Genetic Variations in Bitter Taste Receptors and COVID-19 in the Canadian Longitudinal Study on Aging †
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Data Preprocessing
2.2. Eligibility Criteria
2.3. COVID-19 Infection
2.4. COVID-19 Antibodies
2.5. Case Definition for Chronic Medical Conditions
2.6. Statistical Analysis
3. Results
3.1. CLSA COVID-19 Questionnaire Study
3.2. CLSA COVID-19 Seroprevalence (Antibody) Study
3.3. Subgroup Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CLSA | Canadian Longitudinal Study on Aging |
COVID-19 | Coronavirus disease 2019 |
CI | (95% confidence interval) |
IMID | Immune-mediated inflammatory disease |
OR | odds ratio |
PCA | principal component analysis |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
SNPs | single nucleotide polymorphisms |
T2R | bitter taste receptor |
TAS2R | bitter taste receptor gene |
References
- World Health Organization (WHO). COVID-19 Dashboard. February 2025. Available online: https://data.who.int/dashboards/covid19/ (accessed on 15 February 2025).
- Gallo, A.; Pero, E.; Pellegrino, S.; Macerola, N.; Murace, C.A.; Ibba, F.; Agnitelli, M.C.; Landi, F.; Montalto, M. How can biology of aging explain the severity of COVID-19 in older adults. Clin. Geriatr. Med. 2022, 38, 461–472. [Google Scholar] [CrossRef]
- Hamming, I.; Timens, W.; Bulthuis, M.; Lely, A.; Navis, G.V.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. J. Pathol. Soc. Great Br. Irel. 2004, 203, 631–637. [Google Scholar] [CrossRef]
- Huang, N.; Pérez, P.; Kato, T.; Mikami, Y.; Okuda, K.; Gilmore, R.C.; Conde, C.D.; Gasmi, B.; Stein, S.; Beach, M.; et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat. Med. 2021, 27, 892–903. [Google Scholar] [CrossRef] [PubMed]
- Marais, G.; Hsiao, N.-y.; Iranzadeh, A.; Doolabh, D.; Enoch, A.; Chu, C.-y.; Williamson, C.; Brink, A.; Hardie, D. Saliva swabs are the preferred sample for Omicron detection. medRxiv 2021. [Google Scholar] [CrossRef]
- To, K.K.; Tsang, O.T.; Leung, W.S.; Tam, A.R.; Wu, T.C.; Lung, D.C.; Yip, C.C.; Cai, J.P.; Chan, J.M.; Chik, T.S.; et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis. 2020, 20, 565–574. [Google Scholar] [CrossRef] [PubMed]
- To, K.K.; Tsang, O.T.; Yip, C.C.; Chan, K.H.; Wu, T.C.; Chan, J.M.; Leung, W.S.; Chik, T.S.; Choi, C.Y.; Kandamby, D.H.; et al. Consistent Detection of 2019 Novel Coronavirus in Saliva. Clin. Infect. Dis. 2020, 71, 841–843. [Google Scholar] [CrossRef]
- Braschi, B.; Denny, P.; Gray, K.; Jones, T.; Seal, R.; Tweedie, S.; Yates, B.; Bruford, E. Genenames.org: The HGNC and VGNC resources in 2019. Nucleic Acids Res. 2019, 47, D786–D792. [Google Scholar] [CrossRef]
- Jaggupilli, A.; Singh, N.; Upadhyaya, J.; Sikarwar, A.S.; Arakawa, M.; Dakshinamurti, S.; Bhullar, R.P.; Duan, K.; Chelikani, P. Analysis of the expression of human bitter taste receptors in extraoral tissues. Mol. Cell. Biochem. 2017, 426, 137–147. [Google Scholar] [CrossRef]
- Maurer, S.; Wabnitz, G.H.; Kahle, N.A.; Stegmaier, S.; Prior, B.; Giese, T.; Gaida, M.M.; Samstag, Y.; Hänsch, G.M. Tasting Pseudomonas aeruginosa Biofilms: Human Neutrophils Express the Bitter Receptor T2R38 as Sensor for the Quorum Sensing Molecule N-(3-Oxododecanoyl)-l-Homoserine Lactone. Front. Immunol. 2015, 6, 369. [Google Scholar] [CrossRef]
- Tran, H.T.T.; Herz, C.; Ruf, P.; Stetter, R.; Lamy, E. Human T2R38 Bitter Taste Receptor Expression in Resting and Activated Lymphocytes. Front. Immunol. 2018, 9, 2949. [Google Scholar] [CrossRef]
- Shah, A.S.; Ben-Shahar, Y.; Moninger, T.O.; Kline, J.N.; Welsh, M.J. Motile cilia of human airway epithelia are chemosensory. Science 2009, 325, 1131–1134. [Google Scholar] [CrossRef]
- Krasteva, G.; Canning, B.J.; Hartmann, P.; Veres, T.Z.; Papadakis, T.; Mühlfeld, C.; Schliecker, K.; Tallini, Y.N.; Braun, A.; Hackstein, H.; et al. Cholinergic chemosensory cells in the trachea regulate breathing. Proc. Natl. Acad. Sci. USA 2011, 108, 9478–9483. [Google Scholar] [CrossRef]
- Deshpande, D.A.; Robinett, K.S.; Wang, W.C.H.; Sham, J.S.K.; An, S.S.; Liggett, S.B. Bronchodilator activity of bitter tastants in human tissue. Nat. Med. 2011, 17, 776–778. [Google Scholar] [CrossRef]
