Mechanisms for Precision, Patient-Centered Therapy in Inflammatory Bowel Disease
1. Introduction
2. Cross-Cutting Themes: Toward Precise, Mechanism-Guided Care
3. Overview of the 18 Articles by Domain
3.1. Mechanisms and Preclinical Therapeutics
- Pyroptosis inhibition in UC (original research). Inhibiting caspase-1-dependent pyroptosis through TLR4/NF-κB and inflammasome modulation reduces colitis and restores barrier integrity, highlighting pyroptosis as a promising druggable target [24].
- Pathogenesis synthesis (review). This narrative review integrates epithelial, immune, microbial, and environmental cues to map IBD pathobiology and explores the resulting therapeutic implications [25].
- Bile-acid signaling (review). Bile acids are reframed as signaling mediators with entry points for intervention at both the receptor and metabolic levels [26].
3.2. Microbiome, Diet, and Mucosal Healing
- Mucosa-associated microbiota and drug intolerance (original research). Patients with UC who have 5-ASA intolerance exhibit distinct mucosal microbiota compositions, suggesting that first-line treatment choices could be stratified based on microbiome profiles [27].
- Drug–microbiome interplay in CD (original research). Mesalazine, azathioprine, and infliximab use is associated with shifts toward short-chain fatty acid (SCFA)-producing taxa and greater microbial evenness relative to untreated disease [28].
- Oral pathobionts in IBD (original research). Fungal and viral colonization of the oral cavity is documented in IBD, highlighting a potential extraintestinal reservoir of dysbiosis [29].
- Dietary perspective: coffee (original research). In a real-world cohort, many patients continue coffee consumption and do not experience worsened symptoms. In UC, coffee users were observed to have lower fecal calprotectin levels, suggesting a benign or even beneficial effect [30].
- Microbiome-targeted therapies (review). This review provides an overview of fecal microbiota transplantation (FMT) refinement, live biotherapeutics, and engineered strategies aligned to host–microbe mechanisms [31].
3.3. Clinical Pharmacology and Comparative Effectiveness
- Infliximab PBPK (original research). Virtual adult and pediatric populations show route- and weight-dependent exposure differences; notably, flat subcutaneous (SC) dosing may underdose heavier adults, advocating for exposure-guided adjustments [32].
- Vedolizumab population-PK models (original research). An external evaluation suggests that existing models are imperfect for a priori individualization but are useful for simulation-guided regimen planning and, with therapeutic drug monitoring (TDM), for dose optimization [33].
- IL-12/23 inhibitors: SC vs. IV (systematic review/meta-analysis). Comparable efficacy and safety across routes support delivery aligned with patient preference in moderate-to-severe CD [34].
- Pharmacogenetics of vedolizumab response (original research). Whole-exome sequencing (WES) in a Middle Eastern cohort identifies rare variants enriched in non-responders across canonical IBD-inflammation genes, pointing to biomarker-guided biologic selection [35].
3.4. Clinical Management and Complications
- Postoperative recurrence in CD (review/meta-analysis). Risk stratification, endoscopic monitoring, and early biologic prophylaxis—often using an anti-TNF agent as first-line therapy—serve as the cornerstones of recurrence prevention and management [39].
- Extraintestinal disease (review). A comprehensive review of EIMs (extraintestinal manifestations) outlines the pathophysiology and treatment principles across joints, skin, eyes, and the hepatobiliary system, emphasizing the need for integrated care [12].
- Ocular involvement (review). Episcleritis tends to track with luminal disease activity, whereas uveitis often diverges. Notably, therapy can both treat ocular complications and, in rare cases, precipitate them—care pathways should anticipate both possibilities [37].
3.5. Genetics and Biomarkers
- Shared genetic etiologies across IMIDs (original research—newly added). Multi-trait genome-wide association studies (GWAS) and integrative analyses reveal significant genetic relationships between IBD and several other immune-mediated inflammatory diseases (e.g., axial spondyloarthritis, psoriasis, uveitis/iridocyclitis, psoriatic arthritis). These analyses also identify new loci with functional annotations. Together, these findings underscore a germline foundation for precision stratification [36].
