Synthesis, Characterization, and Anti-Glioblastoma Activity of Andrographolide–Iron Oxide Nanoparticles (AG-IONPs)
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Iron Oxide Nanoparticles (IONPs)
2.2. Synthesis of Andrographolide-Loaded Iron Oxide Nanoparticles (AG-IONPs)
2.3. Determination of Encapsulation and Loading Efficiency
2.4. Characterization of Nanoparticles
2.4.1. UV–Visible Spectroscopy
2.4.2. Transmission Electron Microscopy (TEM)
2.4.3. Dynamic Light Scattering (DLS) and Zeta Potential
2.4.4. Fourier-Transform Infrared Spectroscopy (FTIR)
2.5. Stability Studies
2.6. Cell Culture and Cytotoxicity Assay
2.7. Scratch Assay
- At=0h is the area of the wound measured immediately after scratching (t = 0 h).
- At=∆h is the area of the wound measured h hours after the scratch is performed.
2.8. Apoptosis Assay
3. Results
3.1. Synthesis and Visual Confirmation
3.2. UV–Visible Spectroscopy
3.3. Encapsulation and Loading Efficiency
3.4. Size and Morphology (TEM and DLS)
3.5. Zeta Potential
3.6. FTIR Confirmation of Surface Functionalization
3.7. Stability Studies
3.8. Cytotoxicity (WST-1 Assay)
3.9. Migration Inhibition (Scratch Assay)
3.10. Apoptotic Effects of IONPs and AG-IONPs on Glioblastoma
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AG | Andrographolide |
ANOVA | Analysis of Variant |
AT-FTIR | Attenuated Total Reflectance–Fourier Transform Infrared Spectroscopy |
BBB | Blood–Brain Barrier |
CO2 | Carbon Dioxide |
DBTRG-05MG | Human Glioblastoma multiforme cell line |
DLS | Dynamic Light Scattering |
DTS1070 | Folded Capillary Cell for Zeta Potential Measurement (Malvern Panalytical) |
EE | Encapsulation Efficiency |
ERK 1/2 | Extracellular Signal-Regulated Kinases 1 and 2 |
FBS | Fetal Bovine Serum |
FTIR | Fourier Transform Infrared Spectroscopy |
HCLE | Human Corneal Limbal Epithelial cell line |
HDI | Human Development Index |
HNO3 | Nitric Acid |
IC50 | Half-maximal Inhibitory Concentration |
INFORMM | Institute for Research in Molecular Medicine, Universiti Sains Malaysia |
IO | Iron Oxide |
IONPs | Iron Oxide Nanoparticles |
IR | Infrared |
LC50 | Lethal Concentration for 50% of cells |
LE | Loading Efficiency |
MCF 7 | Human breast adenocarcinoma cell lines |
MDCK | Madin–Darby Canine Kidney cell line |
MRI | Magnetic Resonance Imaging |
OH | Hydroxyl group |
PBS | Phosphate-Buffer Saline |
PES | Polyethersulfone |
PLGA | Poly(lactic-co-glycolic acid) |
RPMI | Roswell Park Memorial Institute culture medium |
TEM | Transmission Electron Microscope |
TMZ | Temozolomide |
USM | Universiti Sains Malaysia |
UV | Ultraviolet |
VIS | Visible Spectrum |
WST-1 | Water-Soluble Tetrazolium salt-1 assay |
References
- Obrador, E.; Moreno-Murciano, P.; Oriol-Caballo, M.; López-Blanch, R.; Pineda, B.; Gutiérrez-Arroyo, J.L.; Loras, A.; Gonzalez-Bonet, L.G.; Martinez-Cadenas, C.; Estrela, J.M.; et al. Glioblastoma Therapy: Past, Present and Future. Int. J. Mol. Sci. 2024, 25, 2529. [Google Scholar] [CrossRef] [PubMed]
- Pourmadadi, M.; Shamsabadipour, A.; Bhatti, A.; Forouzanfar, M.; Rajabnejad, M.; Behzadmehr, R.; Rahdar, A.; Medina, D.I.; Díez-Pascual, A.M. Therapeutic performance of temozolomide-loaded nanomaterials: A state-of-the-art. J. Drug Deliv. Sci. Technol. 2023, 85, 104568. [Google Scholar] [CrossRef]