- Deshpande, D.A.; Wang, W.C.; McIlmoyle, E.L.; Robinett, K.S.; Schillinger, R.M.; An, S.S.; Sham, J.S.; Liggett, S.B. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat. Med. 2010, 16, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Orsmark-Pietras, C.; James, A.; Konradsen, J.R.; Nordlund, B.; Söderhäll, C.; Pulkkinen, V.; Pedroletti, C.; Daham, K.; Kupczyk, M.; Dahlén, B. Transcriptome analysis reveals upregulation of bitter taste receptors in severe asthmatics. Eur. Respir. J. 2013, 42, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Finger, T.E.; Böttger, B.; Hansen, A.; Anderson, K.T.; Alimohammadi, H.; Silver, W.L. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc. Natl. Acad. Sci. USA 2003, 100, 8981–8986. [Google Scholar] [CrossRef] [PubMed]
- Jaggupilli, A.; Singh, N.; De Jesus, V.C.; Gounni, M.S.; Dhanaraj, P.; Chelikani, P. Chemosensory bitter taste receptors (T2Rs) are activated by multiple antibiotics. FASEB J. 2019, 33, 501–517. [Google Scholar] [CrossRef]
- Jaggupilli, A.; Howard, R.; Aluko, R.E.; Chelikani, P. Advanced glycation end-products can activate or block bitter taste receptors. Nutrients 2019, 11, 1317. [Google Scholar] [CrossRef]
- Jaggupilli, A.; Singh, N.; Jesus, V.C.D.; Duan, K.; Chelikani, P. Characterization of the binding sites for bacterial acyl homoserine lactones (AHLs) on human bitter taste receptors (T2Rs). ACS Infect. Dis. 2018, 4, 1146–1156. [Google Scholar] [CrossRef]
- Åkerström, S.; Gunalan, V.; Keng, C.T.; Tan, Y.-J.; Mirazimi, A. Dual effect of nitric oxide on SARS-CoV replication: Viral RNA production and palmitoylation of the S protein are affected. Virology 2009, 395, 1–9. [Google Scholar] [CrossRef]
- Hannum, M.E.; Koch, R.J.; Ramirez, V.A.; Marks, S.S.; Toskala, A.K.; Herriman, R.D.; Lin, C.; Joseph, P.V.; Reed, D.R. Taste loss as a distinct symptom of COVID-19: A systematic review and meta-analysis. medRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
- Currie, S.M.; Findlay, E.G.; McHugh, B.J.; Mackellar, A.; Man, T.; Macmillan, D.; Wang, H.; Fitch, P.M.; Schwarze, J.; Davidson, D.J. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS ONE 2013, 8, e73659. [Google Scholar] [CrossRef] [PubMed]
- Grassin-Delyle, S.; Salvator, H.; Mantov, N.; Abrial, C.; Brollo, M.; Faisy, C.; Naline, E.; Couderc, L.J.; Devillier, P. Bitter Taste Receptors (TAS2Rs) in Human Lung Macrophages: Receptor Expression and Inhibitory Effects of TAS2R Agonists. Front. Physiol. 2019, 10, 1267. [Google Scholar] [CrossRef] [PubMed]
- CDC COVID-19 Response Team. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019—United States, February 12–March 28, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 382. [Google Scholar] [CrossRef]
- Marfella, R.; Sardu, C.; D’Onofrio, N.; Prattichizzo, F.; Scisciola, L.; Messina, V.; La Grotta, R.; Balestrieri, M.L.; Maggi, P.; Napoli, C. Glycaemic control is associated with SARS-CoV-2 breakthrough infections in vaccinated patients with type 2 diabetes. Nat. Commun. 2022, 13, 2318. [Google Scholar] [CrossRef]
- Grainger, R.; Kim, A.H.; Conway, R.; Yazdany, J.; Robinson, P.C. COVID-19 in people with rheumatic diseases: Risks, outcomes, treatment considerations. Nat. Rev. Rheumatol. 2022, 18, 191–204. [Google Scholar] [CrossRef]
- Simpson-Yap, S.; Pirmani, A.; Kalincik, T.; De Brouwer, E.; Geys, L.; Parciak, T.; Helme, A.; Rijke, N.; Hillert, J.A.; Moreau, Y. Updated results of the COVID-19 in MS global data sharing initiative: Anti-CD20 and other risk factors associated with COVID-19 severity. Neurol.-Neuroimmunol. Neuroinflamm. 2022, 9, e200021. [Google Scholar] [CrossRef]
- Tam, O.H.; Aravin, A.A.; Stein, P.; Girard, A.; Murchison, E.P.; Cheloufi, S.; Hodges, E.; Anger, M.; Sachidanandam, R.; Schultz, R.M.; et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 2008, 453, 534–538. [Google Scholar] [CrossRef]
- An, Y.; Furber, K.L.; Ji, S. Pseudogenes regulate parental gene expression via ceRNA network. J. Cell. Mol. Med. 2017, 21, 185–192. [Google Scholar] [CrossRef]
- Kim, U.; Wooding, S.; Ricci, D.; Jorde, L.B.; Drayna, D. Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum. Mutat. 2005, 26, 199–204. [Google Scholar] [CrossRef]
- Lee, R.J.; Xiong, G.; Kofonow, J.M.; Chen, B.; Lysenko, A.; Jiang, P.; Abraham, V.; Doghramji, L.; Adappa, N.D.; Palmer, J.N. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J. Clin. Investig. 2012, 122, 4145–4159. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Tizzano, M.; Redding, K.; He, J.; Peng, X.; Jiang, P.; Xu, X.; Zhou, X.; Margolskee, R.F. Gingival solitary chemosensory cells are immune sentinels for periodontitis. Nat. Commun. 2019, 10, 4496. [Google Scholar] [CrossRef] [PubMed]
- Barham, H.P.; Taha, M.A.; Broyles, S.T.; Stevenson, M.M.; Zito, B.A.; Hall, C.A. Association Between Bitter Taste Receptor Phenotype and Clinical Outcomes Among Patients With COVID-19. JAMA Netw. Open 2021, 4, e2111410. [Google Scholar] [CrossRef]
