Comparative Hepatoprotective Effects of Dapagliflozin and Trimetazidine in Diabetic Rats with Doxorubicin-Induced Liver Injury
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Study
2.2. Study Outcomes
2.3. Biochemical Analysis
Biochemical Analysis of Liver Tissue
2.4. Histopathological Evaluation
2.5. Immunohistochemical Evaluation
2.6. Statistical Analysis
3. Results
3.1. Biochemical Results
3.2. Histopathological Results
3.3. Immunohistochemical Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aisiri, H.U.V.; Rao, M.R.; Ramani, V.K.; Naik, R. Co-Morbid Diabetes Mellitus in Cancer Patients Undergoing Treatment: A Case Series and Perspective. Front. Oncol. 2025, 15, 1615491. [Google Scholar] [CrossRef]
- Jo, A.; Parikh, S.; Sawczuk, N.; Turner, K.; Hong, Y.R. Health Care Use Among Cancer Patients With Diabetes, National Health and Nutrition Examination Survey, 2017–2020. Prev. Chronic Dis. 2024, 21, 240066. [Google Scholar] [CrossRef]
- Sikandar, A.; Farhat, K.; Afzal, A.; Ajmal, K.; Laeeq, M.; Khokhar, A. Protective Effects of Trimetazidine Against Doxorubicin-Induced Cardiotoxicity and Hepatotoxicity in Mice. J. Ayub Med. Coll. 2020, 32, 304–309. [Google Scholar]
- Salouege, I.; Ali, R.; Saïd, D.; Elkadri, N.; Kourda, N.; Lakhal, M.; Klouz, A. Means of Evaluation and Protection from Doxorubicin-Induced Cardiotoxicity and Hepatotoxicity in Rats. J. Cancer Res. Ther. 2014, 10, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, F.; Arasteh, O.; Elyasi, S. Preventive and Therapeutic Use of Herbal Compounds against Doxorubicin Induced Hepatotoxicity: A Comprehensive Review. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 1595–1617. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Pan, J.; Huang, S.; Chen, X.; Chang, A.C.Y.; Wang, C.; Zhang, J.; Zhang, H. Hydrogen Sulfide Protects Cardiomyocytes from Doxorubicin-Induced Ferroptosis through the SLC7A11/GSH/GPx4 Pathway by Keap1 S-Sulfhydration and Nrf2 Activation. Redox Biol. 2024, 70, 103066. [Google Scholar] [CrossRef] [PubMed]
- Negm, A.; Mersal, E.A.; Dawood, A.F.; Abd El-Azim, A.O.; Hasan, O.; Alaqidi, R.; Alotaibi, A.; Alshahrani, M.; Alheraiz, A.; Shawky, T.M. Multifaceted Cardioprotective Potential of Reduced Glutathione Against Doxorubicin-Induced Cardiotoxicity via Modulating Inflammation–Oxidative Stress Axis. Int. J. Mol. Sci. 2025, 26, 3201. [Google Scholar] [CrossRef] [PubMed]
- Pirabbasi, E.; Zangeneh, M.M.; Zangeneh, A.; Moradi, R.; Kalantar, M. Chemical Characterization and Effect of Ziziphora Clinopodioides Green-Synthesized Silver Nanoparticles on Cytotoxicity, Antioxidant, and Antidiabetic Activities in Streptozotocin-Induced Hepatotoxicity in Wistar Diabetic Male Rats. Food Sci. Nutr. 2024, 12, 3443–3451. [Google Scholar] [CrossRef]
- Wang, P.; Sun, Z.; Lan, Q.; Zhang, S.; Song, Y.; Yang, L.; Chen, M.; Shen, J.; Huang, Q.; Zhang, Y. Bioinformatics Analysis Combined with Experimental Validation Reveals the Novel Mechanisms of Multi-Targets of Dapagliflozin Attenuating Diabetic Liver Injury. Front. Endocrinol. 2025, 16, 1519153. [Google Scholar] [CrossRef]
