google Scholar] [CrossRef]
- Kung, L.; Rajpar, M.; Preziosi, R.; Briggs, M.; Boot-Handford, R. Increased Classical Endoplasmic Reticulum Stress Is Sufficient to Reduce Chondrocyte Proliferation Rate in the Growth Plate and Decrease Bone Growth. PLoS ONE 2015, 10, e0117016. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Liang, L.; Fan, M.; Li, X.; Feng, N.; Pan, Y.; Tan, Q.; Xu, Q.; Xie, Y.; et al. Effect Of XBP1 Deficiency In Cartilage On The Regulatory Network Of LncRNA/circRNA-miRNA-mRNA. Int. J. Biol. Sci. 2022, 18, 315–330. [Google Scholar] [CrossRef]
- Guo, F.; Jiang, R.; Xiong, Z.; Xia, F.; Li, M.; Chen, L.; Liu, C. IRE1a Constitutes a Negative Feedback Loop with BMP2 and Acts as a Novel Mediator in Modulating Osteogenic Differentiation. Cell Death Dis. 2014, 5, e1239. [Google Scholar] [CrossRef] [PubMed]
- Hino, S.; Kondo, S.; Yoshinaga, K.; Saito, A.; Murakami, T.; Kanemoto, S.; Sekiya, H.; Chihara, K.; Aikawa, Y.; Hara, H.; et al. Regulation of ER Molecular Chaperone Prevents Bone Loss in a Murine Model for Osteoporosis. J. Bone Miner. Metab. 2010, 28, 131–138. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.; Ricupero, C.; He, L.; Wu, J.; Chen, K.; Friedman, R.; Guarnieri, P.; Wang, Z.; Zhou, X.; et al. Profiling of Stem/Progenitor Cell Regulatory Genes of the Synovial Joint by Genome-Wide RNA-Seq Analysis. BioMed Res. Int. 2018, 2018, 9327487. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Xu, Y.; Lin, W.; Luo, Z.; Han, Z.; Liu, S.; Qi, B.; Sun, C.; Go, K.; et al. Single-Cell Integration Analysis of Heterotopic Ossification and Fibrocartilage Developmental Lineage: Endoplasmic Reticulum Stress Effector Xbp1 Transcriptionally Regulates the Notch Signaling Pathway to Mediate Fibrocartilage Differentiation. Oxid. Med. Cell Longev. 2021, 2021, 7663366. [Google Scholar] [CrossRef]
- Lee, A.; Iwakoshi, N.; Glimcher, L. XBP-1 Regulates a Subset of Endoplasmic Reticulum Resident Chaperone Genes in the Unfolded Protein Response. Mol. Cell Biol. 2003, 23, 7448–7459. [Google Scholar] [CrossRef]
- Sriburi, R.; Jackowski, S.; Mori, K.; Brewer, J.W. XBP1: A Link between the Unfolded Protein Response, Lipid Biosynthesis, and Biogenesis of the Endoplasmic Reticulum. J. Cell Biol. 2004, 167, 35–41. [Google Scholar] [CrossRef]
- Joshi, A.; Castillo, M.; Tomaz da Silva, M.; Vuong, A.T.; Gunaratne, P.; Darabi, R.; Liu, Y.; Kumar, A. Single-Nucleus Transcriptomic Analysis Reveals the Regulatory Circuitry of Myofiber XBP1 during Regenerative Myogenesis. iScience 2024, 27, 111372. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Xu, L.; Kim, H.; Qiu, Y.; Zhang, K. Boosting UPR Transcriptional Activator XBP1 Accelerates Acute Wound Healing. PNAS Nexus 2023, 2, pgad050. [Google Scholar] [CrossRef]
- Ham, S.; Pyo, M.; Kang, M.; Kim, Y.; Lee, D.; Chung, J.; Lee, S. HSP47 Increases the Expression of Type I Collagen in Fibroblasts through IRE1α Activation, XBP1 Splicing, and Nuclear Translocation of β-Catenin. Cells 2024, 13, 527. [Google Scholar] [CrossRef] [PubMed]
- Angbohang, A.; Huang, L.; Li, Y.; Zhao, Y.; Gong, Y.; Fu, Y.; Mao, C.; Morales, J.; Luo, P.; Ehteramyan, M.; et al. X-Box Binding Protein 1–Mediated COL4A1s Secretion Regulates Communication between Vascular Smooth Muscle and Stem/Progenitor Cells. J. Biol. Chem. 2021, 296, 100541. [Google Scholar] [CrossRef]
