Sleep Apnea: The Slept-Upon Cardiovascular Risk Factor
Abstract
1. Introduction
2. Materials and Methods
3. Blood Pressure in OSA: Pathophysiology, Nocturnal Patterns, and Treatment Effects
4. Vascular and Hemostatic Consequences of OSA: Arterial Remodelling, Endothelial Dysfunction, and Hypercoagulability
5. From Nocturnal Hypoxia to Ventricular Remodelling: How OSA Drives Heart Failure
6. Obstructive Sleep Apnea and Arrhythmogenesis: Autonomic Imbalance, Triggers, and Substrate
7. Obstructive Sleep Apnea and Pulmonary Hypertension: Mechanisms, Phenotypes, and CPAP Effects
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
| Year | Study (First Author) | Design/Population | Aim/Purpose | Key Findings (Concise) | Outcome Area | Journal |
|---|---|---|---|---|---|---|
| 2019 | Benjafield [2] | Literature-based global analysis | Estimate global OSA burden | ~936 Million adults (30–69) with OSA; highest counts in USA, China, Brazil, India | Epidemiology/Prevalence | Lancet Respir Med |
| 2011 | Hermida [21] | Prospective cohort; treated hypertensives undergoing 24 h ABPM; median follow-up ≈5.6 years | To determine whether sleep-time BP reduction predicts/decreases CV risk | Each 5 mmHg decrease in sleep-time systolic BP associated with ≈17% reduction in CV events (p < 0.001), independent of other ABPM parameters | Cardiovascular events (composite) | J Am Coll Cardiol |
| 2019 | Sapiña-Beltrán [26] | Hypertensive OSA cohort | CPAP effect by circadian BP pattern | Greater nocturnal BP fall; partial restoration of dipping in non-dippers | Hypertension/CPAP | Eur Respir J |
| 2021 | Crinion [24] | Normotensive adults | OSA and non-dipping; reversibility | Non-dipping correlates with OSA severity; improves with therapy | Hypertension/Phenotype | ERJ Open Res |
| 2023 | Loh [29] | Systematic review/meta-analysis | RAAS activity in OSA | Higher RAAS markers in OSA; CPAP may reduce RAAS activation | Mechanistic/RAAS | J Sleep Res |
| 2016 | Krasińska [30] | Resistant HTN + OSA | Eplerenone effects | Reduced AHI, neck circumference, BP, and arterial stiffness | Hypertension/Intervention | Pol Arch Med Wewn |
| 2014 | Nicholl [31] | OSA without comorbidities | CPAP and RAAS | CPAP lowered aldosterone (men) and norepinephrine; reduced BP | Mechanistic/RAAS | AJRCCM |
| 2017 | de Souza [32] | Resistant HTN + OSA (RCT) | CPAP on aldosterone excretion | CPAP reduced 24 h urinary aldosterone | Hypertension/CPAP | J Hypertens |
| 2021 | Souza (ELSA-Brasil) [34] | Population cohort | OSA vs. CIMT | CIMT increases stepwise with OSA severity | Vascular/CIMT | ATVB |
| 2017 | Chen [35] | Meta-analysis | CPAP and CIMT | CPAP reduces CIMT over >6 months (~0.073 mm) | Vascular/CPAP | PLoS One |
| 2015 | Schwarz [40] | Systematic review/meta-analysis | CPAP and endothelial function | CPAP improves FMD by ~3–4 percentage points | Vascular/Endothelium | Respirology |
| 2012 | Del Ben [41] | OSA cohort | Oxidative stress and endothelium | PAP reduces oxidative stress; improves endothelial function | Vascular/Oxidative | BMC Pulm Med |
| 2016 | Lee (Sleep and Stent) [38] | PCI registry | OSA and MACCE post-PCI | Untreated moderate–severe OSA → higher 3-yr MACCE (18.9% vs. 14.0%) | CAD/Outcomes | Circulation |
| 2016 | Peker (RICCADSA) [65] | RCT, CAD + non-sleepy OSA | CPAP and CV outcomes | Neutral overall; adherence ≥ 4 h/night associated with benefit | CAD/CPAP | AJRCCM |
| 2010 | Gottlieb (SHHS) [37] | Community cohort | OSA and incident CHD/HF | OSA associated with incident CHD/HF in men | CAD/HF incidence | Circulation |
| 2022 | Hunt [56] | RCT post-PVI with OSA | CPAP and AF recurrence | No overall reduction vs. usual care | AF/CPAP | Heart Rhythm |
