Seborrheic Dermatitis Revisited: Pathophysiology, Diagnosis, and Emerging Therapies—A Narrative Review
Abstract
1. Introduction
2. Clinical Presentation
3. Pathophysiology
3.1. Microbiome
3.2. Sebum Secretion
3.3. Immune System and Skin Barrier
3.4. Genetic Predisposition
4. Triggering and Exacerbating Factors
5. Diagnosis
5.1. Clinical Diagnosis: Current Criteria
5.2. Dermoscopy
5.3. Histopathological Findings and Their Use in Atypical Cases
5.4. Emerging Biomarkers and the Role of Tape Stripping
6. Conventional Treatment
7. Emerging Therapies and Future Perspectives
7.1. Phosphodiesterase 4 (PDE4) Inhibitors
- Roflumilast 0.3% foam or cream, a selective PDE4 inhibitor initially approved for plaque psoriasis, has recently demonstrated promising results in SD. In a recent phase IIa clinical trial, 73.8% of patients treated with roflumilast foam (0.3%) achieved Investigator Global Assessment (IGA) success at week 8, compared with 40.9% in the vehicle group (p < 0.001) [60]. These findings were confirmed in a phase III trial, in which 79.5% of patients treated with roflumilast cream achieved IGA success compared with 58.0% in the vehicle group (p < 0.001) [58,61]. Significant reductions in erythema, scaling, and itch severity were also observed. Importantly, roflumilast showed a favorable safety profile, with adverse events comparable to vehicle foam. Unlike topical corticosteroids or calcineurin inhibitors, roflumilast is non-steroidal, lipophilic, and formulated for once-daily use, making it especially attractive for visible areas such as the face and scalp. Its cosmetic acceptability, low irritation potential, and anti-inflammatory efficacy support its clinical utility in chronic, relapsing SD.
- Crisaborole 2% ointment, indicated for mild-to-moderate atopic dermatitis, also inhibits PDE4 and may be beneficial for facial SD or sensitive skin [62]. Clinical experience is limited to anecdotal reports. Its high cost may restrict broader use.
- Apremilast, an oral PDE4 inhibitor approved for psoriasis and psoriatic arthritis, has shown potential in the management of SD, particularly in isolated, recalcitrant cases [63].
7.2. Biologic Therapies
7.3. JAK Inhibitors
7.4. Topical Probiotics and Microbiome-Targeted Therapies
7.5. Skin Barrier Modulation
8. Conclusions and Future Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- Piacentini, F.; Camera, E.; Di Nardo, A.; Dell’Anna, M.L. Seborrheic Dermatitis: Exploring the Complex Interplay with Malassezia. Int. J. Mol. Sci. 2025, 26, 2650. [Google Scholar] [CrossRef]
- Polaskey, M.T.; Chang, C.H.; Daftary, K.; Fakhraie, S.; Miller, C.H.; Chovatiya, R. The Global Prevalence of Seborrheic Dermatitis. JAMA Dermatol. 2024, 160, 846. [Google Scholar] [CrossRef]
- Schechtman, R.C.; Midgley, G.; Hay, R.J. HIV Disease and Malassezia Yeasts: A Quantitative Study of Patients Presenting with Seborrhoeic Dermatitis. Br. J. Dermatol. 2006, 133, 694–698. [Google Scholar] [CrossRef] [PubMed]
- Rietcheck, H.R.; Maghfour, J.; Rundle, C.W.; Husayn, S.S.; Presley, C.L.; Sillau, S.H.; Liu, Y.; Leehey, M.A.; Dunnick, C.A.; Dellavalle, R.P. A Review of the Current Evidence Connecting Seborrheic Dermatitis and Parkinson’s Disease and the Potential Role of Oral Cannabinoids. Dermatology 2021, 237, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Niemann, N.; Billnitzer, A.; Jankovic, J. Parkinson’s Disease and Skin. Park. Relat. Disord. 2021, 82, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Xuan, M.; Lu, C.; He, Z. Clinical Characteristics and Quality of Life in Seborrheic Dermatitis Patients: A Cross-Sectional Study in China. Health Qual. Life Outcomes 2020, 18, 308. [Google Scholar] [CrossRef]