- Mallick, R.; Montaser, A.; Komi, H.; Juusola, G.; Tirronen, A.; Gurzeler, E.; Barbiera, M.; Korpisalo, P.; Terasaki, T.; Nieminen, T.; et al. VEGF-B Is a Novel Mediator of ER Stress Which Induces Cardiac Angiogenesis via RGD-Binding Integrins Independent of VEGFR1/NRP Activities. Mol. Ther. 2025, 33, 3242–3256. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Qin, R.; Feng, J.; Liu, Y.; Zhou, X.; Qin, X.; Li, Y.; Zhang, Z.; He, X. XBP1s Gene of Endoplasmic Reticulum Stress Enhances Proliferation and Osteogenesis of Human Periodontal Ligament Cells. Tissue Cell 2023, 83, 102139. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Zhang, F.; Feng, N.; Kuang, B.; Fan, M.; Chen, C.; Pan, Y.; Zhou, P.; Geng, N.; Li, X.; et al. IRE1α Protects against Osteoarthritis by Regulating Progranulin-Dependent XBP1 Splicing and Collagen Homeostasis. Exp. Mol. Med. 2023, 55, 2376–2389. [Google Scholar] [CrossRef]
- Shen, C.; Jiang, T.; Zhu, B.; Le, Y.; Liu, J.; Qin, Z.; Chen, H.; Zhong, G.; Zheng, L.; Zhao, J.; et al. In Vitro Culture Expansion Impairs Chondrogenic Differentiation and the Therapeutic Effect of Mesenchymal Stem Cells by Regulating the Unfolded Protein Response. J. Biol. Eng. 2018, 12, 26. [Google Scholar] [CrossRef]
- Miyazaki, K.; Saito, Y.; Ichimura-Shimizu, M.; Imura, S.; Ikemoto, T.; Yamada, S.; Tokuda, K.; Morine, Y.; Tsuneyama, K.; Shimada, M. Defective Endoplasmic Reticulum Stress Response via X Box-Binding Protein 1 Is a Major Cause of Poor Liver Regeneration after Partial Hepatectomy in Mice with Non-Alcoholic Steatohepatitis. J. Hepatobiliary Pancreat. Sci. 2022, 29, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Tsybko, A.; Eremin, D.; Ilchibaeva, T.; Khotskin, N.; Naumenko, V. CDNF Exerts Anxiolytic, Antidepressant-like, and Procognitive Effects and Modulates Serotonin Turnover and Neuroplasticity-Related Genes. Int. J. Mol. Sci. 2024, 25, 10343. [Google Scholar] [CrossRef]
- Ajwani, J.; Hwang, E.; Portillo, B.; Lieu, L.; Wallace, B.; Kabahizi, A.; He, Z.; Dong, Y.; Grose, K.; Williams, K.W. Upregulation of Xbp1 in NPY/AgRP Neurons Reverses Diet-Induced Obesity and Ameliorates Leptin and Insulin Resistance. Neuropeptides 2024, 108, 102461. [Google Scholar] [CrossRef]
- Shi, M.; Zhang, L.; Bi, F.; Zhou, Z. ALKBH5 Inhibits YTHDF2-m6A-Mediated Degradation of RCN1 mRNA to Promote Keloid Formation by Activating IRE1α-XBP1-Mediated ER Stress. J. Cosmet. Dermatol. 2025, 24, e70177. [Google Scholar] [CrossRef]
- Tang, T.; Chan, Y.; Cheong, H.; Cheok, Y.; Anuar, N.; Looi, C.; Gan, G.; Wong, W. Regulatory Network of BLIMP1, IRF4, and XBP1 Triad in Plasmacytic Differentiation and Multiple Myeloma Pathogenesis. Cell. Immunol. 2022, 380, 104594. [Google Scholar] [CrossRef]
- Wang, Y.; Geng, S.; Fu, Y.; Sun, J. XBP1: A Key Regulator in Breast Cancer Development and Treatment. Pathol. Res. Pract. 2025, 269, 155900. [Google Scholar] [CrossRef]