| 2015 | Shukla [57] | Meta-analysis | OSA treatment and AF recurrence | CPAP linked to ~42% lower AF recurrence | AF/CPAP | JACC Clin Electrophysiol |
| 2020 | Walker [55] | Cross-sectional | QTc in severe OSA | ~10 ms longer daytime QTc; more abnormal QTc | Arrhythmia substrate | Sleep Disord |
| 2020 | Azarbarzin [46] | Prospective cohorts | Hypoxic burden and HF | Hypoxic burden predicts incident HF better than AHI | HF/Prognosis | Chest |
| 2022 | Kidawara [45] | Prospective cohort | OSA and diastolic dysfunction | OSA severity/fragmentation predict incident diastolic dysfunction | HF/Diastolic | JAHA |
| 2020 | Gupta [47] | HFpEF case–control | SDB prevalence/type | SDB 64% in HFpEF (vs. 12% controls); OSA predominant | HFpEF/Phenotype | Monaldi Arch Chest Dis |
| 2023 | Wang [48] | HF by EF class | Prevalence by EF; event type | OSA more common in HFpEF/HFmrEF; central events in HFrEF | HF/EF phenotype | Sleep Breath |
| 2022 | Tamisier (FACE) [49] | HF (mixed) + SDB | 3-mo ASV effects | Better sleep metrics; no change in LVEF/HF class/outcomes | HF/Therapy | Thorax |
| 2022 | Naito [50] | HFrEF + OSA cohort | CPAP and LVEF | ~6% absolute LVEF rise in 1 month (more in younger/high BMI) | HFrEF/CPAP | Front Neurol |
| 2016 | Imran [62] | Meta-analysis (isolated OSA) | CPAP and pulmonary pressures | Mean PAP reduction ~13 mmHg (3–70 mo CPAP) | PH/CPAP | Heart Fail Rev |
| 2023 | PVDOMICS [61] | Group 1 PAH | Sleep hypoxia and outcomes | Hypoxic burden predicts RV dysfunction and worse survival | PH/Prognosis | JACC |
| 2024 | Feng [18] | Cross-trait GWAS + MR | Genetic OSA liability and CVD | Genetic OSA liability associates with higher AF/CVD risk | Genetics/OSA→CVD | Eur J Prev Cardiol |
| 2024 | Gao [19] | Two-sample MR | Mediation of BMI→AF | ~22% via OSA, ~49% via leptin; combined ~88% (BMI→AF to null) | Genetics/Mediation | Front Nutr |
References
- Gunta, S.P.; Jakulla, R.S.; Ubaid, A.; Mohamed, K.; Bhat, A.; López-Candales, A.; Norgard, N. Obstructive Sleep Apnea and Cardiovascular Diseases: Sad Realities and Untold Truths regarding Care of Patients in 2022. Cardiovasc Ther. 2022, 2022, 6006127. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.L.; et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoshide, S.; Kario, K.; Chia, Y.C.; Siddique, S.; Buranakitjaroen, P.; Tsoi, K.; Tay, J.C.; Turana, Y.; Chen, C.H.; Cheng, H.M.; et al. Characteristics of hypertension in obstructive sleep apnea: An Asian experience. J. Clin. Hypertens. 2021, 23, 489–495. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Redline, S.; Yenokyan, G.; Gottlieb, D.J.; Shahar, E.; O’Connor, G.T.; Resnick, H.E.; Diener-West, M.; Sanders, M.H.; Wolf, P.A.; Geraghty, E.M.; et al. Obstructive sleep apnea-hypopnea and incident stroke: The sleep heart health study. Am. J. Respir. Crit. Care Med. 2010, 182, 269–277. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e56–e67, Erratum in Circulation 2022, 145, e775. https://doi.org/10.1161/CIR.0000000000001043. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ouyang, Y.; Wang, Z.; Zhao, G.; Liu, L.; Bi, Y. Obstructive sleep apnea and risk of cardiovascular disease and all-cause mortality: A meta-analysis of prospective cohort studies. Int. J. Cardiol. 2013, 169, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fan, J.; Guo, R.; Hao, W.; Gong, W.; Yan, Y.; Zheng, W.; Ai, H.; Que, B.; Hu, D.; et al. Association of obstructive sleep apnoea with cardiovascular events in women and men with acute coronary syndrome. Eur. Respir. J. 2023, 61, 2201110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Albertsen, I.E.; Bille, J.; Piazza, G.; Lip, G.Y.H.; Nielsen, P.B. Cardiovascular Risk in Young Patients Diagnosed With Obstructive Sleep Apnea. J. Am. Heart Assoc. 