- Szepietowski, J.C.; Reich, A.; Wesołowska-Szepietowska, E.; Baran, E. Quality of Life in Patients Suffering from Seborrheic Dermatitis: Influence of Age, Gender and Education Level. Mycoses 2009, 52, 357–363. [Google Scholar] [CrossRef]
- Ungar, B.; Manson, M.; Kim, M.; Gour, D.; Temboonnark, P.; Metukuru, R.; Correa Da Rosa, J.; Estrada, Y.; Gay-Mimbrera, J.; Gómez-Arias, P.J.; et al. Tape-Strip Profiling Identifies Unique Immune and Lipid Dysregulation in Patients with Seborrheic Dermatitis. J. Am. Acad. Dermatol. 2025, 92, 1277–1287. [Google Scholar] [CrossRef]
- Wikramanayake, T.C.; Borda, L.J.; Miteva, M.; Paus, R. Seborrheic Dermatitis—Looking beyond Malassezia. Exp. Dermatol. 2019, 28, 991–1001. [Google Scholar] [CrossRef]
- Patel, T.S.; Dalia, Y. Seborrheic Dermatitis. JAMA Dermatol. 2024, 160, 1371. [Google Scholar] [CrossRef]
- Gupta, A.; Bluhm, R. Seborrheic Dermatitis. J. Eur. Acad. Dermatol. Venereol. 2004, 18, 13–26. [Google Scholar] [CrossRef]
- Rau, A.; Silva, G.S.; Margolis, D.J.; Chiesa Fuxench, Z.C. Adult and Infantile Seborrheic Dermatitis: Update on Current State of Evidence and Potential Research Frontiers. Int. J. Dermatol. 2024, 63, 1495–1502. [Google Scholar] [CrossRef]
- Borda, L.J.; Wikramanayake, T.C. Seborrheic Dermatitis and Dandruff: A Comprehensive Review. J. Clin. Investig. Dermatol. 2015, 3, 10-13188. [Google Scholar] [CrossRef] [PubMed]
- Adalsteinsson, J.A.; Kaushik, S.; Muzumdar, S.; Guttman-Yassky, E.; Ungar, J. An Update on the Microbiology, Immunology and Genetics of Seborrheic Dermatitis. Exp. Dermatol. 2020, 29, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Sparber, F.; LeibundGut-Landmann, S. Host Responses to Malassezia Spp. in the Mammalian Skin. Front. Immunol. 2017, 8, 1614. [Google Scholar] [CrossRef] [PubMed]
- Gaitanis, G.; Magiatis, P.; Hantschke, M.; Bassukas, I.D.; Velegraki, A. The Malassezia Genus in Skin and Systemic Diseases. Clin. Microbiol. Rev. 2012, 25, 106–141. [Google Scholar] [CrossRef]
- Kurniadi, I.; Hendra Wijaya, W.; Timotius, K.H. Malassezia Virulence Factors and Their Role in Dermatological Disorders. Acta Dermatovenerol. Alp. Pannonica Adriat. 2022, 31, 65–70. [Google Scholar] [CrossRef]
- Vysochanska, V.; Koval, G. Malassezia Colonization Correlates with the Severity of Seborrheic Dermatitis. Wiadomości Lek. 2023, 76, 1371–1377. [Google Scholar] [CrossRef]
- Tanaka, A.; Cho, O.; Saito, C.; Saito, M.; Tsuboi, R.; Sugita, T. Comprehensive Pyrosequencing Analysis of the Bacterial Microbiota of the Skin of Patients with Seborrheic Dermatitis. Microbiol. Immunol. 2016, 60, 521–526. [Google Scholar] [CrossRef]
- Lin, Q.; Panchamukhi, A.; Li, P.; Shan, W.; Zhou, H.; Hou, L.; Chen, W. Malassezia and Staphylococcus Dominate Scalp Microbiome for Seborrheic Dermatitis. Bioprocess Biosyst. Eng. 2021, 44, 965–975. [Google Scholar] [CrossRef]
- Park, M.; Cho, Y.J.; Lee, Y.W.; Jung, W.H. Whole genome sequencing analysis of the cutaneous pathogenic yeast Malassezia restricta and identification of the major lipase expressed on the scalp of patients with dandruff. Mycoses 2017, 60, 188–197. [Google Scholar] [CrossRef]
- Mosca, S.; Ottaviani, M.; Briganti, S.; Di Nardo, A.; Flori, E. The Sebaceous Gland: A Key Player in the Balance Between Homeostasis and Inflammatory Skin Diseases. Cells 2025, 14, 747. [Google Scholar] [CrossRef]
- Ludovici, M.; Kozul, N.; Materazzi, S.; Risoluti, R.; Picardo, M.; Camera, E. Influence of the Sebaceous Gland Density on the Stratum Corneum Lipidome. Sci. Rep. 2018, 8, 11500. [Google Scholar] [CrossRef]
- Cheng, Y.; Cong, J.; Xu, J.; Tang, L.; Zhou, Z.; Yang, X.; Hu, Y.; Li, Y.; He, R.; Xiang, Q. Research Progress on the Exacerbation of Lipid Metabolism by Malassezia and Its Impact on the Skin Barrier Function. Cosmetics 2025, 12, 67. [Google Scholar] [CrossRef]