- Yang, L.; Liu, D.; Yan, H.; Chen, K. Dapagliflozin Attenuates Cholesterol Overloading-Induced Injury in Mice Hepatocytes with Type 2 Diabetes Mellitus (T2DM) via Eliminating Oxidative Damages. Cell Cycle 2022, 21, 641–654. [Google Scholar] [CrossRef]
- Shi, M.; Zhang, H.; Wang, W.; Zhang, X.; Liu, J.; Wang, Q.; Wang, Y.; Zhang, C.; Guo, X.; Qiao, Q.; et al. Effect of Dapagliflozin on Liver and Pancreatic Fat in Patients with Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease. J. Diabetes Complicat. 2023, 37, 108610. [Google Scholar] [CrossRef] [PubMed]
- ElMahdy, M.K.; Helal, M.G.; Ebrahim, T.M. Potential Anti-Inflammatory Effect of Dapagliflozin in HCHF Diet- Induced Fatty Liver Degeneration through Inhibition of TNF-α, IL-1β, and IL-18 in Rat Liver. Int. Immunopharmacol. 2020, 86, 106730. [Google Scholar] [CrossRef]
- Lin, X.F.; Cui, X.N.; Yang, J.; Jiang, Y.F.; Wei, T.J.; Xia, L.; Liao, X.Y.; Li, F.; Wang, D.D.; Li, J.; et al. SGLT2 Inhibitors Ameliorate NAFLD in Mice via Downregulating PFKFB3, Suppressing Glycolysis and Modulating Macrophage Polarization. Acta Pharmacol. Sin. 2024, 45, 2579–2597. [Google Scholar] [CrossRef]
- Belosludtsev, K.N.; Starinets, V.S.; Belosludtsev, M.N.; Mikheeva, I.B.; Dubinin, M.V.; Belosludtseva, N.V. Chronic Treatment with Dapagliflozin Protects against Mitochondrial Dysfunction in the Liver of C57BL/6NCrl Mice with High-Fat Diet/Streptozotocin-Induced Diabetes Mellitus. Mitochondrion 2021, 59, 246–254. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Huang, W.; Han, Y.; Tan, H.; An, M.; Xiang, Q.; Zhou, R.; Yang, L.; Cheng, Y. Dapagliflozin Alleviates Hepatic Steatosis by Restoring Autophagy via the AMPK-MTOR Pathway. Front. Pharmacol. 2021, 12, 589273. [Google Scholar] [CrossRef]
- Bica, I.C.; Stoica, R.A.; Salmen, T.; Janež, A.; Volčanšek, Š.; Popovic, D.; Muzurovic, E.; Rizzo, M.; Stoian, A.P. The Effects of Sodium-Glucose Cotransporter 2-Inhibitors on Steatosis and Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease or Steatohepatitis and Type 2 Diabetes: A Systematic Review of Randomized Controlled Trials. Medicina 2023, 59, 1136. [Google Scholar] [CrossRef]
- Bellanti, F.; Buglio, A.L.; Serviddio, G.; Vendemiale, G.; Dobrakowski, M.; Kasperczyk, A.; Kasperczyk, S.; Aich, P.; Singh, S.P. Impact of Sodium Glucose Cotransporter-2 Inhibitors on Liver Steatosis/Fibrosis/Inflammation and Redox Balance in Non-Alcoholic Fatty Liver Disease. World J. Gastroenterol. 2022, 28, 3243–3257. [Google Scholar] [CrossRef]
- Hazem, R.M.; Ibrahim, A.Z.; Ali, D.A.; Moustafa, Y.M. Dapagliflozin Improves Steatohepatitis in Diabetic Rats via Inhibition of Oxidative Stress and Inflammation. Int. Immunopharmacol. 2022, 104, 108503. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Luo, Y.; Wang, X.; Orlicky, D.J.; Myakala, K.; Yang, P.; Levi, M. The Sodium-Glucose Cotransporter 2 Inhibitor Dapagliflozin Prevents Renal and Liver Disease in Western Diet Induced Obesity Mice. Int. J. Mol. Sci. 2018, 19, 137. [Google Scholar] [CrossRef]
- Satyam, S.M.; Bairy, L.K.; Rehman, A.; Attia, M.; Ahmed, L.; Emad, K.; Jaafer, Y.; Bahaaeldin, A. Unlocking Synergistic Hepatoprotection: Dapagliflozin and Silymarin Combination Therapy Modulates Nuclear Erythroid 2-Related Factor 2/Heme Oxygenase-1 Pathway in Carbon Tetrachloride-Induced Hepatotoxicity in Wistar Rats. Biology 2024, 13, 473. [Google Scholar] [CrossRef] [PubMed]