2024, 13, e033506. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahmed, A.M.; Nur, S.M.; Xiaochen, Y. Association between obstructive sleep apnea and resistant hypertension: Systematic review and meta-analysis. Front. Med. 2023, 10, 1200952. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Esmaeili, N.; Gell, L.; Imler, T.; Hajipour, M.; Taranto-Montemurro, L.; Messineo, L.; Stone, K.L.; Sands, S.A.; Ayas, N.; Yee, J.; et al. The relationship between obesity and obstructive sleep apnea in four community-based cohorts: An individual participant data meta-analysis of 12,860 adults. EClinicalMedicine 2025, 83, 103221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Messineo, L.; Bakker, J.P.; Cronin, J.; Yee, J.; White, D.P. Obstructive sleep apnea and obesity: A review of epidemiology, pathophysiology and the effect of weight-loss treatments. Sleep Med. Rev. 2024, 78, 101996. [Google Scholar] [CrossRef]
- Gray, E.L.; McKenzie, D.K.; Eckert, D.J. Obstructive Sleep Apnea without Obesity Is Common and Difficult to Treat: Evidence for a Distinct Pathophysiological Phenotype. J. Clin. Sleep Med. 2017, 13, 81–88. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, D.; Ma, Y.; Xu, J.; Yi, F. Association between obstructive sleep apnea (OSA) and atrial fibrillation (AF): A dose-response meta-analysis. Medicine 2022, 101, e29443. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liang, V.; Holtstrand-Hjalm, H.; Peker, Y.; Thunstrom, E. Increased incidence of heart failure in patients with severe obstructive sleep apnoea: A long-term prospective cohort study. Eur. Heart J. 2020, 41 (Suppl. S2), ehaa946.1135. [Google Scholar] [CrossRef]
- Peppard, P.E.; Young, T.; Palta, M.; Dempsey, J.; Skatrud, J. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA 2000, 284, 3015–3021. [Google Scholar] [CrossRef] [PubMed]
- Blackman, A.; Foster, G.D.; Zammit, G.; Rosenberg, R.; Aronne, L.; Wadden, T.; Claudius, B.; Jensen, C.B.; Mignot, E. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: The SCALE Sleep Apnea randomized clinical trial. Int. J. Obes. 2016, 40, 1310–1319. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malhotra, A.; Grunstein, R.R.; Fietze, I.; Weaver, T.E.; Redline, S.; Azarbarzin, A.; Sands, S.A.; Schwab, R.J.; Dunn, J.P.; Chakladar, S.; et al. SURMOUNT-OSAInvestigators Tirzepatide for the Treatment of Obstructive Sleep Apnea Obesity. N. Engl. J. Med. 2024, 391, 1193–1205, Erratum in N. Engl. J. Med. 2024, 391, 1464. https://doi.org/10.1056/NEJMx240005. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feng, K.; Yang, J.; Liu, K. Shared genetic associations and aetiology between obstructive sleep apnoea and cardiovascular diseases: A genome-wide cross-trait analysis and bidirectional Mendelian randomization analysis. Eur. J. Prev. Cardiol. 2024, 3, zwae347. [Google Scholar] [CrossRef]
- Gao, Z.; Wei, H.; Xiao, J.; Huang, W. Mediators between body mass index and atrial fibrillation: A Mendelian randomization study. Front. Nutr. 2024, 11, 1369594. [Google Scholar] [CrossRef]
- Kwon, Y.; Tzeng, W.S.; Seo, J.; Logan, J.G.; Tadic, M.; Lin, G.-M.; Martinez-Garcia, M.A.; Pengo, M.; Liu, X.; Cho, Y.; et al. Obstructive sleep apnea and hypertension; critical overview. Clin. Hypertens. 2024, 30, 19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hermida, R.C.; Ayala, D.E.; Mojón, A.; Fernández, J.R. Decreasing sleep-time blood pressure determined by ambulatory monitoring reduces cardiovascular risk. J. Am. Coll. Cardiol. 2011, 58, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Qin, J.; Hu, X.; Xu, D.; Gao, L.; Wu, Y.; Chen, M.; Chen, Z.; Luo, F.; Shen, Y. Linking obstructive sleep apnea with pulmonary hypertension via pooled prevalence and causal association: A systematic review, meta-analysis and Mendelian randomization. Heart Lung 2025, 74, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Kario, K.; Hettrick, D.A.; Prejbisz, A.; Januszewicz, A. Obstructive Sleep Apnea-Induced Neurogenic Nocturnal Hypertension: A Potential Role of Renal Denervation? Hypertension 2021, 77, 1047–1060. [Google Scholar] [CrossRef] [PubMed]