- Parsa, S.; Mogharab, V.; Ebrahimi, M.; Ahmadi, S.R.; Shahi, B.; Mehramiz, N.J.; Foroughian, M.; Zarenezhad, M.; Kalani, N.; Abdi, M.H. COVID-19 as a worldwide selective event and bitter taste receptor polymorphisms: An ecological correlational study. Int. J. Biol. Macromol. 2021, 177, 204–210. [Google Scholar] [CrossRef]
- Risso, D.; Carmagnola, D.; Morini, G.; Pellegrini, G.; Canciani, E.; Antinucci, M.; Henin, D.; Dellavia, C. Distribution of TAS2R38 bitter taste receptor phenotype and haplotypes among COVID-19 patients. Sci. Rep. 2022, 12, 7381. [Google Scholar] [CrossRef]
- Meng, T.; Nielsen, D.E. TAS2R38 haplotypes, COVID-19 infection, and symptomatology: A cross-sectional analysis of data from the Canadian Longitudinal Study on Aging. Sci. Rep. 2024, 14, 4673. [Google Scholar] [CrossRef]
- Raina, P.; Wolfson, C.; Kirkland, S.; Griffith, L.E.; Balion, C.; Cossette, B.; Dionne, I.; Hofer, S.; Hogan, D.; van den Heuvel, E.R.; et al. Cohort Profile: The Canadian Longitudinal Study on Aging (CLSA). Int. J. Epidemiol. 2019, 48, 1752–1753j. [Google Scholar] [CrossRef]
- Forgetta, V.; Li, R.; Darmond-Zwaig, C.; Belisle, A.; Balion, C.; Roshandel, D.; Wolfson, C.; Lettre, G.; Pare, G.; Paterson, A.D.; et al. Cohort profile: Genomic data for 26 622 individuals from the Canadian Longitudinal Study on Aging (CLSA). BMJ Open 2022, 12, e059021. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef] [PubMed]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Shafizadeh, M.; Bhatia, V.; Ahmed, S.; Drögemöller, B.; Stavropoulou, C.; John, P.S.; Bhullar, R.P.; Chelikani, P.; Hitchon, C.A. Bitter taste genetics and oral health in Canadian Longitudinal Study on Aging. bioRxiv 2024. [Google Scholar] [CrossRef]
- Han, X.; Steven, K.; Qassim, A.; Marshall, H.N.; Bean, C.; Tremeer, M.; An, J.; Siggs, O.M.; Gharahkhani, P.; Craig, J.E.; et al. Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA. Am. J. Hum. Genet. 2021, 108, 1204–1216. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Pei, S.; Chen, B.; Song, Y.; Zhang, T.; Yang, W.; Shaman, J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science 2020, 368, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Public Health Agency of Canada. Prevalence of Chronic Diseases Among Canadian Adults. 2019. Available online: https://www.canada.ca/en/public-health/services/chronic-diseases/prevalence-canadian-adults-infographic-2019.html (accessed on 1 October 2024).
- Haybar, H.; Kazemnia, K.; Rahim, F. Underlying Chronic Disease and COVID-19 Infection: A State-of-the-Art Review. Jundishapur J. Chronic Dis. Care 2020, 9, e103452. [Google Scholar] [CrossRef]
- Maddur, M.S.; Vani, J.; Lacroix-Desmazes, S.; Kaveri, S.; Bayry, J. Autoimmunity as a predisposition for infectious diseases. PLoS Pathog. 2010, 6, e1001077. [Google Scholar] [CrossRef]
- Akiyama, S.; Hamdeh, S.; Micic, D.; Sakuraba, A. Prevalence and clinical outcomes of COVID-19 in patients with autoimmune diseases: A systematic review and meta-analysis. Ann. Rheum. Dis. 2021, 80, 384–391. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, M.; Jiang, D.; Su, Q.; Shi, J. The role of inflammation in autoimmune disease: A therapeutic target. Front. Immunol. 2023, 14, 1267091. [Google Scholar] [CrossRef]
- Cooper, G.S.; Stroehla, B.C. The epidemiology of autoimmune diseases. Autoimmun. Rev. 2003, 2, 119–125. [Google Scholar] [CrossRef]
- Hassen, N.; Lacaille, D.; Xu, A.; Alandejani, A.; Sidi, S.; Mansourian, M.; Butt, Z.A.; Cahill, L.E.; Iyamu, I.O.; Lang, J.J.; et al. National burden of rheumatoid arthritis in Canada, 1990–2019: Findings from the Global Burden of Disease Study 2019—A GBD collaborator-led study. RMD Open 2024, 10, e003533. [Google Scholar] [CrossRef]
- Coward, S.; Benchimol, E.I.; Kuenzig, M.E.; Windsor, J.W.; Bernstein, C.N.; Bitton, A.; Jones, J.L.; Lee, K.; Murthy, S.K.; Targownik, L.E.; et al. The 2023 Impact of Inflammatory Bowel Disease in Canada: Epidemiology of IBD. J. Can. Assoc. Gastroenterol. 2023, 6, S9–S15. [Google Scholar] [CrossRef] [PubMed]