- Diagnostic/functional candidates in UC (original research). SLC26A2 is downregulated in active UC and is linked to IL-17 signaling and epithelial barrier pathways, suggesting significant diagnostic and therapeutic relevance [40].
4. Looking Ahead
Funding
Acknowledgments
Conflicts of Interest
References
- Kaser, A.; Zeissig, S.; Blumberg, R.S. Inflammatory Bowel Disease. Annu. Rev. Immunol. 2010, 28, 573–621. [Google Scholar] [CrossRef]
- Shan, Y.; Lee, M.; Chang, E.B. The Gut Microbiome and Inflammatory Bowel Diseases. Annu. Rev. Med. 2022, 73, 455–468. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, X.; Wang, L.; Yang, H. Global patterns in the epidemiology, cancer risk, and surgical implications of inflammatory bowel disease. Gastroenterol. Rep. 2024, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Solitano, V.; Bernstein, C.N.; Dotan, I.; Dignass, A.; Domilici, R.; Dubinsky, M.C.; Gearry, R.B.; Hart, A.; Kaplan, G.G.; Ma, C.; et al. Shaping the future of inflammatory bowel disease: A global research agenda for better management and public health response. Nat. Rev. Gastro. Hepat. 2025, 22, 438–452. [Google Scholar]
- Peyrin-Biroulet, L.; Reinisch, W.; Colombel, J.; Mantzaris, G.J.; Kornbluth, A.; Diamond, R.; Rutgeerts, P.; Tang, L.K.; Cornillie, F.J.; Sandborn, W.J. Clinical disease activity, C-reactive protein normalization, and mucosal healing in Crohn’s disease in the SONIC trial. Gut 2014, 63, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Neurath, M.F. Current and emerging therapeutic targets for IBD. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 269–278. [Google Scholar] [CrossRef]
- Moschen, A.R.; Tilg, H.; Raine, T. IL-12, IL-23 and IL-17 in IBD: Immunobiology and therapeutic targeting. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 185–196. [Google Scholar] [CrossRef]
- Raine, T.; Bonovas, S.; Burisch, J.; Kucharzik, T.; Adamina, M.; Annese, V.; Bachmann, O.; Bettenworth, D.; Chaparro, M.; Czuber-Dochan, W.; et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Medical Treatment. J. Crohn’s Colitis 2022, 16, 2–17. [Google Scholar] [CrossRef]
- Xu, L.; Liu, B.; Huang, L.; Li, Z.; Cheng, Y.; Tian, Y.; Pan, G.; Li, H.; Xu, Y.; Wu, W.; et al. Probiotic Consortia and Their Metabolites Ameliorate the Symptoms of Inflammatory Bowel Diseases in a Colitis Mouse Model. Microbiol. Spectr. 2022, 10, e0065722. [Google Scholar] [CrossRef]
- Sheng, K.; Xu, Y.; Kong, X.; Wang, J.; Zha, X.; Wang, Y. Probiotic Bacillus cereus Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice through Improvement of the Intestinal Barrier Function, Anti-Inflammation, and Gut Microbiota Modulation. J. Agric. Food Chem. 2021, 69, 14810–14823. [Google Scholar] [CrossRef]
- Jeong, J.J.; Kim, K.A.; Jang, S.E.; Woo, J.Y.; Han, M.J.; Kim, D.H. Orally Administrated Lactobacillus pentosus var. plantarum C29 Ameliorates Age-Dependent Colitis by Inhibiting the NF-κB Signaling Pathway via the Regulation of Lipopolysaccharide Production by Gut Microbiota. PLoS ONE 2015, 10, e0116533. [Google Scholar] [CrossRef]