- Vaz-Salgado, M.A.; Villamayor, M.; Albarrán, V.; Alía, V.; Sotoca, P.; Chamorro, J.; Rosero, D.; Barrill, A.M.; Martín, M.; Fernandez, E.; et al. Recurrent Glioblastoma: A Review of the Treatment Options. Cancers 2023, 15, 4279. [Google Scholar] [CrossRef] [PubMed]
- Upton, D.H.; Ung, C.; George, S.M.; Tsoli, M.; Kavallaris, M.; Ziegler, D.S. Challenges and opportunities to penetrate the blood-brain barrier for brain cancer therapy. Theranostics 2022, 12, 4734. [Google Scholar] [CrossRef]
- Islam, S.; Ahmed, M.M.S.; Islam, M.A.; Hossain, N.; Chowdhury, M.A. Advances in nanoparticles in targeted drug delivery–A review. Results Surf. Interfaces 2025, 19, 100529. [Google Scholar] [CrossRef]
- Banks, W.A.; Rhea, E.M.; Reed, M.J.; Erickson, M.A. The penetration of therapeutics across the blood-brain barrier: Classic case studies and clinical implications. Cell Rep. Med. 2024, 5, 101760. [Google Scholar] [CrossRef]
- Varalli, L.; Berlet, R.; Abenojar, E.C.; McDaid, J.; Gascoigne, D.A.; Bailes, J.; Aksenov, D.P. Applications and Efficacy of Iron Oxide Nanoparticles in the Treatment of Brain Tumors. Pharmaceutics 2025, 17, 499. [Google Scholar] [CrossRef]
- Tundis, R.; Patra, J.K.; Bonesi, M.; Das, S.; Nath, R.; Das Talukdar, A.; Das, G.; Loizzo, M.R. Anti-Cancer Agent: The Labdane Diterpenoid-Andrographolide. Plants 2023, 12, 1969. [Google Scholar] [CrossRef]
- Amiera, M.A.A.; Kub, T.N.T.; Harun, A.; Mohamud, R.; Razian, N.R.A.; Ismadi, Y.K.M.; Alias, W.A.S.W.; Abdulrazak, M.H.; Teni, E. The role of andrographolide as a potential anticancer agent against gastric cancer cell lines: A systematic review. PeerJ 2024, 12, e18513. [Google Scholar] [CrossRef]
- Li, X.; Yuan, W.; Wu, J.; Zhen, J.; Sun, Q.; Yu, M. Andrographolide, a natural anti-inflammatory agent: An Update. Front. Pharmacol. 2022, 13, 920435. [Google Scholar] [CrossRef]
- Bustami, Y.; Moo-Young, M.; Anderson, W.A. Manipulation of Fe/Au Peroxidase-Like Activity for Development of a Nanocatalytic-Based Assay. J. Eng. Sci. 2017, 13, 29–52. [Google Scholar] [CrossRef]
- Speranza, G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials 2021, 11, 967. [Google Scholar] [CrossRef]
- Keshta, B.E.; Gemeay, A.H.; Sinha, D.K.; Elsharkawy, S.; Hassan, F.; Rai, N.; Arora, C. State of the Art on the Magnetic Iron Oxide Nanoparticles: Synthesis, Functionalization, and Applications in Wastewater Treatment. Results Chem. 2024, 7, 101388. [Google Scholar] [CrossRef]
- Pouyan, A.; Ghorbanlo, M.; Eslami, M.; Jahanshahi, M.; Ziaei, E.; Salami, A.; Mokhtari, K.; Shahpasand, K.; Farahani, N.; Meybodi, T.E.; et al. Glioblastoma multiforme: Insights into pathogenesis, key signaling pathways, and therapeutic strategies. Mol. Cancer 2025, 24, 58. [Google Scholar] [CrossRef] [PubMed]
- Yalamarty, S.S.K.; Filipczak, N.; Li, X.; Subhan, M.A.; Parveen, F.; Ataide, J.A.; Rajmalani, B.A.; Torchilin, V.P. Mechanisms of Resistance and Current Treatment Options for Glioblastoma Multiforme (GBM). Cancers 2023, 15, 2116. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Amin, M.A.; Campian, J.L. Glioblastoma Stem Cells at the Nexus of Tumor Heterogeneity, Immune Evasion, and Therapeutic Resistance. Cells 2025, 14, 562. [Google Scholar] [CrossRef]