- Macaluso, F.S.; Giuliano, A.; Fries, W.; Viola, A.; Abbruzzese, A.; Cappello, M.; Giuffrida, E.; Carrozza, L.; Privitera, A.C.; Magnano, A.; et al. Severe Activity of Inflammatory Bowel Disease is a Risk Factor for Severe COVID-19. Inflamm. Bowel Dis. 2023, 29, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; D’Silva, K.M.; Jorge, A.M.; Li, X.; Lyv, H.; Wei, J.; Zeng, C.; Lei, G.; Zhang, Y. Increased Risk of COVID-19 in Patients With Rheumatoid Arthritis: A General Population-Based Cohort Study. Arthritis Care Res. 2022, 74, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Raina, P.S.; Wolfson, C.; Kirkland, S.A.; Keshavarz, H.; Griffith, L.E.; Patterson, C.; Uniat, J.; Strople, G.; Pelletier, A.; Angus, C.L. Ascertainment of chronic diseases in the Canadian longitudinal study on aging (CLSA), systematic review. Can. J. Aging/Rev. Can. Vieil. 2009, 28, 275–285. [Google Scholar] [CrossRef]
- Andreacchi, A.T.; Brini, A.; Van den Heuvel, E.; Muniz-Terrera, G.; Mayhew, A.; St John, P.; Stirland, L.E.; Griffith, L.E. An Exploration of Methods to Resolve Inconsistent Self-Reporting of Chronic Conditions and Impact on Multimorbidity in the Canadian Longitudinal Study on Aging. J. Aging Health 2023, 37, 8982643231215476. [Google Scholar] [CrossRef]
- Oremus, M.; Postuma, R.; Griffith, L.; Balion, C.; Wolfson, C.; Kirkland, S.; Patterson, C.; Shannon, H.S.; Raina, P. Validating Chronic Disease Ascertainment Algorithms for Use in the Canadian Longitudinal Study on Aging. Can. J. Aging/Rev. Can. Vieil. 2013, 32, 232–239. [Google Scholar] [CrossRef]
- Sakib, M.N.; Ramezan, R.; Hall, P.A. Diabetes status and cognitive function in middle-aged and older adults in the Canadian longitudinal study on aging. Front. Endocrinol. 2023, 14, 1293988. [Google Scholar] [CrossRef]
- MacNeil, A.; Cottagiri, S.A.; Villeneuve, P.J.; Jiang, Y.; de Groh, M.; Fuller-Thomson, E. Incident Functional Limitations Among Older Adults With Diabetes During the COVID-19 Pandemic: An Analysis of Prospective Data From the Canadian Longitudinal Study on Aging. Can. J. Diabetes 2024, 48, 290–298.e292. [Google Scholar] [CrossRef]
- Fishbook, B.N.; Brinton, C.D.; Siever, J.; Klassen, T.D.; Sakakibara, B.M. Cardiometabolic multimorbidity and activity limitation: A cross-sectional study of adults using the Canadian Longitudinal Study on Aging data. Fam. Pract. 2022, 39, 455–463. [Google Scholar] [CrossRef]
- Sekhon, H.; Allali, G.; Beauchet, O. Motoric cognitive risk syndrome and cardiovascular diseases and risk factors in the Canadian population: Results from the baseline assessment of the Canadian longitudinal study on aging. Arch. Gerontol. Geriatr. 2019, 85, 103932. [Google Scholar] [CrossRef]
- Liu, J.; Son, S.; McIntyre, J.; Narushima, M. Depression and cardiovascular diseases among Canadian older adults: A cross-sectional analysis of baseline data from the CLSA Comprehensive Cohort. J. Geriatr. Cardiol. JGC 2019, 16, 847–854. [Google Scholar] [CrossRef]
- Husein, N.; Josephson, C.B.; Keezer, M.R. Understanding cardiovascular disease in older adults with epilepsy. Epilepsia 2021, 62, 2060–2071. [Google Scholar] [CrossRef] [PubMed]
- Duong, M.; Usman, A.; Ma, J.; Xie, Y.; Huang, J.; Zaman, M.; Dragoman, A.; Jiatong Chen, S.; Farooqi, M.; Raina, P. Associations between lung function and physical and cognitive health in the Canadian Longitudinal Study on Aging (CLSA): A cross-sectional study from a multicenter national cohort. PLoS Med. 2022, 19, e1003909. [Google Scholar] [CrossRef] [PubMed]
- Odimba, U.; Senthilselvan, A.; Farrell, J.; Gao, Z. Identification of Sex-Specific Genetic Polymorphisms Associated with Asthma in Middle-Aged and Older Canadian Adults: An Analysis of CLSA Data. J. Asthma Allergy 2023, 16, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Taunque, A.; Li, G.; MacNeil, A.; Gulati, I.; Jiang, Y.; de Groh, M.; Fuller-Thomson, E. Breathless and Blue in the Canadian Longitudinal Study on Aging: Incident and Recurrent Depression Among Older Adults with COPD During the COVID-19 Pandemic. Int. J. Chronic Obstr. Pulm. Dis. 2023, 18, 1975–1993. [Google Scholar] [CrossRef]
- O’Mahony, J.; Bernstein, C.N.; Marrie, R.A. Adverse childhood experiences and psychiatric comorbidity in multiple sclerosis, inflammatory bowel disease, and rheumatoid arthritis in the Canadian longitudinal study on aging. J. Psychosom. Res. 2024, 187, 111893. [Google Scholar] [CrossRef]
- Dal Bello-Haas, V.P.M.; O’Connell, M.E.; Ursenbach, J. Comparison across age groups of causes, circumstances, and consequences of falls among individuals living in Canada: A cross-sectional analysis of participants aged 45 to 85 years from the Canadian Longitudinal Study on Aging. PLoS ONE 2024, 19, e0300026. [Google Scholar] [CrossRef]
- Public Health Agency of Canada. Canadian Chronic Disease Surveillance System (CCDSS). 2025. Available online: https://health-infobase.canada.ca/ccdss/Index (accessed on 15 February 2025).