- Ruth Ashbee, H. Recent Developments in the Immunology and Biology of Malassezia Species. FEMS Immunol. Med. Microbiol. 2006, 47, 14–23. [Google Scholar] [CrossRef]
- Rousel, J.; Nădăban, A.; Saghari, M.; Pagan, L.; Zhuparris, A.; Theelen, B.; Gambrah, T.; van der Wall, H.E.C.; Vreeken, R.J.; Feiss, G.L.; et al. Lesional Skin of Seborrheic Dermatitis Patients Is Characterized by Skin Barrier Dysfunction and Correlating Alterations in the Stratum Corneum Ceramide Composition. Exp. Dermatol. 2024, 33, e14952. [Google Scholar] [CrossRef] [PubMed]
- Roesner, L.M.; Ernst, M.; Chen, W.; Begemann, G.; Kienlin, P.; Raulf, M.K.; Lepenies, B.; Werfel, T. Human Thioredoxin, a Damage-Associated Molecular Pattern and Malassezia-Crossreactive Autoallergen, Modulates Immune Responses via the C-Type Lectin Receptors Dectin-1 and Dectin-2. Sci. Rep. 2019, 9, 11210. [Google Scholar] [CrossRef] [PubMed]
- Miyachi, H.; Wakabayashi, S.; Sugihira, T.; Aoyama, R.; Saijo, S.; Koguchi-Yoshioka, H.; Fujimoto, M.; Núñez, G.; Matsue, H.; Nakamura, Y. Keratinocyte IL-36 Receptor/MyD88 Signaling Mediates Malassezia-Induced IL-17–Dependent Skin Inflammation. J. Infect. Dis. 2021, 223, 1753–1765. [Google Scholar] [CrossRef] [PubMed]
- Donnarumma, G.; Perfetto, B.; Paoletti, I.; Oliviero, G.; Clavaud, C.; Del Bufalo, A.; Guéniche, A.; Jourdain, R.; Tufano, M.A.; Breton, L. Analysis of the Response of Human Keratinocytes to Malassezia Globosa and Restricta Strains. Arch. Dermatol. Res. 2014, 306, 763–768. [Google Scholar] [CrossRef]
- Wolf, A.J.; Limon, J.J.; Nguyen, C.; Prince, A.; Castro, A.; Underhill, D.M. Malassezia Spp. Induce Inflammatory Cytokines and Activate NLRP3 Inflammasomes in Phagocytes. J. Leukoc. Biol. 2021, 109, 161–172. [Google Scholar] [CrossRef]
- Jia, Q.; Hu, J.; Wang, X.; Deng, Y.; Zhang, J.; Li, H. Malassezia Globosa Induces Differentiation of Pathogenic Th17 Cells by Inducing IL-23 Secretion by Keratinocytes. Mycopathologia 2024, 189, 85. [Google Scholar] [CrossRef]
- Martynova, E.; Rizvanov, A.; Urbanowicz, R.A.; Khaiboullina, S. Inflammasome Contribution to the Activation of Th1, Th2, and Th17 Immune Responses. Front. Microbiol. 2022, 13, 851835. [Google Scholar] [CrossRef]
- Schwartz, J.; Messenger, A.; Tosti, A.; Todd, G.; Hordinsky, M.; Hay, R.; Wang, X.; Zachariae, C.; Kerr, K.; Henry, J.; et al. A Comprehensive Pathophysiology of Dandruff and Seborrheic Dermatitis–Towards a More Precise Definition of Scalp Health. Acta Derm. Venereol. 2013, 93, 131–137. [Google Scholar] [CrossRef]
- Wikramanayake, T.C.; Hirt, P.; Almastadi, M.; Mitchell, H.; Tomic-Canic, M.; Romero, L.; Garcia, D.; Strbo, N. Increased IL-17-expressing Γδ T Cells in Seborrhoeic Dermatitis-like Lesions of the Mpzl3 Knockout Mice. Exp. Dermatol. 2018, 27, 1408–1411. [Google Scholar] [CrossRef] [PubMed]
- Karakadze, M.A.; Hirt, P.A.; Wikramanayake, T.C. The Genetic Basis of Seborrhoeic Dermatitis: A Review. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Dessinioti, C.; Katsambas, A. Seborrheic Dermatitis: Etiology, Risk Factors, and Treatments:: Facts and controversies. Clin. Dermatol. 2013, 31, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Lancar, R.; Missy, P.; Dupuy, A.; Beaulieu, P.; Fardet, L.; Costagliola, D.; Chosidow, O. Risk Factors for Seborrhoeic Dermatitis Flares: Case-Control and Case-Crossover Study. Acta Derm. Venereol. 2020, 100, adv00292. [Google Scholar] [CrossRef]
- Sanders, M.G.H.; Pardo, L.M.; Ginger, R.S.; Kiefte-de Jong, J.C.; Nijsten, T. Association between Diet and Seborrheic Dermatitis: A Cross-Sectional Study. J. Investig. Dermatol. 2019, 139, 108–114. [Google Scholar] [CrossRef]