- Songvut, P.; Boonyarattanasoonthorn, T.; Nuengchamnong, N.; Junsai, T.; Kongratanapasert, T.; Supannapan, K.; Khemawoot, P. Enhancing oral bioavailability of andrographolide using solubilizing agents and bioenhancer: Comparative pharmacokinetics of Andrographis paniculata formulations in beagle dogs. Pharm. Biol. 2024, 62, 183. [Google Scholar] [CrossRef]
- Liu, W.; Cheng, M.; Yuan, F.; He, J.; Feng, Y.; Jin, Y.; Feng, J.; Yang, S.; Tu, L. Enhancing oral bioavailability of andrographolide via sodium dodecyl sulfate and D-α-Tocopherol polyethylene glycol 1000 succinate copolymer modified nanocrystals. J. Drug Deliv. Sci. Technol. 2023, 79, 104006. [Google Scholar] [CrossRef]
- Paramanick, D.; Rani, K.N.; Singh, V.K.; Basist, P.; Khan, R.; Al-Tamimi, J.H.; Noman, O.M.; Ibrahim, M.N.; Alhalmi, A. Enhancement of Cognitive Function by Andrographolide-Loaded Lactose β-Cyclodextrin Nanoparticles: Synthesis, Optimization, and Behavioural Assessment. Pharmaceuticals 2024, 17, 966. [Google Scholar] [CrossRef]
- Satyam Naidu, K.; Annapurna, N. Synthesis, characterization and magnetic properties of iron oxide nanoparticles from reverse chemical co-precipitation method. J. Phys. Conf. Ser. 2024, 2765, 012024. [Google Scholar] [CrossRef]
- Ghazi, R.; Ibrahim, T.K.; Nasir, J.A.; Gai, S.; Ali, G.; Boukhris, I.; Rehman, Z. Iron oxide based magnetic nanoparticles for hyperthermia, MRI and drug delivery applications: A review. RSC Adv. 2025, 15, 11587–11616. [Google Scholar] [CrossRef]
- Ibrahim Zamkoye, I.; Lucas, B.; Vedraine, S. Synergistic Effects of Localized Surface Plasmon Resonance, Surface Plasmon Polariton, and Waveguide Plasmonic Resonance on the Same Material: A Promising Hypothesis to Enhance Organic Solar Cell Efficiency. Nanomaterials 2023, 13, 2209. [Google Scholar] [CrossRef]
- Yan, Y.; Kulsoom; Sun, Y.; Li, Y.; Wang, Z.; Xue, L.; Wang, F. Advancing cancer therapy: Nanomaterial-based encapsulation strategies for enhanced delivery and efficacy of curcumin. Mater. Today Bio 2025, 33, 101963. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, R.I.; Preda, M.D.; Niculescu, A.G.; Vladâcenco, O.; Radu, C.I.; Grumezescu, A.M.; Teleanu, D.M. Current Strategies to Enhance Delivery of Drugs across the Blood–Brain Barrier. Pharmaceutics 2022, 14, 987. [Google Scholar] [CrossRef] [PubMed]
- Che Mohamed Hussein, S.N.; Amir, Z.; Jan, B.M.; Khalil, M.; Azizi, A. Colloidal Stability of CA, SDS and PVA Coated Iron Oxide Nanoparticles (IONPs): Effect of Molar Ratio and Salinity. Polymers 2022, 14, 4787. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.H.; Thuy, V.N.; Van, T.V.; Dao, A.H.; Lee, B.J. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. OpenNano 2022, 8, 100064. [Google Scholar] [CrossRef]
- Zhang, H.; Barz, M. Investigating the stability of RNA-lipid nanoparticles in biological fluids: Unveiling its crucial role for understanding LNP performance. J. Control. Release 2025, 381, 113559. [Google Scholar] [CrossRef]