- Freeman, E.E.; Bastasic, J.; Grant, A.; Leung, G.; Li, G.; Buhrmann, R.; Roy-Gagnon, M.H. Inverse Association of APOE ε4 and Glaucoma Modified by Systemic Hypertension: The Canadian Longitudinal Study on Aging. Investig. Ophthalmol. Vis. Sci. 2022, 63, 9. [Google Scholar] [CrossRef]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Boyle, A.P.; Hong, E.L.; Hariharan, M.; Cheng, Y.; Schaub, M.A.; Kasowski, M.; Karczewski, K.J.; Park, J.; Hitz, B.C.; Weng, S.; et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012, 22, 1790–1797. [Google Scholar] [CrossRef]
- Ward, L.D.; Kellis, M. HaploReg v4: Systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 2016, 44, D877–D881. [Google Scholar] [CrossRef] [PubMed]
- RTH Center for Non-Coding in Technology and Health. RNAsnp: Predicting RNA Secondary Structure Changes upon SNPs. Available online: https://rth.dk/resources/rnasnp/ (accessed on 29 September 2025).
- Griffith, L.E.; Beauchamp, M.; McMillan, J.; Borhan, S.; Oz, U.E.; Wolfson, C.; Kirkland, S.; Basta, N.E.; Thompson, M.; Raina, P. Persistent COVID-19 symptoms in community-living older adults from the Canadian Longitudinal Study on Aging (CLSA). Commun. Med. 2023, 3, 36. [Google Scholar] [CrossRef] [PubMed]
- Oremus, M.; Tyas, S.L.; Zeng, L.; Newall, N.; Maxwell, C.J. The association between memory, COVID-19 testing, and COVID-19 incidence in middle-aged and older adults: A prospective analysis of the CLSA. Neuropsychol. Dev. Cogn. Sect. B Aging Neuropsychol. Cogn. 2024, 32, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Barham, H.P.; Taha, M.A.; Hall, C.A. Does phenotypic expression of bitter taste receptor T2R38 show association with COVID-19 severity? Int. Forum Allergy Rhinol. 2020, 10, 1255–1257. [Google Scholar] [CrossRef]
- Tuzim, K.; Korolczuk, A. An update on extra-oral bitter taste receptors. J. Transl. Med. 2021, 19, 440. [Google Scholar] [CrossRef]
- Schuster, S.L.; Hsieh, A.C. The Untranslated Regions of mRNAs in Cancer. Trends Cancer 2019, 5, 245–262. [Google Scholar] [CrossRef]
- Steri, M.; Idda, M.L.; Whalen, M.B.; Orrù, V. Genetic variants in mRNA untranslated regions. Wiley Interdiscip. Rev. RNA 2018, 9, e1474. [Google Scholar] [CrossRef]
- Mao, Z.; Cheng, W.; Li, Z.; Yao, M.; Sun, K. Clinical Associations of Bitter Taste Perception and Bitter Taste Receptor Variants and the Potential for Personalized Healthcare. Pharmacogenom. Pers. Med. 2023, 16, 121–132. [Google Scholar] [CrossRef]
- De Jesus, V.C.; Singh, M.; Schroth, R.J.; Chelikani, P.; Hitchon, C.A. Association of Bitter Taste Receptor T2R38 Polymorphisms, Oral Microbiota, and Rheumatoid Arthritis. Curr. Issues Mol. Biol. 2021, 43, 1460–1472. [Google Scholar] [CrossRef]
- De Jesus, V.C.; Mittermuller, B.-A.; Hu, P.; Schroth, R.J.; Chelikani, P. Genetic variants in taste genes play a role in oral microbial composition and severe early childhood caries. iscience 2022, 25, 105489. [Google Scholar] [CrossRef]
- Khan, M.W.; Cruz de Jesus, V.; Mittermuller, B.A.; Schroth, R.J.; Hu, P.; Chelikani, P. Integrative analysis of taste genetics and the dental plaque microbiome in early childhood caries. Cell Rep. 2025, 44, 116245. [Google Scholar] [CrossRef] [PubMed]
- Medapati, M.R.; Singh, N.; Bhagirath, A.Y.; Duan, K.; Triggs-Raine, B.; Batista, E.L., Jr.; Chelikani, P. Bitter taste receptor T2R14 detects quorum sensing molecules from cariogenic Streptococcus mutans and mediates innate immune responses in gingival epithelial cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2021, 35, e21375. [Google Scholar] [CrossRef] [PubMed]
- Medapati, M.R.; Bhagirath, A.Y.; Singh, N.; Schroth, R.J.; Bhullar, R.P.; Duan, K.; Chelikani, P. Bitter Taste Receptor T2R14 Modulates Gram-Positive Bacterial Internalization and Survival in Gingival Epithelial Cells. Int. J. Mol. Sci. 2021, 22, 9920. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Ulmer, B.; Medapati, M.R.; Zhang, C.; Schroth, R.J.; Ghavami, S.; Chelikani, P. Bitter Taste Receptor T2R14 and Autophagy Flux in Gingival Epithelial Cells. Cells 2024, 13, 531. [Google Scholar] [CrossRef]