- Faggiani, I.; Fanizza, J.; D’Amico, F.; Allocca, M.; Zilli, A.; Parigi, T.L.; Barchi, A.; Danese, S.; Furfaro, F. Extraintestinal Manifestations in Inflammatory Bowel Disease: From Pathophysiology to Treatment. Biomedicines 2024, 12, 1839. [Google Scholar] [CrossRef]
- Kelly, C.; Sartor, R.B.; Rawls, J.F. Early subclinical stages of the inflammatory bowel diseases: Insights from human and animal studies. Am. J. Physiol-Gastrl. 2025, 328, G17–G31. [Google Scholar] [CrossRef] [PubMed]
- Sands, B.E. Biomarkers of Inflammation in Inflammatory Bowel Disease. Gastroenterology 2015, 149, 1275–1285.e2. [Google Scholar] [CrossRef] [PubMed]
- Louis, E. Fecal calprotectin: Towards a standardized use for inflammatory bowel disease management in routine practice. J. Crohn’s Colitis 2014, 9, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Feagan, B.G.; Rutgeerts, P.; Sands, B.E.; Hanauer, S.; Colombel, J.F.; Sandborn, W.J.; Assche, G.V.; Axler, J.; Kim, H.-J.; Danese, S. Vedolizumab as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2013, 369, 699–710. [Google Scholar] [CrossRef]
- Jeong, D.Y.; Kim, S.; Son, M.J.; Son, C.Y.; Kim, J.Y.; Kronbichler, A.; Lee, K.H.; Shin, J.I. Induction and maintenance treatment of inflammatory bowel disease: A comprehensive review. Autoimmun. Rev. 2019, 18, 439–454. [Google Scholar] [CrossRef]
- Szemes, K.; Farkas, N.; Sipos, Z.; Bor, R.; Fabian, A.; Szepes, Z.; Farkas, K.; Molnar, T.; Schafer, E.; Szamosi, T.; et al. Co-Administration of Proton Pump Inhibitors May Negatively Affect the Outcome in Inflammatory Bowel Disease Treated with Vedolizumab. Biomedicines 2024, 12, 158. [Google Scholar] [CrossRef]
- Paramsothy, S.; Yang, Y.; Zhang, J.; Wang, R.; Cheng, B.; Kalambhe, D.; Wang, Y.; Gu, Z.; Chen, D.; Wang, B.; et al. Multidonor intensive fecal microbiota transplantation for active ulcerative colitis: A randomized placebo-controlled trial. Lancet 2017, 389, 1218–1228. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Y.; Zhang, J.; Wang, R.; Cheng, B.; Kalambhe, D.; Wang, Y.; Gu, Z.; Chen, D.; Wang, B.; et al. Lactoferrin-mediated macrophage targeting delivery and patchouli alcohol-based therapeutic strategy for inflammatory bowel diseases. Acta Pharm. Sin. B 2020, 10, 1966–1976. [Google Scholar] [CrossRef]
- Long, D.; Merlin, D. Micro- and nanotechnological delivery platforms for treatment of dysbiosis-related inflammatory bowel disease. Nanomedicine 2021, 16, 1741–1745. [Google Scholar] [CrossRef]
- Long, D.; Alghoul, Z.; Sung, J.; Yang, C.; Merlin, D. Oral administration of M13-loaded nanoliposomes is safe and effective to treat colitis-associated cancer in mice. Expert Opin. Drug Deliv. 2023, 20, 1443–1462. [Google Scholar] [CrossRef] [PubMed]
- Black, C.J.; Ford, A.C. Irritable bowel syndrome: A spotlight on future research needs. Lancet Gastroenterol. 2021, 6, 419–422. [Google Scholar]
- Li, J.; Wu, H.; Zhou, J.; Jiang, R.; Zhuo, Z.; Yang, Q.; Chen, H.; Sha, W. Ruscogenin Attenuates Ulcerative Colitis in Mice by Inhibiting Caspase-1-Dependent Pyroptosis via the TLR4/NF-κB Signaling Pathway. Biomedicines 2024, 12, 989. [Google Scholar]