- Maiers, J.; Kostallari, E.; Mushref, M.; deAssuncao, T.; Li, H.; Jalan-Sakrikar, N.; Huebert, R.; Cao, S.; Malhi, H.; Shah, V. The Unfolded Protein Response Mediates Fibrogenesis and Collagen I Secretion through Regulating TANGO1 in Mice. Hepatology 2017, 65, 983–998. [Google Scholar] [CrossRef] [PubMed]
- Tak, J.; Kim, Y.; Kim, S. Roles of X-Box Binding Protein 1 in Liver Pathogenesis. Clin. Mol. Hepatol. 2025, 31, 1–31. [Google Scholar] [CrossRef] [PubMed]







| System | Tissue/Cell Type | Developmental Model | Phenotype | ER Stress Dependency | Targets | References |
|---|---|---|---|---|---|---|
| Nervous System | Neuronal Cells | Neurons from Xbp1−/− mice | Impaired neurite outgrowth | No | Sst, Calb1, Npy | [13] |
| Hippocampus | Nestin-cre; Xbp1fl/fl mice | Cognitive dysfunction | No | Bdnf | [14] | |
| Circulatory System | Heart | Xbp1−/− mice | Severe defects in heart development | No | Not mentioned | [15] |
| Endothelial Cells | CAG-cre; Xbp1fl/fl mice | Reduced embryonic vasculature, growth retardation | No | Not mentioned | [16] | |
| Endothelial Cells | Tie2-cre; Xbp1fl/fl mice | Delayed early retinal angiogenesis | No | Not mentioned | [16] | |
| Immune System | B Cells | MD4-cre; Xbp1fl/fl mice | Form plasmablasts but fail to colonize in the bone marrow and maintain antibody production | No | Not mentioned | [17] |
| Dendritic Cells | Xbp1/Rag2−/− chimera mice | Reduced numbers and viability of conventional and plasmacytoid dendritic cells | No | Not mentioned | [18] | |
| Hematopoietic Cells | Vav1-cre; Xbp1fl/fl mice | Complete loss of eosinophils, no effect on peripheral basophils or neutrophils | No | Gata1, Prg2, Epx | [19] | |
| Eosinophils | Epx-cre; Xbp1fl/fl mice | Reduced eosinophil numbers | No | Not mentioned | [19] | |
| Skeletal System | Osteoblasts | In vitro osteoblast differentiation model using Ire1α−/− cells | Inhibition of osteoblast maturation | No | Osx | [20] |
| Chondrocytes | Col2a1-cre; Xbp1fl/fl mice | Chondrodysplasia | No | Not mentioned | [21] | |
| Digestive System | Intestinal Epithelial Cells | Villin-cre; Xbp1fl/fl mice | ER stress and spontaneous enteriti | No | Not mentioned | [22] |
| Liver | Xbp1−/− mice | Severe liver hypoplasia | No | Not mentioned | [23] | |
| Salivary Glands | Xbp1−/−; LivXBP1 mice | Poor ER development in acinar cells, increased intercellular spaces | Yes | Not mentioned | [8] | |
| Pancreas | Xbp1−/−; LivXBP1 mice | Pancreatic hypoplasia and impaired production of pancreatic digestive enzymes | Yes | Not mentioned | [8] | |
| Others | Mammary Epithelial Cells | hGFAP-cre; Xbp1fl/fl mice | Poor branching morphogenesis, impaired terminal bud formation, spontaneous stromal fibrosis | Yes | Not mentioned | [9] |
| Mammary Epithelial Cells | BLG-cre; Xbp1fl/fl mice | Low ER abundance, insufficient alveolar expansion | Yes | Not mentioned | [24] |
| System | Tissue/Cell Type | Disease Model | Phenotype | ER Stress Dependency | Targets | References |
|---|---|---|---|---|---|---|
| Nervous System | Brain | Alzheimer’s disease transgenic mice + AAV2 Xbp1s | Improved synaptic function and protein homeostasis | No | Cofilin-1 | [25] |
| Substantia Nigra | Nestin-cre; Xbp1fl/fl mice | Spontaneous neurodegenerative signs | Yes | Calreticulin, ERp72 | [26] | |