- Hassan, N.H.; Kamel, G.M.; Fayed, H.M.; Korany, R.M.S.; Ramadan, A. Dapagliflozin Alleviates Thioacetamide Induced-Liver Fibrosis in Rats via Controlling the Nrf2/HO-1 and TLR4/TGF-Β1/PI3K Signaling Pathways. Immunopharmacol. Immunotoxicol. 2025, 47, 392–405. [Google Scholar] [CrossRef] [PubMed]
- Phrueksotsai, S.; Pinyopornpanish, K.; Euathrongchit, J.; Leerapun, A.; Phrommintikul, A.; Buranapin, S.; Chattipakorn, N.; Thongsawat, S. The Effects of Dapagliflozin on Hepatic and Visceral Fat in Type 2 Diabetes Patients with Non-Alcoholic Fatty Liver Disease. J. Gastroenterol. Hepatol. 2021, 36, 2952–2959. [Google Scholar] [CrossRef]
- Hu, J.; Teng, J.; Hui, S.; Liang, L. SGLT-2 Inhibitors as Novel Treatments of Multiple Organ Fibrosis. Heliyon 2024, 10, e29486. [Google Scholar] [CrossRef]
- Hassan, H.A.; Nageeb, M.M.; Mohammed, H.O.; Samy, W.; Fawzy, A.; Afifi, R.; Abbas, N.A.T. Dapagliflozin Dampens Liver Fibrosis Induced by Common Bile Duct Ligation in Rats Associated with the Augmentation of the Hepatic Sirt1/AMPK/PGC1α/FoxO1 Axis. Toxicol. Appl. Pharmacol. 2024, 489, 116991. [Google Scholar] [CrossRef]
- Settaf, A.; Morin, D.; Lamchouri, F.; Elimadi, A.; Cherrah, Y.; Tillement, J.P. Trimetazidine Ameliorates the Hepatic Injury Associated with Ischaemia-Reperfusion in Rats. Pharmacol. Res. 1999, 39, 211–216. [Google Scholar] [CrossRef]
- El-Sherbeeny, N.A.; Ghalia, M. Attia The Protective Effect of Trimetazidine against Cisplatin- Induced Nephrotoxicity in Rats. Can. J. Physiol. Pharmacol. 2016, 94, 745–751. [Google Scholar] [CrossRef]
- Ciftel, S.; Mercantepe, T.; Aktepe, R.; Pinarbas, E.; Ozden, Z.; Yilmaz, A.; Mercantepe, F. Protective Effects of Trimetazidine and Dexmedetomidine on Liver Injury in a Mesenteric Artery Ischemia–Reperfusion Rat Model via Endoplasmic Reticulum Stress. Biomedicines 2024, 12, 2299. [Google Scholar] [CrossRef]
- Mate, V.; Pandit, V.; Wani, D.; Dhande, P. Role of Trimetazidine in Carbon Tetrachloride Induced Liver Damage in Rats. Int. J. Basic Clin. Pharmacol. 2014, 3, 164. [Google Scholar] [CrossRef]
- Ogutveren, M.M.; Satiroglu, O.; Ozden, Z.; Akyildiz, K.; Yilmaz, A.; Mercantepe, F.; Yilmaz, A.S.; Koc, H.; Mercantepe, T. Cardioprotective Effects of Dapagliflozin and Trimetazidine on Doxorubicin-Induced Cardiotoxicity in Streptozotocin-Induced Type 1 Diabetic Rats via Endoplasmic Reticulum Stress. J. Clin. Med. 2025, 14, 1315. [Google Scholar] [CrossRef] [PubMed]
- du Sert, N.P.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The Arrive Guidelines 2.0: Updated Guidelines for Reporting Animal Research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
- Furman, B.L. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr. Protoc. 2021, 1, e78. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Xu, J.; Tan, X.; Li, D.; Yao, D.; Xu, B.; Lei, Y. Dapagliflozin Protects against Dilated Cardiomyopathy Progression by Targeting NLRP3 Inflammasome Activation. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 1461–1470. [Google Scholar] [CrossRef]