- Singh, N.; Cunnington, R.H.; Bhagirath, A.; Vaishampayan, A.; Khan, M.W.; Gupte, T.; Duan, K.; Gounni, A.S.; Dakshisnamurti, S.; Hanrahan, J.W.; et al. Bitter taste receptor T2R14-Gαi coupling mediates innate immune responses to microbial quorum sensing molecules in cystic fibrosis. iScience 2024, 27, 111286. [Google Scholar] [CrossRef]
- Vazquez, M.I.; Catalan-Dibene, J.; Zlotnik, A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine 2015, 74, 318–326. [Google Scholar] [CrossRef]
- Hunt, R.C.; Simhadri, V.L.; Iandoli, M.; Sauna, Z.E.; Kimchi-Sarfaty, C. Exposing synonymous mutations. Trends Genet. 2014, 30, 308–321. [Google Scholar] [CrossRef]
- Spencer, P.S.; Siller, E.; Anderson, J.F.; Barral, J.M. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. J. Mol. Biol. 2012, 422, 328–335. [Google Scholar] [CrossRef]
- Aveyard, P.; Gao, M.; Lindson, N.; Hartmann-Boyce, J.; Watkinson, P.; Young, D.; Coupland, C.A.C.; Tan, P.S.; Clift, A.K.; Harrison, D.; et al. Association between pre-existing respiratory disease and its treatment, and severe COVID-19: A population cohort study. Lancet. Respir. Med. 2021, 9, 909–923. [Google Scholar] [CrossRef]
- Sanchez-Ramirez, D.C.; Mackey, D. Underlying respiratory diseases, specifically COPD, and smoking are associated with severe COVID-19 outcomes: A systematic review and meta-analysis. Respir. Med. 2020, 171, 106096. [Google Scholar] [CrossRef]
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.; Tascilar, K.; Fagni, F.; Kleyer, A.; Krönke, G.; Meder, C.; Dietrich, P.; Orlemann, T.; Mößner, J.; Taubmann, J.; et al. Intensity and longevity of SARS-CoV-2 vaccination response in patients with immune-mediated inflammatory disease: A prospective cohort study. Lancet Rheumatol. 2022, 4, e614–e625. [Google Scholar] [CrossRef] [PubMed]
- Hitchon, C.A.; Mesa, C.; Bernstein, C.N.; Marrie, R.A.; Card, C.; O’Brien, S.F.; Kim, J. Immunogenicity and safety of mixed COVID-19 vaccine regimens in patients with immune-mediated inflammatory diseases: A single-centre prospective cohort study. BMJ Open 2023, 13, e071397. [Google Scholar] [CrossRef] [PubMed]
- Hitchon, C.A.; Bowdish, D.M.E.; Boire, G.; Fortin, P.R.; Flamand, L.; Chandran, V.; Dayam, R.M.; Gingras, A.C.; Card, C.M.; Colmegna, I.; et al. Methotrexate and Tumor Necrosis Factor Inhibitors Independently Decrease Neutralizing Antibodies after SARS-CoV-2 Vaccination: Updated Results from the SUCCEED Study. Vaccines 2024, 12, 1061. [Google Scholar] [CrossRef]
- Scott, D.L.; Wolfe, F.; Huizinga, T.W. Rheumatoid arthritis. Lancet 2010, 376, 1094–1108. [Google Scholar] [CrossRef]
- Kroese, J.M.; Volgenant, C.M.C.; Crielaard, W.; Loos, B.; van Schaardenburg, D.; Visscher, C.M.; Lobbezoo, F. Temporomandibular disorders in patients with early rheumatoid arthritis and at-risk individuals in the Dutch population: A cross-sectional study. RMD Open 2021, 7, 90–101. [Google Scholar] [CrossRef]
- Gabriel, S.E. The epidemiology of rheumatoid arthritis. Rheum. Dis. Clin. N. Am. 2001, 27, 269–281. [Google Scholar] [CrossRef]
- Barut, K.; Adrovic, A.; Şahin, S.; Kasapçopur, Ö. Juvenile Idiopathic Arthritis. Balk. Med. J. 2017, 34, 90–101. [Google Scholar] [CrossRef]
- Larheim, T.A.; Haanaes, H.R. Micrognathia, temporomandibular joint changes and dental occlusion in juvenile rheumatoid arthritis of adolescents and adults. Scand. J. Dent. Res. 1981, 89, 329–338. [Google Scholar] [CrossRef]
- Thibord, F.; Chan, M.V.; Chen, M.-H.; Johnson, A.D. A year of COVID-19 GWAS results from the GRASP portal reveals potential genetic risk factors. Hum. Genet. Genom. Adv. 2022, 3, 100095. [Google Scholar] [CrossRef]