| Substantia Nigra | Parkinson’s disease mice + AAV Xbp1s | Increased survival of dopaminergic neurons | Yes | Not mentioned | [26] | |
| Nervous System | Nestin-cre; Xbp1fl/fl mice + experimental amyotrophic lateral sclerosis model | Enhanced clearance of misfolded protein aggregates, resistance to disease progression | Yes | Edem1 | [12] | |
| Brain | Nestin-cre; Xbp1fl/fl mice + Huntington’s disease model | Increased secretion of soluble mutant huntingtin, resistance to disease progression | Yes | Igf2 | [27] | |
| Hypothalamus | Nestin-cre; Xbp1fl/fl mice + high-fat diet | Obesity, hypothalamic leptin resistance | Yes | Not mentioned | [28] | |
| Pomc Neurons | Pomc neuron-specific induced expression of Xbp1s mice + high-fat diet | Improved insulin sensitivity and glucose levels, prevention of diet-induced obesity | Yes | Not mentioned | [29] | |
| Circulatory System | Cardiomyocytes | αMHC-cre; Xbp1fl/fl mice | Cardiac contractile dysfunction in adulthood, shortened lifespan | Yes | Fkbp11 | [30] |
| Cardiomyocytes | αMHC-cre; Xbp1fl/fl mice + hypertension condition | Cardiac dysfunction, heart failure | Yes | Fkbp11 | [30] | |
| Cardiomyocytes | αMHC-cre; Xbp1fl/fl; αMHC-tTA; TRE-Tg Xbp1s mice + hypertension condition | Restored cardiac adaptive growth, prevented cardiac dilation and heart failure under hypertension | Yes | Fkbp11 | [30] | |
| Endothelial Cells | Tie2-cre; Xbp1fl/fl mice + ischemia model | Impaired angiogenesis in ischemic muscle tissue | Not mentioned | Not mentioned | [16] | |
| Endothelial Cells | Endothelial cells + Ad Xbp1s | Increased autophagy | No | Beclin-1 | [31] | |
| Immune System | Thymocytes | CD2-icre; Sel1 fl/fl; Xbp1fl/fl mice | More severe thymocyte developmental defects | Yes | Not mentioned | [32] |
| CD4+ T Cells | CD4-cre; Xbp1fl/fl mice + airway allergy model | Prevented induction of Th2 cell polarization in the airway | No | Il4 | [33] | |
| Digestive System | Intestinal Epithelial Cells | Villin-cre; Xbp1fl/fl mice + experimental colitis model | Exacerbated inflammation and bleeding | Yes | Not mentioned | [22] |
| Hepatocytes | Adult AAV8-Transthyretin-cre; Xbp1fl/fl mice + high-fructose diet | Acute liver injury | Yes | Not mentioned | [34] | |
| Hepatocytes | Alb-cre; Xbp1fl/fl mice + high-fat diet | Inhibited development of steatohepatitis | Yes | Not mentioned | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Gu, F.; Ma, J.; Chen, Z. Beyond ER Stress: The Pleiotropic Roles of XBP1 in Development and Regeneration. Biomedicines 2025, 13, 2663. https://doi.org/10.3390/biomedicines13112663
Huang D, Gu F, Ma J, Chen Z. Beyond ER Stress: The Pleiotropic Roles of XBP1 in Development and Regeneration. Biomedicines. 2025; 13(11):2663. https://doi.org/10.3390/biomedicines13112663
Chicago/Turabian StyleHuang, Delan, Fan Gu, Jingzhi Ma, and Zhi Chen. 2025. "Beyond ER Stress: The Pleiotropic Roles of XBP1 in Development and Regeneration" Biomedicines 13, no. 11: 2663. https://doi.org/10.3390/biomedicines13112663
APA StyleHuang, D., Gu, F., Ma, J., & Chen, Z. (2025). Beyond ER Stress: The Pleiotropic Roles of XBP1 in Development and Regeneration. Biomedicines, 13(11), 2663. https://doi.org/10.3390/biomedicines13112663