- Crinion, S.J.; Kleinerova, J.; Kent, B.; Nolan, G.; Taylor, C.T.; Ryan, S.; McNicholas, W.T. Non-dipping nocturnal blood pressure correlates with obstructive sleep apnoea severity in normotensive subjects and may reverse with therapy. ERJ Open Res. 2021, 7, 00338–02021. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kario, K. Nocturnal Hypertension: New Technology and Evidence. Hypertension 2018, 71, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Sapiña-Beltrán, E.; Torres, G.; Benítez, I.; Santamaría-Martos, F.; Durán-Cantolla, J.; Egea, C.; Sánchez-de-la-Torre, M.; Barbé, F.; Dalmases, M.; on behalf of the Spanish Sleep Breathing Group. Differential blood pressure response to continuous positive airway pressure treatment according to the circadian pattern in hypertensive patients with obstructive sleep apnoea. Eur. Respir. J. 2019, 54, 1900098. [Google Scholar] [CrossRef] [PubMed]
- Martínez-García, M.A.; Capote, F.; Campos-Rodríguez, F.; Lloberes, P.; Díaz de Atauri, M.J.; Somoza, M.; Masa, J.F.; González, M.; Sacristán, L.; Barbé, F.; et al. Spanish Sleep Network Effect of CPAPon blood pressure in patients with obstructive sleep apnea resistant hypertension: The HIPARCOrandomized clinical trial. JAMA 2013, 310, 2407–2415. [Google Scholar] [CrossRef] [PubMed]
- Pépin, J.L.; Tamisier, R.; Barone-Rochette, G.; Launois, S.H.; Lévy, P.; Baguet, J.P. Comparison of continuous positive airway pressure and valsartan in hypertensive patients with sleep apnea. Am. J. Respir. Crit. Care Med. 2010, 182, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Loh, H.H.; Lim, Q.H.; Chai, C.S.; Goh, S.L.; Lim, L.L.; Yee, A.; Sukor, N. Influence and implications of the renin-angiotensin-aldosterone system in obstructive sleep apnea: An updated systematic review and meta-analysis. J. Sleep Res. 2023, 32, e13726. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krasińska, B.; Miazga, A.; Cofta, S.; Szczepaniak-Chicheł, L.; Trafas, T.; Krasiński, Z.; Pawlaczyk-Gabriel, K.; Tykarski, A. Effect of eplerenone on the severity of obstructive sleep apnea and arterial stiffness in patients with resistant arterial hypertension. Pol. Arch. Med. Wewn. 2016, 126, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Nicholl, D.D.; Hanly, P.J.; Poulin, M.J.; Handley, G.B.; Hemmelgarn, B.R.; Sola, D.Y.; Ahmed, S.B. Evaluation of continuous positive airway pressure therapy on renin-angiotensin system activity in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2014, 190, 572–580. [Google Scholar] [CrossRef] [PubMed]
- de Souza, F.; Muxfeldt, E.S.; Margallo, V.; Cortez, A.F.; Cavalcanti, A.H.; Salles, G.F. Effects of continuous positive airway pressure treatment on aldosterone excretion in patients with obstructive sleep apnoea and resistant hypertension: A randomized controlled trial. J. Hypertens. 