- Machado, T.O.; Grabow, J.; Sayer, C.; de Araújo, P.H.H.; Ehrenhard, M.L.; Wurm, F.R. Biopolymer-based nanocarriers for sustained release of agrochemicals: A review on materials and social science perspectives for a sustainable future of agri- and horticulture. Adv. Colloid. Interface Sci. 2022, 303, 102645. [Google Scholar] [CrossRef]
- Singh, P.; Pandit, S.; Balusamy, S.R.; Madhusudanan, M.; Singh, H.; Amsath Haseef, H.M.; Mijakovic, I. Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications. Adv. Healthc. Mater. 2024, 14, 2403059. [Google Scholar] [CrossRef]
- Li, G.F.; Qin, Y.H.; Du, P.Q. Andrographolide inhibits the migration, invasion and matrix metalloproteinase expression of rheumatoid arthritis fibroblast-like synoviocytes via inhibition of HIF-1α signaling. Life Sci. 2015, 136, 67–72. [Google Scholar] [CrossRef]
- Lin, H.; Liu, C.; Hu, A.; Zhang, D.; Yang, H.; Mao, Y. Understanding the immunosuppressive microenvironment of glioma: Mechanistic insights and clinical perspectives. J. Hematol. Oncol. 2024, 17, 31. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M. Magnetic Resonance Imaging and Iron-oxide Nanoparticles in the era of Personalized Medicine. Nanotheranostics 2023, 7, 424. [Google Scholar] [CrossRef]
- Meng, Y.Q.; Shi, Y.N.; Zhu, Y.P.; Liu, Y.Q.; Gu, L.W.; Liu, D.D.; Ma, A.; Xia, F.; Guo, Q.Y.; Xu, C.C.; et al. Recent trends in preparation and biomedical applications of iron oxide nanoparticles. J. Nanobiotechnol. 2024, 22, 24. [Google Scholar] [CrossRef]
- Erebor, J.O.; Agboluaje, E.O.; Perkins, A.M.; Krishnakumar, M.; Ngwuluka, N. Targeted Hybrid Nanocarriers as Co-Delivery Systems for Enhanced Cancer Therapy. Adv. Pharm. Bull. 2024, 14, 558. [Google Scholar] [CrossRef]
Sample | DLS, dh (nm) | TEM (nm) | Zeta Potential (mV) |
---|---|---|---|
IONPs | 2–12 | 7.0 ± 0.15 | 21.22 ± 1.58 |
AG-IONPs | 2–25 | 13.5 ± 1.25 | 8.68 ± 0.87 |
Time Frame | AGIONPs (µg/mL) | TMZ (µg/mL) |
---|---|---|
24 h | 44.01 ± 3.23 | 19.46 ± 2.58 |
48 h | 20.33 ± 3.02 | 15.06 ± 3.09 |
72 h | 15.82 ± 2.30 | 11.80 ± 3.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravi, N.; Bustami, Y.; Raja, P.B.; Kernain, D. Synthesis, Characterization, and Anti-Glioblastoma Activity of Andrographolide–Iron Oxide Nanoparticles (AG-IONPs). Biomedicines 2025, 13, 2476. https://doi.org/10.3390/biomedicines13102476
Ravi N, Bustami Y, Raja PB, Kernain D. Synthesis, Characterization, and Anti-Glioblastoma Activity of Andrographolide–Iron Oxide Nanoparticles (AG-IONPs). Biomedicines. 2025; 13(10):2476. https://doi.org/10.3390/biomedicines13102476
Chicago/Turabian StyleRavi, Nanthini, Yazmin Bustami, Pandian Bothi Raja, and Daruliza Kernain. 2025. "Synthesis, Characterization, and Anti-Glioblastoma Activity of Andrographolide–Iron Oxide Nanoparticles (AG-IONPs)" Biomedicines 13, no. 10: 2476. https://doi.org/10.3390/biomedicines13102476
APA StyleRavi, N., Bustami, Y., Raja, P. B., & Kernain, D. (2025). Synthesis, Characterization, and Anti-Glioblastoma Activity of Andrographolide–Iron Oxide Nanoparticles (AG-IONPs). Biomedicines, 13(10), 2476. https://doi.org/10.3390/biomedicines13102476