- Calvez, V.; Puca, P.; Di Vincenzo, F.; Del Gaudio, A.; Bartocci, B.; Murgiano, M.; Iaccarino, J.; Parand, E.; Napolitano, D.; Pugliese, D.; et al. Novel Insights into the Pathogenesis of Inflammatory Bowel Diseases. Biomedicines 2025, 13, 305. [Google Scholar] [CrossRef]
- Bai, S.H.; Chandnani, A.; Cao, S. Bile Acids in Inflammatory Bowel Disease: From Pathophysiology to Treatment. Biomedicines 2024, 12, 2910. [Google Scholar] [CrossRef]
- Matsumoto, H.; Sasahira, M.; Go, T.T.; Yo, S.; Ninomiya, T.; Osawa, M.; Handa, O.; Umegami, E.; Inoue, R.; Shiotani, A. Characteristics of Mucosa-Associated Microbiota in Ulcerative Colitis Patients with 5-Aminosalicylic Acid Intolerance. Biomedicines 2024, 12, 2125. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Gao, C.; Pan, Y.; Du, S.; Xiao, S.; Zhou, Z. The Effect of Drugs on the Intestinal Microbiota in Crohn’s Disease. Biomedicines 2024, 12, 2241. [Google Scholar] [CrossRef]
- Oliveira, M.M.E.; Campos, L.B.; Brito, F.; de Carvalho, F.M.; Silva-Junior, G.O.; da Costa, G.L.; Pinto, T.N.; de Sousa, R.M.P.; Miranda, R.; Castro, R.; et al. Oral Microbiota and Inflammatory Bowel Diseases: Detection of Emerging Fungal Pathogens and Herpesvirus. Biomedicines 2025, 13, 480. [Google Scholar] [CrossRef]
- Neamți, L.; Gheorghe, S.R.; Ventuneac, A.; Drugan, T.; Drugan, C.; Silaghi, C.N.; Ciobanu, L.; Crăciun, A.M. Impact of Coffee Consumption on Subjective Perception and Inflammatory Markers in Patients with Inflammatory Bowel Diseases. Biomedicines 2024, 12, 1733. [Google Scholar] [CrossRef]
- Sivakumar, N.; Krishnamoorthy, A.; Ryali, H.; Arasaradnam, R.P. Gut Microbial Targets in Inflammatory Bowel Disease: Current Position and Future Developments. Biomedicines 2025, 13, 716. [Google Scholar] [CrossRef]
- Petric, Z.; Gonçalves, J.; Paixão, P. Infliximab in Inflammatory Bowel Disease: Leveraging Physiologically Based Pharmacokinetic Modeling in the Clinical Context. Biomedicines 2024, 12, 1974. [Google Scholar] [CrossRef]
- Jovanović, M.; Homšek, A.; Marković, S.; Kralj, Đ.; Svorcan, P.; Knežević Ivanovski, T.; Odanović, O.; Vučićević, K. Review and External Evaluation of Population Pharmacokinetic Models for Vedolizumab in Patients with Inflammatory Bowel Disease: Assessing Predictive Performance and Clinical Applicability. Biomedicines 2025, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Alwisi, N.; Ismail, R.; Al-Kuwari, H.; Al-Ansari, K.H.; Al-Matwi, M.A.; Aweer, N.A.; Al-Marri, W.N.; Al-Kubaisi, Y.; Al-Mohannadi, M.; Hamran, S.; et al. Comparative Efficacy of Subcutaneous Versus Intravenous Interleukin 12/23 Inhibitors for the Remission of Moderate to Severe Crohn’s Disease: A Systematic Review and Meta-Analysis. Biomedicines 2025, 13, 702. [Google Scholar] [CrossRef] [PubMed]
- Aljohani, H.; Anbarserry, D.; Mosli, M.; Ujaimi, A.; Bakhshwin, D.; Elango, R. High-Throughput Whole-Exome Sequencing and Large-Scale Computational Analysis to Identify the Genetic Biomarkers to Predict the Vedolizumab Response Status in Inflammatory Bowel Disease Patients from Saudi Arabia. Biomedicines 2025, 13, 459. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, D.; Zhang, Y.; Liu, H.; Chen, P.; Zhao, Y.; Ruscitti, P.; Zhao, W.; Dong, G. Identifying Common Genetic Etiologies Between Inflammatory Bowel Disease and Related Immune-Mediated Diseases. Biomedicines 2024, 12, 2562. [Google Scholar] [CrossRef]