- El-Sawy, W.S.M.; El-Bahrawy, A.H.; Messiha, B.A.S.; Hemeida, R.A.M.; Khalaf, M.M. The Impact of PPAR-γ/Nrf-2/HO-1, NF-ΚB/IL-6/ Keap-1, and Bcl-2/Caspase-3/ATG-5 Pathways in Mitigation of DOX-Induced Cardiotoxicity in an Animal Model: The Potential Cardioprotective Role of Oxyresveratrol and/or Dapagliflozin. Food Chem. Toxicol. 2024, 191, 114863. [Google Scholar] [CrossRef]
- Charan, J.; Kantharia, N. How to Calculate Sample Size in Animal Studies? J. Pharmacol. Pharmacother. 2013, 4, 303–306. [Google Scholar] [CrossRef]
- Rojas, D.B.; Gemelli, T.; De Andrade, R.B.; Campos, A.G.; Dutra-Filho, C.S.; Wannmacher, C.M.D. Administration of Histidine to Female Rats Induces Changes in Oxidative Status in Cortex and Hippocampus of the Offspring. Neurochem. Res. 2012, 37, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue Sulfhydryl Groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Aldahmash, B.A.; El-Nagar, D.M.; Ibrahim, K.E. Attenuation of Hepatotoxicity and Oxidative Stress in Diabetes STZ-Induced Type 1 by Biotin in Swiss Albino Mice. Saudi J. Biol. Sci. 2016, 23, 311–317. [Google Scholar] [CrossRef]
- Song, Q.; Muller, K.E.; Hondelink, L.M.; diFlorio-Alexander, R.M.; Karagas, M.R.; Hassanpour, S. Nonmetastatic Axillary Lymph Nodes Have Distinct Morphology and Immunophenotype in Obese Patients with Breast Cancer at Risk for Metastasis. Am. J. Pathol. 2024, 194, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Lu, K.; Chen, Z.; Zhu, Y.; Zhang, C.; Zhang, L. Pre-Treatment with Galectin-1 Attenuates Lipopolysaccharide-Induced Myocarditis by Regulating the Nrf2 Pathway. Eur. J. Histochem. 2023, 67, 370–380. [Google Scholar] [CrossRef]
- Elblehi, S.S.; Hafez, M.H.; El-Far, A.H. Panax Ginseng Ameliorates Hepatorenal Oxidative Alterations Induced by Commercially Used Cypermethrin in Male Rats: Experimental and Molecular Docking Approaches. Environ. Sci. Pollut. Res. 2023, 30, 109702–109723. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Jiang, L.; Liu, P.; Jiang, Y. Mechanism of Adipose Tissue-Derived Stromal Cell-Extracellular Vesicles in Treating Oral Submucous Fibrosis by Blocking the TGF-Β1/Smad3 Pathway via the MiR-760-3p/IGF1R Axis. Biomol. Biomed. 2024, 24, 827–839. [Google Scholar] [CrossRef] [PubMed]
- Bilen, A.; Mercantepe, F.; Tümkaya, L.; Yilmaz, A.; Batcik, Ş. The Hepatoprotective Potential of Resveratrol in an Experimental Model of Ruptured Abdominal Aortic Aneurysm via Oxidative Stress and Apoptosis. J. Biochem. Mol. Toxicol. 2021, 35, e22836. [Google Scholar] [CrossRef] [PubMed]
- Arifin, W.N.; Zahiruddin, W.M. Sample Size Calculation in Animal Studies Using Resource Equation Approach. Malays. J. Med. Sci. 2017, 24, 101–105. [Google Scholar] [CrossRef]
- Dastidar, S.G.; Jagatheesan, G.; Haberzettl, P.; Shah, J.; Hill, B.G.; Bhatnagar, A.; Conklin, D.J. Glutathione S-Transferase p Deficiency Induces Glucose Intolerance via Jnk-Dependent Enhancement of Hepatic Gluconeogenesis. Am. J. Physiol. Endocrinol. Metab. 2018, 315, E1005–E1018. [Google Scholar] [CrossRef]
- Harvey, C.J.; Thimmulappa, R.K.; Singh, A.; Blake, D.J.; Ling, G.; Wakabayashi, N.; Fujii, J.; Myers, A.; Biswal, S. Nrf2-Regulated Glutathione Recycling Independent of Biosynthesis Is Critical for Cell Survival during Oxidative Stress. Free Radic. Biol. Med. 2009, 46, 443–453. [Google Scholar] [CrossRef]