2017, 35, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Kani, J.; Shiina, K.; Orihara, S.; Takahashi, T.; Nakano, H.; Fujii, M.; Saito, M.; Matsumoto, C.; Tomiyama, H.; Satomi, K. The impact of obstructive sleep apnea and heart rate on arterial stiffness: Results from the Tokyo Sleep Heart Study. Hypertens. Res. 2025. epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Souza, S.P.; Santos, R.B.; Santos, I.S.; Parise, B.K.; Giatti, S.; Aielo, A.N.; Cunha, L.F.; Silva, W.A.; Bortolotto, L.A.; Lorenzi-Filho, G.; et al. Obstructive Sleep Apnea, Sleep Duration, and Associated Mediators With Carotid Intima-Media Thickness: The ELSA-Brasil Study. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 1549–1557. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.D.; Lin, L.; Lin, X.J.; Ou, Y.W.; Wu, Z.; Ye, Y.M.; Xu, Q.Z.; Huang, Y.P.; Cai, Z.M. Effect of continuous positive airway pressure on carotid intima-media thickness in patients with obstructive sleep apnea: A meta-analysis. PLoS ONE 2017, 12, e0184293. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wons, A.M.; Kohler, M. Established vascular effects of continuous positive airway pressure therapy in patients with obstructive sleep apnoea—An update. J. Thorac. Dis. 2015, 7, 912–919. [Google Scholar] [CrossRef]
- Gottlieb, D.J.; Yenokyan, G.; Newman, A.B.; O’Connor, G.T.; Punjabi, N.M.; Quan, S.F.; Redline, S.; Resnick, H.E.; Tong, E.K.; Diener-West, M.; et al. Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: The sleep heart health study. Circulation 2010, 122, 352–360. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, C.H.; Sethi, R.; Li, R.; Ho, H.H.; Hein, T.; Jim, M.H.; Loo, G.; Koo, C.Y.; Gao, X.F.; Chandra, S.; et al. Obstructive Sleep Apnea and Cardiovascular Events After Percutaneous Coronary Intervention. Circulation 2016, 133, 2008–2017. [Google Scholar] [CrossRef] [PubMed]
- Bikov, A.; Meszaros, M.; Schwarz, E.I. Coagulation and Fibrinolysis in Obstructive Sleep Apnoea. Int. J. Mol. Sci. 2021, 22, 2834. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schwarz, E.I.; Puhan, M.A.; Schlatzer, C.; Stradling, J.R.; Kohler, M. Effect of CPAP therapy on endothelial function in obstructive sleep apnoea: A systematic review and meta-analysis. Respirology 2015, 20, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Del Ben, M.; Fabiani, M.; Loffredo, L.; Polimeni, L.; Carnevale, R.; Baratta, F.; Brunori, M.; Albanese, F.; Augelletti, T.; Violi, F.; et al. Oxidative stress mediated arterial dysfunction in patients with obstructive sleep apnoea and the effect of continuous positive airway pressure treatment. BMC Pulm. Med. 2012, 12, 36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kasai, T.; Bradley, T.D. Obstructive sleep apnea and heart failure: Pathophysiologic and therapeutic implications. J. Am. Coll. Cardiol. 2011, 57, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Al-Sadawi, M.; Theodoropoulos, K.; Saeidifard, F.; Kiladejo, A.; Al-Ajam, M.; Salciccioli, L.; Budzikowski, A.S. Sleep Apnea as a Risk Factor for Diastolic Dysfunction: A Systematic Review and Meta-Analysis. Respiration 2022, 101, 1051–1068. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, A.; Bansal, N.; Alsughayer, A.; Shah, M.; Alruwaili, W.; Mhanna, M.; Alfatlawi, H.; Kwak, E.S.; Salih, A.; Qwaider, M.; et al. Impact of Obstructive Sleep Apnea in Patients with Acute Heart Failure: A Nationwide Cohort Study. Hearts 2024, 5, 547–556. [Google Scholar] [CrossRef]