- Clark, G.W.; Pope, S.M.; Jaboori, K.A. Diagnosis and Treatment of Seborrheic Dermatitis. Am Fam Physician 2015, 91, 185–190. [Google Scholar]
- Elgash, M.; Dlova, N.; Ogunleye, T.; Taylor, S.C. Seborrheic Dermatitis in Skin of Color: Clinical Considerations. J. Drugs Dermatol. 2019, 18, 24–27. [Google Scholar]
- Alofi, R.M.; Alrohaily, L.S.; Alharthi, N.N.; Almouteri, M.M. Ocular Manifestations in Seborrheic Dermatitis Epidemiology, Clinical Features, and Management: A Comprehensive Review. Cureus 2024, 27, e70335. [Google Scholar] [CrossRef] [PubMed]
- Golińska, J.; Sar-Pomian, M.; Rudnicka, L. Diagnostic Accuracy of Trichoscopy in Inflammatory Scalp Diseases: A Systematic Review. Dermatology 2022, 238, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-W.; Jung, H.-J.; Ko, H.-C.; Kim, M.-B.; Lee, W.-J.; Lee, S.-J.; Kim, D.-W.; Kim, B.-S. Dermoscopy Can Be Useful in Differentiating Scalp Psoriasis from Seborrhoeic Dermatitis. Br. J. Dermatol. 2011, 164, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Golińska, J.; Sar-Pomian, M.; Rudnicka, L. Dermoscopic Features of Psoriasis of the Skin, Scalp and Nails—A Systematic Review. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 648–660. [Google Scholar] [CrossRef]
- Ito, A.; Sugita, K.; Goto, H.; Yamamoto, O. Implication of Perifollicular Clusters and Folliculotropic Distribution of Dendritic Cells in the Pathogenesis of Seborrhoeic Dermatitis. Acta Derm. Venereol. 2020, 100, adv00183. [Google Scholar] [CrossRef]
- Mahlangeni, G.M.; Tod, B.M.; Jordaan, H.F.; Schneider, J.W. Clinicopathological Features of Seborrheic-Like Dermatitis in HIV-Infected Adults: A Single Institutional Descriptive Cross-Sectional Study. Am. J. Dermatopathol. 2021, 43, 27–34. [Google Scholar] [CrossRef]
- Soeprono, F.F.; Schinella, R.A.; Cockerell, C.J.; Comite, S.L. Seborrheic-like Dermatitis of Acquired Immunodeficiency Syndrome. J. Am. Acad. Dermatol. 1986, 14, 242–248. [Google Scholar] [CrossRef]
- Güner, M.E.; Kurutaş, E.B.; Öztürk, P. Serum Raftlin and 8-Isoprostaglandin F2α as Potential Biomarkers in Seborrhoeic Dermatitis: A Case–Control Study. Clin. Exp. Dermatol. 2025, 50, 1989–1994. [Google Scholar] [CrossRef]
- Okokon, E.O.; Verbeek, J.H.; Ruotsalainen, J.H.; Ojo, O.A.; Bakhoya, V.N. Topical Antifungals for Seborrhoeic Dermatitis. In Cochrane Database of Systematic Reviews; Okokon, E.O., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2015. [Google Scholar]
- Kastarinen, H.; Oksanen, T.; Okokon, E.O.; Kiviniemi, V.V.; Airola, K.; Jyrkkä, J.; Oravilahti, T.; Rannanheimo, P.K.; Verbeek, J.H. Topical Anti-Inflammatory Agents for Seborrhoeic Dermatitis of the Face or Scalp. Cochrane Database Syst. Rev. 2014, 2014, CD009446. [Google Scholar] [CrossRef]
- Cook, B.A.; Warshaw, E.M. Role of Topical Calcineurin Inhibitors in the Treatment of Seborrheic Dermatitis. Am. J. Clin. Dermatol. 2009, 10, 103–118. [Google Scholar] [CrossRef]
- Piquero-Casals, J.; La Rotta-Higuera, E.; Francisco Mir-Bonafé, J.; Rozas-Muñoz, E.; Granger, C. Non-Steroidal Topical Therapy for Facial Seborrheic Dermatitis. J. Drugs Dermatol. 2020, 19, 658–660. [Google Scholar] [CrossRef] [PubMed]
- de Souza Leão Kamamoto, C.; Sanudo, A.; Hassun, K.M.; Bagatin, E. Low-Dose Oral Isotretinoin for Moderate to Severe Seborrhea and Seborrheic Dermatitis: A Randomized Comparative Trial. Int. J. Dermatol. 2017, 56, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Cömert, A.; Bekiroglu, N.; Gürbüz, O.; Ergun, T. Efficacy of Oral Fluconazole in the Treatment of Seborrheic Dermatitis. Am. J. Clin. Dermatol. 2007, 8, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Ghodsi, S.Z.; Abbas, Z.; Abedeni, R. Efficacy of Oral Itraconazole in the Treatment and Relapse Prevention of Moderate to Severe Seborrheic Dermatitis: A Randomized, Placebo-Controlled Trial. Am. J. Clin. Dermatol. 2015, 16, 431–437. [Google Scholar] [CrossRef]