- Shafizadeh, M.W.; Drögemöller, B.; John, P.S.; Bhullar, R.P.; Chelikani, P.; Hitchon, C.A. Association Between Taste Genetics and COVID-19 in Canadian Adults. In Proceedings of the International Association of Dental Research (IADR/PER) General Session & Exhibition, Barcelona, Spain, 25–28 June 2025. [Google Scholar]
Characteristic | COVID-19 Questionnaire (N = 14,073) 1 | COVID-19 Antibody (N = 8313) 1 |
---|---|---|
Sex | ||
Male | 6831 (49%) | 4133 (50%) |
Female | 7242 (51%) | 4180 (50%) |
Age | 67 (61, 75) | 67 (60, 75) |
BMI | 26.9 (24.1, 30.5) | 27.1 (24.3, 30.5) |
Marital partner status | ||
Single/never married | 1113 (7.9%) | 617 (7.4%) |
Married/in a common-law relationship | 9728 (69%) | 5816 (70%) |
Widowed/divorced/separated | 3201 (23.2%) | 1857 (22.3%) |
Dwelling ownership | ||
Own | 11,824 (85%) | 7075 (86%) |
Rent | 2064 (15%) | 1125 (14%) |
Smoking | 857 (6.2) | 401 (4.9%) |
Alcohol consumption | ||
Never | 1843 (13%) | 1039 (13%) |
Less than 4 times per month | 3725 (27%) | 2182 (26%) |
1–3 times per week | 4405 (31%) | 2635 (32%) |
More than 3 times per week | 4080 (29%) | 2445 (29%) |
Number of household residents | 2 (2, 2) | 2 (2, 2) |
Post-secondary education | 12,307 (88%) | 7321 (88%) |
Diabetes 2 | 3099 (22%) | 1828 (22%) |
Cardiovascular disease 3 | 7229 (51%) | 4204 (51%) |
Respiratory disease 4 | 2890 (21%) | 1723 (21%) |
Immune-mediated inflammatory disease 5 | 829 (5.9%) | 491 (5.9%) |
Tested for COVID-19 6 | 2299 (16%) | 2510 (31%) |
Self-reported positive test for COVID-19 | 45 | 78 |
Characteristic | Confirmed/Probable COVID-19 (N = 13,536) 1 | Confirmed COVID-19 (N = 2204) 2 | ||||
---|---|---|---|---|---|---|
Controls (N = 13,389) | Cases (N = 147) | Controls (N = 2161) | Cases (N = 43) | |||
OR 3 | 95% CI 3 | p-Value | OR | 95% CI | p-Value | |
Age | 0.97 | 0.95, 0.99 | <0.001 | 1.02 | 0.99, 1.06 | 0.24 |
Sex (female) | 1.80 | 1.28, 2.58 | <0.001 | 1.45 | 0.76, 2.87 | 0.27 |
Smoking | 0.75 | 0.33, 1.45 | 0.44 | NA 6 | NA | NA |
Dwelling area (urban core) | 1.48 | 0.91, 2.56 | 0.14 | 1.37 | 0.57, 4.09 | 0.52 |
Dwelling ownership (rent) | 1.66 | 1.08, 2.49 | 0.017 | 0.96 | 0.42, 2.01 | 0.91 |
Post-secondary education | 1.44 | 0.83, 2.71 | 0.22 | 1.25 | 0.53, 3.49 | 0.64 |
Diabetes | 1.40 | 0.94, 2.03 | 0.088 | 1.05 | 0.47, 2.14 | 0.91 |
Respiratory disease | 1.78 | 1.24, 2.52 | 0.001 | 1.15 | 0.55, 2.25 | 0.69 |
Cardiovascular disease | 0.84 | 0.59, 1.20 | 0.35 | 0.89 | 0.46, 1.73 | 0.73 |
IMID 4 | 1.33 | 0.69, 2.34 | 0.35 | 2.62 | 0.95, 6.18 | 0.041 |
rs2234235, TAS2R1 (A/G) | 1.48 | 0.80, 2.52 | 0.18 | 1.01 | 0.24, 2.78 | 0.99 |
rs2234009, TAS2R5 (C/T) | 1.09 | 0.49, 2.07 | 0.81 | 1.39 | 0.33, 4.01 | 0.60 |
rs2234010, TAS2R5 (G/A) | 0.89 | 0.40, 1.70 | 0.74 | 0.81 | 0.13, 2.81 | 0.78 |
rs1726866, TAS2R38 (A/G) | 1.09 | 0.86, 1.38 | 0.47 | 1.06 | 0.68, 1.66 | 0.79 |
rs34039200, TAS2R62P (G/A) | 1.17 | 0.89, 1.52 | 0.26 | 1.41 | 0.86, 2.28 | 0.16 |
rs3851584, TAS2R14 5 (T/G) | 1.26 | 0.99, 1.60 | 0.058 | 1.18 | 0.75, 1.85 | 0.47 |
rs77837442, TAS2R19 (C/T) | 0.75 | 0.18, 2.02 | 0.63 | NA 6 | NA | NA |
rs117458236, TAS2R20 (C/T) | 1.95 | 0.98, 3.51 | 0.039 | 2.40 | 0.55, 7.35 | 0.17 |
Characteristic | Number (N = 8313) |
---|---|
Number of doses of COVID-19 vaccine 1,2 | |
0 | 1438 |
1 | 4267 |
2 or more | 869 |
Missing | 1739 |
Vaccine type 3 | |
Pfizer BioNTech | 3901 |
Moderna | 600 |
AstraZeneca | 695 |
Other type | 28 |
Missing | 55 |
Nucleocapsid antibody response | 370 |
Spike antibody response | 3773 |
Antibody result interpretation | |
Prior SARS-CoV-2 infection 4 | 151 |
Prior SARS-CoV-2 infection and/or vaccination 5 | 3554 |
Prior SARS-CoV-2 infection OR infection and vaccination 6 | 219 |
No antibodies detected | 3757 |
Missing | 632 |
Characteristic | Nucleocapsid Antibody (N = 7475) | Spike Antibody (N = 7475) | ||||
---|---|---|---|---|---|---|
Controls (N = 7115) | Cases (N = 360) | Controls (N = 3818) | Cases (N = 3657) | |||
OR 1 | 95% CI 1 | p-Value | OR | 95% CI | p-Value | |