- Kidawara, Y.; Kadoya, M.; Morimoto, A.; Daimon, T.; Kakutani-Hatayama, M.; Kosaka-Hamamoto, K.; Miyoshi, A.; Konishi, K.; Kusunoki, Y.; Shoji, T.; et al. Sleep Apnea and Physical Movement During Sleep, But Not Sleep Duration, Are Independently Associated With Progression of Left Ventricular Diastolic Dysfunction: Prospective Hyogo Sleep Cardio-Autonomic Atherosclerosis Cohort Study. J. Am. Heart Assoc. 2022, 11, e024948. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Azarbarzin, A.; Sands, S.A.; Taranto-Montemurro, L.; Vena, D.; Sofer, T.; Kim, S.W.; Stone, K.L.; White, D.P.; Wellman, A.; Redline, S. The Sleep Apnea-Specific Hypoxic Burden Predicts Incident Heart Failure. Chest 2020, 158, 739–750. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, N.; Agrawal, S.; Goel, A.D.; Ish, P.; Chakrabarti, S.; Suri, J.C. Profile of sleep disordered breathing in heart failure with preserved ejection fraction. Monaldi Arch. Chest Dis. 2020, 90, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yu, F.C.; Wei, Q.; Chen, L.; Xu, X.; Ding, N.; Tong, J.Y. Prevalence and clinical characteristics of sleep-disordered breathing in patients with heart failure of different left ventricular ejection fractions. Sleep Breath. 2023, 27, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Tamisier, R.; Damy, T.; Bailly, S.; Davy, J.M.; Verbraecken, J.; Lavergne, F.; Palot, A.; Goutorbe, F.; d’Ortho, M.P.; Pépin, J.L.; et al. Adaptive servo ventilation for sleep apnoea in heart failure: The FACE study 3-month data. Thorax 2022, 77, 178–185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naito, R.; Kasai, T.; Dohi, T.; Takaya, H.; Narui, K.; Momomura, S.I. Factors Associated With the Improvement of Left Ventricular Systolic Function by Continuous Positive Airway Pressure Therapy in Patients With Heart Failure With Reduced Ejection Fraction and Obstructive Sleep Apnea. Front. Neurol. 2022, 13, 781054. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Z.; Jiang, F.; Xiao, J.; Chen, L.; Zhang, Y.; Li, J.; Yi, Y.; Min, W.; Su, L.; Liu, X.; et al. Heart rate variability changes in patients with obstructive sleep apnea: A systematic review and meta-analysis. J. Sleep Res. 2023, 32, e13708. [Google Scholar] [CrossRef] [PubMed]
- Zabara-Antal, A.; Crisan-Dabija, R.; Arcana, R.I.; Melinte, O.E.; Pintilie, A.L.; Grosu-Creanga, I.A.; Zabara, M.L.; Trofor, A. Heart Rate Variability (HRV) in Patients with Sleep Apnea and COPD: A Comprehensive Analysis. J. Clin. Med. 2025, 14, 4630. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saleeb-Mousa, J.; Nathanael, D.; Coney, A.M.; Kalla, M.; Brain, K.L.; Holmes, A.P. Mechanisms of Atrial Fibrillation in Obstructive Sleep Apnoea. Cells 2023, 12, 1661. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mehra, R.; Chung, M.K.; Olshansky, B.; Dobrev, D.; Jackson, C.L.; Kundel, V.; Linz, D.; Redeker, N.S.; Redline, S.; Sanders, P.; et al. Sleep-Disordered Breathing and Cardiac Arrhythmias in Adults: Mechanistic Insights and Clinical Implications: A Scientific Statement From the American Heart Association. Circulation 2022, 146, e119–e136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walker, M.; Blackwell, J.N.; Stafford, P.; Patel, P.; Mazimba, S.; Mehta, N.; Cho, Y.; Mangrum, M.; Nazarian, S.; Bilchick, K.; et al. Daytime QT by Routine 12-Lead ECG Is Prolonged in Patients with Severe Obstructive Sleep Apnea. Sleep Disord. 2020, 2020, 3029836. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hunt, T.E.; Traaen, G.M.; Aakerøy, L.; Bendz, C.; Øverland, B.; Akre, H.; Steinshamn, S.; Loennechen, J.P.; Hegbom, F.; Broch, K.; et al. Effect of continuous positive airway pressure therapy on recurrence of atrial fibrillation after pulmonary vein isolation in patients with obstructive sleep apnea: A randomized controlled trial. Heart Rhythm. 2022, 19, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Aizer, A.; Holmes, D.; Fowler, S.; Park, D.S.; Bernstein, S.; Bernstein, N.; Chinitz, L. Effect of Obstructive Sleep Apnea Treatment on Atrial Fibrillation Recurrence: A Meta-Analysis. JACC Clin. Electrophysiol. 2015, 1, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Domaradzki, D.; Lelakowski, J.; Konieczyńska, M.; Matusik, P.T. Continuous positive airway pressure treatment reduces ventricular arrhythmias in obstructive sleep apnea patients with nocturnal dominance of arrhythmias and severe desaturations. Pol. Arch. Intern. Med. 2022, 132, 16236. [Google Scholar] [CrossRef] [PubMed]