- Wang, J.; Ho, M.; Bunick, C.G. Chemical, Biochemical, and Structural Similarities and Differences of Dermatological CAMP Phosphodiesterase-IV Inhibitors. J. Investig. Dermatol. 2025, 145, 1471–1488.e1. [Google Scholar] [CrossRef]
- Blauvelt, A.; Draelos, Z.D.; Stein Gold, L.; Alonso-Llamazares, J.; Bhatia, N.; DuBois, J.; Forman, S.B.; Gooderham, M.; Green, L.; Guenthner, S.T.; et al. Roflumilast Foam 0.3% for Adolescent and Adult Patients with Seborrheic Dermatitis: A Randomized, Double-Blinded, Vehicle-Controlled, Phase 3 Trial. J. Am. Acad. Dermatol. 2024, 90, 986–993. [Google Scholar] [CrossRef]
- Dhillon, J.; Mahajan, A.; Xie, J.; Tchack, M.; Rao, B.K. Roflumilast and the Changing Landscape of Seborrheic Dermatitis Treatment. Ann. Pharmacother. 2025. Epub ahead of print. [Google Scholar] [CrossRef]
- Sakkas, L.I.; Mavropoulos, A.; Bogdanos, D.P. Phosphodiesterase 4 Inhibitors in Immune-Mediated Diseases: Mode of Action, Clinical Applications, Current and Future Perspectives. Curr. Med. Chem. 2017, 24, 3054–3067. [Google Scholar] [CrossRef]
- Zirwas, M.J.; Draelos, Z.D.; DuBois, J.; Kircik, L.H.; Moore, A.Y.; Stein Gold, L.; Alonso-Llamazares, J.; Bukhalo, M.; Bruce, S.; Eads, K.; et al. Efficacy of Roflumilast Foam, 0.3%, in Patients with Seborrheic Dermatitis. JAMA Dermatol. 2023, 159, 613. [Google Scholar] [CrossRef]
- Menta, N.; Vidal, S.I.; Friedman, A. Need for Speed: Topical Roflumilast for Rapid Control of Seborrheic Dermatitis Flares. J. Drugs Dermatol. 2025, 24, 634–635. [Google Scholar] [CrossRef]
- Peña, S.M.; Oak, A.S.W.; Smith, A.M.; Mayo, T.T.; Elewski, B.E. Topical Crisaborole Is an Efficacious Steroid-sparing Agent for Treating Mild-to-moderate Seborrhoeic Dermatitis. J. Eur. Acad. Dermatol. Venereol. 2020, 34, e809–e812. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.R.; Gordon, S.C.; Lam, A.H.; Rosmarin, D. Recalcitrant Seborrheic Dermatitis Successfully Treated with Apremilast. J. Cutan. Med. Surg. 2020, 24, 90–91. [Google Scholar] [CrossRef] [PubMed]
- Mital, R.; Gray, A.; Minta, A.; Almhana, F.; Amin, S.; Hydol-Smith, J.; Mallela, T.; Kaffenberger, B.H. Novel and Off-Label Biologic Use in the Management of Hidradenitis Suppurativa, Pyoderma Gangrenosum, Lichen Planus, and Seborrheic Dermatitis: A Narrative Review. Dermatol. Ther. (Heidelb.) 2023, 13, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Ghalili, S.; David, E.; Ungar, B.; Tan, K.; Lang, C.C.V.; Meariman, M.; Andrews, E.; Guttman-Yassky, E. IL-12/23-Targeting in Seborrheic Dermatitis Patients Leads to Long-Lasting Response. Arch. Dermatol. Res. 2023, 315, 2937–2940. [Google Scholar] [CrossRef]
- Al-Janabi, A.; Marsland, A.M. Seborrhoeic Dermatitis and Sebopsoriasis Developing in Patients on Dupilumab: Two Case Reports. Clin. Case Rep. 2020, 8, 1458–1460. [Google Scholar] [CrossRef] [PubMed]
- Chong, A.C.; Navarro-Triviño, F.J.; Su, M.; Park, C.O. Fungal Head and Neck Dermatitis: Current Understanding and Management. Clin. Rev. Allergy Immunol. 2024, 66, 363–375. [Google Scholar] [CrossRef]
- Ryguła, I.; Pikiewicz, W.; Kaminiów, K. Novel Janus Kinase Inhibitors in the Treatment of Dermatologic Conditions. Molecules 2023, 28, 8064. [Google Scholar] [CrossRef]
- Pope, E.; Kowalski, E.; Tausk, F. Topical Ruxolitinib in the Treatment of Refractory Facial Seborrheic Dermatitis. JAAD Case Rep. 2022, 24, 59–60. [Google Scholar] [CrossRef]
- Teklu, M.; Chung, H.J. Letter in Response to the Case Report “Topical Ruxolitinib in the Treatment of Refractory Facial Seborrheic Dermatitis”. JAAD Case Rep. 2023, 42, 45–46. [Google Scholar] [CrossRef]