- Richardson, H.; Yoon, G.; Moussa, G.; Kumar, A.; Harvey, P. Ocular Manifestations of IBD: Pathophysiology, Epidemiology, and Iatrogenic Associations of Emerging Treatment Strategies. Biomedicines 2024, 12, 2856. [Google Scholar] [CrossRef]
- Folkertsma, T.S.; Bloem, S.; Vodegel, R.M.; Bos, R.; Tack, G.J. Disease Acceptance and Control from the Subjective Health Experience Model as Health Perception Predictors in Immune-Mediated Inflammatory Diseases. Biomedicines 2025, 13, 538. [Google Scholar] [CrossRef]
- Olteanu, A.O.; Klimko, A.; Tieranu, E.N.; Bota, A.D.; Preda, C.M.; Tieranu, I.; Pavel, C.; Pahomeanu, M.R.; Toma, C.V.; Saftoiu, A.; et al. Managing Crohn’s Disease Postoperative Recurrence Beyond Prophylaxis: A Comprehensive Review with Meta-Analysis. Biomedicines 2024, 12, 2434. [Google Scholar] [CrossRef]
- Qian, L.; Hu, S.; Zhao, H.; Han, Y.; Dai, C.; Zan, X.; Zhi, Q.; Xu, C. The Diagnostic Significance of SLC26A2 and Its Potential Role in Ulcerative Colitis. Biomedicines 2025, 13, 461. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, Y.; Liu, K.; Zhu, H.; Ouyang, M. Adverse events of biologic or small molecule therapies in clinical trials for inflammatory bowel disease: A systematic review and meta-analysis. Heliyon 2024, 10, e25357. [Google Scholar] [CrossRef]
- Hou, Q.; Huang, J.; Ayansola, H.; Masatoshi, H.; Zhang, B. Intestinal Stem Cells and Immune Cell Relationships: Potential Therapeutic Targets for Inflammatory Bowel Diseases. Front. Immunol. 2021, 11, 623691. [Google Scholar] [CrossRef]
- Weizman, A.V.; Nguyen, G.C.; Seow, C.H.; Targownik, L.; Murthy, S.K.; Boland, K.; Afzal, N.M.; Khanna, R.; Jones, J.; Afif, W.; et al. Appropriateness of biologics in the management of Crohn’s disease using RAND/UCLA appropriateness methodology. Inflamm. Bowel Dis. 2019, 25, 328–335. [Google Scholar] [CrossRef]
- DeLeon, M.F.; Hull, T.L. Treatment Strategies in Crohn’s-Associated Rectovaginal Fistula. Clin. Colon Rectal Surg. 2019, 32, 261–267. [Google Scholar] [CrossRef]
- Versini, M.; Jeandel, P.Y.; Rosenthal, E.; Shoenfeld, Y. Obesity in autoimmune diseases: Not a passive bystander. Autoimmun. Rev. 2014, 13, 981–1000. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, D. Mechanisms for Precision, Patient-Centered Therapy in Inflammatory Bowel Disease. Biomedicines 2025, 13, 2504. https://doi.org/10.3390/biomedicines13102504
Long D. Mechanisms for Precision, Patient-Centered Therapy in Inflammatory Bowel Disease. Biomedicines. 2025; 13(10):2504. https://doi.org/10.3390/biomedicines13102504
Chicago/Turabian StyleLong, Dingpei. 2025. "Mechanisms for Precision, Patient-Centered Therapy in Inflammatory Bowel Disease" Biomedicines 13, no. 10: 2504. https://doi.org/10.3390/biomedicines13102504
APA StyleLong, D. (2025). Mechanisms for Precision, Patient-Centered Therapy in Inflammatory Bowel Disease. Biomedicines, 13(10), 2504. https://doi.org/10.3390/biomedicines13102504