- Tyfel-Paluszek, J.; Kułaga, A.; Mikunda, A.; Pominkiewicz, Ł.; Łach, J.; Płazak, W. Severe bradycardia in patients with obstructive sleep apnoea and good early response to CPAP. Sleep Breath. 2025, 29, 90. [Google Scholar] [CrossRef] [PubMed]
- Schlatzer, C.; Bratton, D.J.; Craig, S.E.; Kohler, M.; Stradling, J.R. ECG risk markers for atrial fibrillation and sudden cardiac death in minimally symptomatic obstructive sleep apnoea: The MOSAIC randomised trial. BMJ Open 2016, 6, e010150. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lowery, M.M.; Hill, N.S.; Wang, L.; Rosenzweig, E.B.; Bhat, A.; Erzurum, S.; Finet, J.E.; Jellis, C.L.; Kaur, S.; Kwon, D.H.; et al. Pulmonary Vascular Disease Phenomics (PVDOMICS) Study Group Sleep-Related Hypoxia Right Ventricular Dysfunction Survival in Patients With Group 1 Pulmonary Arterial Hypertension. J. Am. Coll. Cardiol. 2023, 82, 1989–2005. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Imran, T.F.; Ghazipura, M.; Liu, S.; Hossain, T.; Ashtyani, H.; Kim, B.; Michael Gaziano, J.; Djoussé, L. Effect of continuous positive airway pressure treatment on pulmonary artery pressure in patients with isolated obstructive sleep apnea: A meta-analysis. Heart Fail. Rev. 2016, 21, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Balcan, B.; Akdeniz, B.; Peker, Y.; The Turcosact Collaborators. Obstructive Sleep Apnea and Pulmonary Hypertension: A Chicken-and-Egg Relationship. J. Clin. Med. 2024, 13, 2961. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McQuade, C.N.; Althouse, A.D.; Prince, J.S.; Sommerfeld, A.J.; Atwood, C.W.; Mulukutla, S.R.; Hickey, G.W. Pulmonary Hypertension Is Associated With Increased Mortality and Readmission in Patients With Obstructive Sleep Apnea Admitted for Heart Failure Exacerbation. J. Card. Fail. 2018, 24 (Suppl. S8), S92–S93. [Google Scholar] [CrossRef]
- Peker, Y.; Glantz, H.; Eulenburg, C.; Wegscheider, K.; Herlitz, J.; Thunström, E. Effect of Positive Airway Pressure on Cardiovascular Outcomes in Coronary Artery Disease Patients with Nonsleepy Obstructive Sleep Apnea. The RICCADSA Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2016, 194, 613–620. [Google Scholar] [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintilie, A.-L.; Marcu, D.T.M.; Zabara-Antal, A.; Arcana, R.-I.; Iosep, D.-G.; Miron, M.; Afloarei, C.-A.; Zabara, M.-L.; Crisan Dabija, R. Sleep Apnea: The Slept-Upon Cardiovascular Risk Factor. Biomedicines 2025, 13, 2529. https://doi.org/10.3390/biomedicines13102529
Pintilie A-L, Marcu DTM, Zabara-Antal A, Arcana R-I, Iosep D-G, Miron M, Afloarei C-A, Zabara M-L, Crisan Dabija R. Sleep Apnea: The Slept-Upon Cardiovascular Risk Factor. Biomedicines. 2025; 13(10):2529. https://doi.org/10.3390/biomedicines13102529
Chicago/Turabian StylePintilie, Adriana-Loredana, Dragos Traian Marius Marcu, Andreea Zabara-Antal, Raluca-Ioana Arcana, Diana-Gabriela Iosep, Mihnea Miron, Carina-Adina Afloarei, Mihai-Lucian Zabara, and Radu Crisan Dabija. 2025. "Sleep Apnea: The Slept-Upon Cardiovascular Risk Factor" Biomedicines 13, no. 10: 2529. https://doi.org/10.3390/biomedicines13102529
APA StylePintilie, A.-L., Marcu, D. T. M., Zabara-Antal, A., Arcana, R.-I., Iosep, D.-G., Miron, M., Afloarei, C.-A., Zabara, M.-L., & Crisan Dabija, R. (2025). Sleep Apnea: The Slept-Upon Cardiovascular Risk Factor. Biomedicines, 13(10), 2529. https://doi.org/10.3390/biomedicines13102529