- Abe, M.; Igarashi, A.; Kitajima, H.; Toyama, H.; Kabashima, K.; Saeki, H. Treatment Satisfaction, Efficacy, and Safety of Delgocitinib Ointment for Atopic Dermatitis-Induced Rash on the Face and Neck: Efficacy at Reducing Local Side Effects of Topical Steroid and Tacrolimus Ointment. J. Dermatol. 2025, 52, 1232–1242. [Google Scholar] [CrossRef]
- Dhillon, S. Delgocitinib: First Approval. Drugs 2020, 80, 609–615. [Google Scholar] [CrossRef]
- McGuigan, A.; Shirley, M. Delgocitinib 20 Mg/g Cream: A Review in Chronic Hand Eczema. Drugs 2025, 85, 1153–1162. [Google Scholar] [CrossRef]
- He, Q.; Xie, X.; Chen, Q.; Li, W.; Song, Z.; Wang, X.; Ma, X.; Zeng, J.; Guo, J. Janus Kinase Inhibitors in Atopic Dermatitis: An Umbrella Review of Meta-Analyses. Front. Immunol. 2024, 15, 1342810. [Google Scholar] [CrossRef]
- Davis, D.M.R.; Drucker, A.M.; Alikhan, A.; Bercovitch, L.; Cohen, D.E.; Darr, J.M.; Eichenfield, L.F.; Frazer-Green, L.; Paller, A.S.; Schwarzenberger, K.; et al. Guidelines of Care for the Management of Atopic Dermatitis in Adults with Phototherapy and Systemic Therapies. J. Am. Acad. Dermatol. 2024, 90, e43–e56. [Google Scholar] [CrossRef] [PubMed]
- Pastukhova, E.; Spurr, A.; Nakonechny, Q.; Lipson, J. Upadacitinib-Induced Paradoxical Face and Scalp Dermatitis: A Case Report of a Novel Sequela. SAGE Open Med. Case Rep. 2023, 11, 2050313X231164271. [Google Scholar] [CrossRef] [PubMed]
- Dogra, S.; Sharma, A.; Mehta, H.; Sarkar, R. Emerging Role of Topical Janus Kinase Inhibitors in Dermatological Disorders: A Review. Clin. Exp. Dermatol. 2023, 48, 1102–1112. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Li, R.; Wang, R. Skin Microbiome Alterations in Seborrheic Dermatitis and Dandruff: A Systematic Review. Exp. Dermatol. 2021, 30, 1546–1553. [Google Scholar] [CrossRef]
- Paulino, L.C. New Perspectives on Dandruff and Seborrheic Dermatitis: Lessons We Learned from Bacterial and Fungal Skin Microbiota. Eur. J. Dermatol. 2017, 27, 4–7. [Google Scholar] [CrossRef]
- Truglio, M.; Sivori, F.; Cavallo, I.; Abril, E.; Licursi, V.; Fabrizio, G.; Cardinali, G.; Pignatti, M.; Toma, L.; Valensise, F.; et al. Modulating the Skin Mycobiome-Bacteriome and Treating Seborrheic Dermatitis with a Probiotic-Enriched Oily Suspension. Sci. Rep. 2024, 14, 2722. [Google Scholar] [CrossRef]
- Yu, Y.; Dunaway, S.; Champer, J.; Kim, J.; Alikhan, A. Changing Our Microbiome: Probiotics in Dermatology. Br. J. Dermatol. 2019, 182, 39–46. [Google Scholar] [CrossRef]
- Rušanac, A.; Škibola, Z.; Matijašić, M.; Čipčić Paljetak, H.; Perić, M. Microbiome-Based Products: Therapeutic Potential for Inflammatory Skin Diseases. Int. J. Mol. Sci. 2025, 26, 6745. [Google Scholar] [CrossRef]
- Rajkumar, J.; Chandan, N.; Lio, P.; Shi, V. The Skin Barrier and Moisturization: Function, Disruption, and Mechanisms of Repair. Skin Pharmacol. Physiol. 2023, 36, 174–185. [Google Scholar] [CrossRef]
Age Group | Prevalence and Associated Factors | Typical Locations | Main Clinical Features | Atypical Forms/Clinical Variants | Comments/Clinical Observations |
---|---|---|---|---|---|
Infants (0–12 months) | Up to 70%. Maternal androgen influence | Scalp (“cradle cap”), eyebrows, eyelids, retroauricular areas, neck, diaper area | Adherent, yellowish, greasy, asymptomatic plaques | Leiner’s disease (severe erythrodermic variant) | Self-limited. Resolves within weeks/months. No pruritus |
Children (2–12 years) | Low prevalence. Reduced sebaceous activity | Scalp, retroauricular areas, mild facial involvement | Fine scaling, mild dermatitis in seborrheic areas | Impetiginization. Mild perioral form | May be mistaken for AD or impetigo. Often underdiagnosed |