- Zhao, X.; Tian, Z.; Sun, M.; Dong, D. Nrf2: A Dark Horse in Doxorubicin-Induced Cardiotoxicity. Cell Death Discov. 2023, 9, 261. [Google Scholar] [CrossRef]
- Ma, Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef]
- Kantor, P.F.; Lucien, A.; Kozak, R.; Lopaschuk, G.D. The Antianginal Drug Trimetazidine Shifts Cardiac Energy Metabolism from Fatty Acid Oxidation to Glucose Oxidation by Inhibiting Mitochondrial Long-Chain 3-Ketoacyl Coenzyme A Thiolase. Circ. Res. 2000, 86, 580–588. [Google Scholar] [CrossRef]
- El-Din, Z.S.; Afify, M.; Zayed, E.; Elsabaawy, D.; Tharwa, E.S.; Elsharawy, A.; Abdelsameea, E.; Rady, M.A. Dapagliflozin as an Oral Antihyperglycemic Agent in the Management of Diabetes Mellitus in Patients with Liver Cirrhosis. World J. Exp. Med. 2024, 14, 95272. [Google Scholar] [CrossRef]
- Ma, H.X.; Wu, K.; Dong, F.H.; Cai, B.K.; Wu, D.; Lu, H.Y. Effects of Empagliflozin and Dapagliflozin in Alleviating Cardiac Fibrosis through SIRT6-Mediated Oxidative Stress Reduction. Sci. Rep. 2024, 14, 30764. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Zhou, D.; Zhang, S.; Qian, J.; Yang, L.; Tang, L. Trimetazidine Inhibits Liver Fibrosis and Hepatic Stellate Cell Proliferation and Blocks Transforming Growth Factor-β (TGFβ)/Smad Signaling in Vitro and in Vivo. Bioengineered 2022, 13, 7147–7156. [Google Scholar] [CrossRef] [PubMed]







| Group | MDA (TBARS) (nmol/g Tissue) | GSH (TT) (mM/g Tissue) | AST (IU/L) | ALT (IU/L) |
|---|---|---|---|---|
| Control (1) | 62.30 ± 10.3 | 7.43 ± 1.0 | 157 ± 36 | 65 ± 9 |
| STZ (2) | 78.88 ± 17.2 | 6.51 ± 1.3 | 485 ± 120 | 201 ± 78 |
| STZ + DOXO (3) | 67.36 ± 11.5 | 8.14 ± 1.1 | 203 ± 83 | 104 ± 44 |
| STZ + DOXO + TMZ (4) | 55.40 ± 11.8 | 10.02 ± 3.0 | 501 ± 138 | 188 ± 42 |
| STZ + DOXO + DAPA (5) | 64.72 ± 11.4 | 7.12 ± 1.3 | 227 ± 63 | 64 ± 17 |
| STZ + DOXO + TMZ + DAPA (6) | 62.37 ± 2.7 | 7.23 ± 2.0 | 172 ± 120 | 92 ± 51 |
| Sum of Squares | df | Mean Square | F | p | ||
|---|---|---|---|---|---|---|
| MDA (nmol/g Tissue) | Between Groups | 2,436,350 | 5 | 487,270 | 3610 | 0.008 |
| Within Groups | 5,669,287 | 42 | 134,983 | |||
| Total | 8,105,637 | 47 | ||||
| GSH (mM/g tissue) | Between Groups | 60,961 | 5 | 12,192 | 3918 | 0.005 |
| Within Groups | 130,707 | 42 | 3112 | |||
| Total | 191,668 | 47 | ||||
| AST (IU/L) | Between Groups | 1,004,933,020 | 5 | 200,986,604 | 20,041 | <0.001 |
| Within Groups | 421,213,822 | 42 | 10,028,901 | |||
| Total | 1,426,146,842 | 47 | ||||
| ALT (IU/L) | Between Groups | 147,763,583 | 5 | 29,552,717 | 13,796 | <0.001 |
| Within Groups | 89,968,423 | 42 | 2,142,105 | |||
| Total | 237,732,007 | 47 |
| Parameter | Eta-Squared | Cohen’s-f | PostHoc-Power |
|---|---|---|---|
| MDA | 0.301 | 0.656 | 0.928 |
| GSH | 0.318 | 0.683 | 0.948 |
| AST | 0.705 | 1.545 | 1.0 |
| ALT | 0.622 | 1.282 | 1.0 |
| Group (I) | Group (J) | Mean Difference (I–J) | Std. Error | p-Value | 95% CI Lower | 95% CI Upper |
|---|---|---|---|---|---|---|
| 1 | 2 | −327.75 | 50.07 | <0.001 | −483.60 | −171.90 |
| 1 | 4 | −343.67 | 50.07 | <0.001 | −499.51 | −187.82 |