Age | 0.99 | 0.98, 1.01 | 0.30 | 1.00 | 0.99, 1.01 | 0.81 |
Sex (female) | 0.87 | 0.70, 1.08 | 0.22 | 1.25 | 1.08, 1.43 | 0.002 |
Smoking | 0.84 | 0.47, 1.39 | 0.54 | 0.94 | 0.68, 1.33 | 0.74 |
Dwelling ownership (rent) | 0.94 | 0.67, 1.30 | 0.73 | 0.93 | 0.76, 1.15 | 0.50 |
Number of household residents | 1.05 | 0.95, 1.12 | 0.27 | 1.05 | 0.98, 1.12 | 0.21 |
Number of vaccine doses | 0.98 | 0.82, 1.16 | 0.79 | 90.2 | 72.6, 114 | <0.001 |
Post-secondary education | 0.84 | 0.61, 1.17 | 0.29 | 1.16 | 0.93, 1.43 | 0.19 |
Diabetes | 0.94 | 0.71, 1.23 | 0.67 | 0.89 | 0.75, 1.06 | 0.19 |
Respiratory disease | 1.08 | 0.82, 1.40 | 0.57 | 0.93 | 0.79, 1.10 | 0.40 |
Cardiovascular disease | 0.96 | 0.76, 1.21 | 0.72 | 0.90 | 0.78, 1.04 | 0.16 |
IMID 2 | 1.16 | 0.73, 1.76 | 0.50 | 0.65 | 0.49, 0.86 | 0.003 |
rs2234235, TAS2R1 (A/G) | 1.55 | 1.06, 2.20 | 0.018 | 0.74 | 0.57, 0.98 | 0.033 |
rs2234009, TAS2R5 (C/T) | 1.01 | 0.62, 1.56 | 0.96 | 1.33 | 0.99, 1.80 | 0.064 |
rs2234010, TAS2R5 (G/A) | 1.56 | 1.08, 2.19 | 0.014 | 1.26 | 0.95, 1.69 | 0.11 |
rs1726866, TAS2R38 (A/G) | 0.89 | 0.76, 1.03 | 0.13 | 1.04 | 0.94, 1.14 | 0.46 |
rs34039200, TAS2R62P (G/A) | 0.99 | 0.82, 1.19 | 0.93 | 0.86 | 0.77, 0.97 | 0.013 |
rs3851584, TAS2R14 (T/G) | 0.96 | 0.82, 1.12 | 0.63 | 1.02 | 0.93, 1.13 | 0.65 |
rs77837442, TAS2R19 (C/T) | 0.45 | 0.16, 0.99 | 0.080 | 0.91 | 0.63, 1.34 | 0.63 |
rs117458236, TAS2R20 (C/T) | 0.99 | 0.53, 1.68 | 0.96 | 0.94 | 0.67, 1.33 | 0.73 |
Characteristic | Spike Antibody | ||
---|---|---|---|
OR 1 | 95% CI 1 | p-Value | |
Age | 1.00 | 0.99, 1.01 | 0.72 |
Sex | 1.31 | 1.13, 1.53 | <0.001 |
Smoking | 0.92 | 0.65, 1.34 | 0.66 |
Dwelling ownership (rent) | 0.90 | 0.73, 1.13 | 0.37 |
Number of household residents | 1.06 | 0.98, 1.16 | 0.17 |
Number doses | 8.26 | 5.71, 12.5 | <0.001 |
Vaccine type | |||
Moderna | 2.33 | 1.34, 4.05 | 0.003 |
Pfizer BioNTech | 1.52 | 0.91, 2.51 | 0.11 |
AstraZeneca | 1.25 | 0.73, 2.14 | 0.42 |
Post-secondary education | 1.14 | 0.90, 1.43 | 0.28 |
Diabetes | 0.85 | 0.71, 1.02 | 0.078 |
Respiratory disease | 0.87 | 0.72, 1.04 | 0.12 |
Cardiovascular disease | 0.87 | 0.74, 1.01 | 0.074 |
IMID 2 | 0.62 | 0.46, 0.83 | 0.001 |
rs2234235, TAS2R1 (A/G) | 0.71 | 0.54, 0.95 | 0.021 |
rs2234009, TAS2R5 (C/T) | 1.26 | 0.92, 1.75 | 0.17 |
rs2234010, TAS2R5 (G/A) | 1.17 | 0.86, 1.62 | 0.34 |
rs1726866, TAS2R38 (A/G) | 1.02 | 0.92, 1.14 | 0.69 |
rs34039200, TAS2R62P (G/A) | 0.86 | 0.76, 0.97 | 0.017 |
rs3851584, TAS2R14 (T/G) | 1.05 | 0.95, 1.17 | 0.34 |
rs77837442, TAS2R19 (C/T) | 0.95 | 0.64, 1.43 | 0.79 |
rs117458236, TAS2R20 (C/T) | 0.88 | 0.62, 1.27 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafizadeh, M.; Khan, M.W.; Drögemöller, B.; Stavropoulou, C.; St. John, P.; Bhullar, R.P.; Chelikani, P.; Hitchon, C.A. Genetic Variations in Bitter Taste Receptors and COVID-19 in the Canadian Longitudinal Study on Aging. Biomedicines 2025, 13, 2473. https://doi.org/10.3390/biomedicines13102473
Shafizadeh M, Khan MW, Drögemöller B, Stavropoulou C, St. John P, Bhullar RP, Chelikani P, Hitchon CA. Genetic Variations in Bitter Taste Receptors and COVID-19 in the Canadian Longitudinal Study on Aging. Biomedicines. 2025; 13(10):2473. https://doi.org/10.3390/biomedicines13102473
Chicago/Turabian StyleShafizadeh, Marziyeh, Mohd Wasif Khan, Britt Drögemöller, Chrysi Stavropoulou, Philip St. John, Rajinder P. Bhullar, Prashen Chelikani, and Carol A. Hitchon. 2025. "Genetic Variations in Bitter Taste Receptors and COVID-19 in the Canadian Longitudinal Study on Aging" Biomedicines 13, no. 10: 2473. https://doi.org/10.3390/biomedicines13102473
APA StyleShafizadeh, M., Khan, M. W., Drögemöller, B., Stavropoulou, C., St. John, P., Bhullar, R. P., Chelikani, P., & Hitchon, C. A. (2025). Genetic Variations in Bitter Taste Receptors and COVID-19 in the Canadian Longitudinal Study on Aging. Biomedicines, 13(10), 2473. https://doi.org/10.3390/biomedicines13102473