Adolescents (13–18 years) | Up to 8%. Increased pubertal androgens | Facial T-zone, scalp, upper chest | Erythema, greasy scaling. Often confused with dandruff or seborrheic acne | Papulosquamous thoracic form. SD resistant and associated with acne | Hormonal influence relevant. Mild-to-moderate course |
Young/Middle-aged Adults (20–50 years) | 2–5%. Relapses triggered by stress, climate, irritants | Scalp, eyebrows, nasolabial folds, glabella, retroauricular areas, upper chest | Erythematous-scaling plaques. Yellowish, oily scales. Frequent pruritus | Sebopsoriasis. Extensive facial form. Rosacea-like | Chronic and relapsing course. Higher prevalence in men and stressed individuals |
Older Adults (>60 years) | 3–10%. More common in neurological comorbidities, immunosuppression | Scalp, face, external auditory canal, folds | More inflammatory, scaly, pruritic lesions. May mimic erythroderma | Erythrodermic SD. Hypopigmented macules. SD associated with Parkinson’s disease | Lower treatment response. Frequent comorbidities. May coexist with other dermatoses |
Immunosuppressed (HIV, lymphoma, etc.) | High prevalence in those with HIV (up to 78%). Early cutaneous marker | Central facial region, axillae, groin, trunk | Extensive, inflammatory, scaly lesions with severe pruritus | Refractory form. Generalized SD. Intense seborrhea | Requires oral antifungals and immunomodulators. Limited response to standard treatment |
Entity | Key Clinical Features | Differences from SD | Affected Areas | Diagnostic Clues and Comments |
---|---|---|---|---|
Psoriasis vulgaris | Well-demarcated erythematous plaques with dry, white or silvery scales. Often extends beyond the hairline (“corona sign”) | Drier, thicker scales; sharply demarcated plaques. Nail and extensor area involvement is common | Scalp, elbows, knees, sacral area, nails | May coexist with SD (“Sebopsoriasis”). Nail and extensor involvement suggests psoriasis. Histology or treatment response may aid diagnosis |
Atopic dermatitis | Chronic eczema, intense pruritus, xerosis. Lichenified or exudative lesions. Often starts in childhood | More severe pruritus. Flexural distribution. History of personal or family atopy. Less seborrhea | Face, neck, folds, trunk | May coexist with SD. Immunologically distinct (Th2 predominance). Distribution and history guide diagnosis |
Tinea capitis/corporis | Annular scaly plaques with active borders, often with localized alopecia or broken hairs. More common in children | Well-defined active borders. Does not respond to standard topical antifungals. May present with alopecia | Scalp, face, neck | Diagnosis by KOH prep and fungal culture. In adults, suspect if lesions are unilateral or treatment-resistant |
Cutaneous lupus (discoid or subacute) | Erythematous plaques with adherent scale and central atrophy. Photosensitivity. May leave scarring lesions | Marked photosensitivity. Follicular adherent scales. Central atrophy. Permanent lesions | Face, scalp, auricular area | ANA, anti-Ro/SSA may be positive. Skin biopsy and direct immunofluorescence can help confirm the diagnosis. Suspect in refractory cases |
Seborrheic rosacea | Persistent centrofacial erythema, telangiectasias, papules/pustules. Scales usually absent | No greasy scaling. Presence of flushing, telangiectasias, inflammatory papules. Limited to face | Nose, cheeks, forehead, chin | May coexist with SD. Flushing and inflammatory lesions support diagnosis. Requires a distinct therapeutic approach |
Contact dermatitis (allergic or irritant) | Eczematous pruritic lesions. History of exposure to topical products | Distribution matches contact area. Sudden onset. More exudation or irritation | Face, neck, scalp (often cosmetic-induced) | Confirm with patch testing. Suspect if flares with shampoos or creams |