| 2 | 3 | 282.31 | 50.07 | <0.001 | 126.47 | 438.16 |
| 2 | 5 | 258.27 | 50.07 | <0.001 | 102.42 | 414.12 |
| 3 | 4 | −298.23 | 50.07 | <0.001 | −454.08 | −142.38 |
| 4 | 5 | 274.19 | 50.07 | <0.001 | 118.34 | 430.03 |
| 6 | 2 | −312.73 | 50.07 | <0.001 | −468.58 | −156.89 |
| 6 | 4 | −328.65 | 50.07 | <0.001 | −484.50 | −172.80 |
| Group | Intralobular Degeneration and Focal Necrosis | Periportal Bridging Necrosis | Steatotic Hepatocytes | Vascular Congestion | LDS |
|---|---|---|---|---|---|
| Control (1) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) |
| STZ (2) | 3 (2–3) a | 2 (1–2) a | 2 (2–3) a | 2 (2–2) a | 8 (8–9) a |
| STZ + DOXO (3) | 3 (2–3) a | 2 (2–3) a,b | 2 (2–3) a,b | 3 (2–3) a,h | 10 (9–11) a,h |
| STZ + DOXO + TMZ (4) | 1 (1–2) a–c | 1 (1–1) a–c | 0 (0–0) b,c | 0 (0–1) b,c | 3 (2–3) a–c |
| STZ + DOXO + DAPA (5) | 1 (1–2) a–c | 1 (1–1) a–c | 1 (0–1) b–e | 0 (0–1) b–d,f | 3 (3–4) a–c |
| STZ + DOXO + TMZ + DAPA (6) | 1 (1–1) a–c | 1 (0–1) a–c | 0 (0–1) b,c | 0 (0–1) b,c,g | 2.5 (2–3) a,c,i |
| Group | Caspase-3 Positivity Score | 8-OHdG Positivity Score | TNF-α Positivity Score | TGF-1β Positivity Score | TUNEL Positivity Score | NF-kβ/p65 Positivity Score |
|---|---|---|---|---|---|---|
| Control | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) |
| STZ | 2 (2–2) a | 2 (2–3) a | 2 (2–3) a | 2 (1–2) a | 2 (2–2) a | 2 (2–2) a |
| STZ+ DOXO | 3 (2–3) a | 3 (2–3) a | 3 (2–3) a | 2 (2–3) a | 2 (2–3) a | 3 (2–3) a |
| STZ + DOXO + DAPA | 1 (0–1) a–c | 1 (1–1) a–c | 1 (1–2) a–c | 1 (0–1) b,c,j | 1 (0–1) a–c | 1 (1–1) a–c |
| STZ + DOXO + TMZ | 1 (0–1) b–d | 1 (1–2) b–d | 2 (2–3) b,f,g,h | 2 (1–2) a,k | 1 (0–2) a–c | 1 (1–2) a,c,m |
| STZ + DOXO + DAPA + TMZ | 1 (1–1) a–c | 2 (1–2) a–c,e | 2 (1–2) a,c,i | 0.5 (0–1) c,l | 1 (0–1) a–c | 1 (0–1) b,c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciftel, E.; Satiroglu, O.; Ogutveren, M.M.; Mercantepe, T.; Karakas, S.M.; Genc, O.; Yilmaz, A.; Mercantepe, F. Comparative Hepatoprotective Effects of Dapagliflozin and Trimetazidine in Diabetic Rats with Doxorubicin-Induced Liver Injury. Biomedicines 2025, 13, 2633. https://doi.org/10.3390/biomedicines13112633
Ciftel E, Satiroglu O, Ogutveren MM, Mercantepe T, Karakas SM, Genc O, Yilmaz A, Mercantepe F. Comparative Hepatoprotective Effects of Dapagliflozin and Trimetazidine in Diabetic Rats with Doxorubicin-Induced Liver Injury. Biomedicines. 2025; 13(11):2633. https://doi.org/10.3390/biomedicines13112633
Chicago/Turabian StyleCiftel, Enver, Omer Satiroglu, Muhammed Mursel Ogutveren, Tolga Mercantepe, Sibel Mataraci Karakas, Omer Genc, Adnan Yilmaz, and Filiz Mercantepe. 2025. "Comparative Hepatoprotective Effects of Dapagliflozin and Trimetazidine in Diabetic Rats with Doxorubicin-Induced Liver Injury" Biomedicines 13, no. 11: 2633. https://doi.org/10.3390/biomedicines13112633
APA StyleCiftel, E., Satiroglu, O., Ogutveren, M. M., Mercantepe, T., Karakas, S. M., Genc, O., Yilmaz, A., & Mercantepe, F. (2025). Comparative Hepatoprotective Effects of Dapagliflozin and Trimetazidine in Diabetic Rats with Doxorubicin-Induced Liver Injury. Biomedicines, 13(11), 2633. https://doi.org/10.3390/biomedicines13112633