Secondary syphilis | Papulosquamous eruptions, patchy alopecia (“moth-eaten”), mucosal involvement and palmoplantar lesions | Systemic involvement. Generalized distribution. Lesions not greasy. Relevant clinical context | Scalp, trunk, palms, mucosa | Serology (VDRL, TPHA) confirms. Consider in atypical or refractory cases |
Folliculitis/impetigo/cellulitis | Pustular or crusted lesions with erythema, pain, and possible fever. | Overt acute infection. No greasy scaling. Rapid evolution | Face, scalp, folds | SD may predispose to secondary infections. SD may predispose to secondary infection; always assess for superinfection in inflamed or exudative lesions |
Location | Line of Treatment | Active Ingredient | Concentration and Vehicle | Typical Dosage |
---|---|---|---|---|
Scalp | First-line | Ketoconazole | 2% shampoo or gel | 2–3 times/week, leave on for 5–10 min |
Ciclopirox olamine | 1.5% shampoo | 2–3 times/week, leave on for 5–10 min | ||
Zinc pyrithione * | 1% shampoo | 2–3 times/week | ||
Selenium sulfide | 2.5% shampoo | 2 times/week | ||
Second-line | Salicylic acid | 3–6% solution or shampoo | Twice weekly or alternating with topical antifungals | |
Clobetasol propionate | 0.05% lotion, foam, or shampoo | Once daily, short cycles (max. 2 weeks) | ||
Betamethasone valerate | 0.1% lotion, foam, or shampoo | Once daily during acute flares | ||
Maintenance | Ketoconazole or Ciclopirox olamine | 2% shampoo or gel 1.5% shampoo | Once weekly | |
Emollient shampoos (non-detergent) | — | Frequent use | ||
Face | First-line | Ketoconazole | 2% cream or gel | Twice daily until remission |
Ciclopirox olamine | 1% cream | Twice daily until remission | ||
Pimecrolimus | 1% cream | Twice daily during flares or maintenance | ||
Metronidazole | 0.75–1% gel or cream | 1–2 times/day | ||
Second-line | Hydrocortisone | 1% cream | 1–2 times/day for 5–7 days | |
Desonide | 0.05% gel or cream | 1–2 times/day in short flares | ||
Maintenance | Tacrolimus or pimecrolimus | Tacrolimus 0.03–0.1% ointment Pimecrolimus 1% cream | 2–3 times/week, as tolerated | |
Seboregulating formulations with niacinamide or zinc | Light cream/emulsion | Daily use | ||
Trunk | First-line | Ketoconazole | 2% gel, cream, or shampoo | 1–2 times/day |
Ciclopirox olamine | 1% cream, gel, or shampoo | 1–2 times/day | ||
Sertaconazole | 2% cream | 1–2 times/day | ||
Second-line | Mometasone furoate | 0.1% cream | Once daily for 5–7 days | |
Betamethasone dipropionate | 0.05% cream | Once daily during acute flares | ||
Maintenance | Ketoconazole, or Ciclopirox olamine | 2% gel, cream, or shampoo 1% cream, gel, or shampoo | Twice weekly | |
Barrier-restoring emollients | Fragrance-free cream or lotion | 1–2 times/day |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro Triviño, F.J.; Velasco Amador, J.P.; Rivera Ruiz, I. Seborrheic Dermatitis Revisited: Pathophysiology, Diagnosis, and Emerging Therapies—A Narrative Review. Biomedicines 2025, 13, 2458. https://doi.org/10.3390/biomedicines13102458
Navarro Triviño FJ, Velasco Amador JP, Rivera Ruiz I. Seborrheic Dermatitis Revisited: Pathophysiology, Diagnosis, and Emerging Therapies—A Narrative Review. Biomedicines. 2025; 13(10):2458. https://doi.org/10.3390/biomedicines13102458
Chicago/Turabian StyleNavarro Triviño, Francisco José, Juan Pablo Velasco Amador, and Irene Rivera Ruiz. 2025. "Seborrheic Dermatitis Revisited: Pathophysiology, Diagnosis, and Emerging Therapies—A Narrative Review" Biomedicines 13, no. 10: 2458. https://doi.org/10.3390/biomedicines13102458
APA StyleNavarro Triviño, F. J., Velasco Amador, J. P., & Rivera Ruiz, I. (2025). Seborrheic Dermatitis Revisited: Pathophysiology, Diagnosis, and Emerging Therapies—A Narrative Review. Biomedicines, 13(10), 2458. https://doi.org/10.3390/biomedicines13102458