Developmentally Regulated CYP2E1 Expression Is Associated with a Fetal Pulmonary Transcriptional Response to Maternal Acetaminophen Exposure
Abstract
1. Introduction
2. Materials and Methods
2.1. Murine Model of Acetaminophen Exposure
2.2. mRNA Extraction and Quantitative Real-Time PCR
2.3. Lung Inflation and Collection of Pulmonary Tissue
2.4. Histologic Evaluation of APAP-Induced Pulmonary Injury
2.5. Statistical Analysis
3. Results
3.1. Pulmonary CYP2E1 Expression Peaks at E18 and Exceeds E17 Levels
3.2. Acetaminophen Exposure Does Not Result in Pup Mortality or Significant Weight Difference
3.2.1. Acetaminophen Exposure Induces Expression of Cyp2e1 in E17 Female and Male Mice
3.2.2. Prenatal Acetaminophen Exposure Does Not Result in a Consistent Pattern of Acute Transcriptional Response in Markers of APAP-Induced Cellular Injury in E17 Female and Male Mice
3.3. Acetaminophen Exposure Induces Acute Transcriptional Response in E18 Female and Male Mice
3.4. Acetaminophen Exposed (250 mg/kg IP × 1) Does Not Induce Histologic Evidence of Acute Pulmonary Injury in E18 Female or Male Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
APAP | Acetaminophen |
NAPQI | N-acetyl-p-benzoquinone imine |
CYP2E1 | Cytochrome P450 family 2 subfamily E member 1 |
GSH | Glutathione |
IP | Intraperitoneal |
References
- Lupattelli, A.; Spigset, O.; Twigg, M.J.; Zagorodnikova, K.; Mårdby, A.C.; Moretti, M.E.; Drozd, M.; Panchaud, A.; Hämeen-Anttila, K.; Rieutord, A.; et al. Medication use in pregnancy: A cross-sectional, multinational web-based study. BMJ Open 2014, 4, e004365. [Google Scholar] [CrossRef]
- Werler, M.M.; Mitchell, A.A.; Hernandez-Diaz, S.; Honein, M.A. Use of over-the-counter medications during pregnancy. Am. J. Obstet. Gynecol. 2005, 193 Pt 1, 771–777. [Google Scholar] [CrossRef]
- Prescott, L.F. Paracetamol: Past, present, and future. Am. J. Ther. 2000, 7, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.M. Acetaminophen (APAP) hepatotoxicity—Isn’t it time for APAP to go away? J. Hepatol. 2017, 67, 1324–1331. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Johnson, C.H.; Yan, H.; Xiao, J.; Dennis, C.; Pierce, K.; DeWan, A.T.; Liew, Z. Acetaminophen Use in Pregnancy: A Comparison of Self-Reported Intake with Maternal and Newborn Biomarker Measures. Clin. Epidemiol. 2025, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.Z.; Swan, S.H.; Kriebel, D.; Liew, Z.; Taylor, H.S.; Bornehag, C.-G.; Andrade, A.M.; Olsen, J.; Jensen, R.H.; Mitchell, R.T.; et al. Paracetamol use during pregnancy—A call for precautionary action. Nat. Rev. Endocrinol. 2021, 17, 757–766. [Google Scholar] [CrossRef]
- Bandoli, G.; Palmsten, K.; Chambers, C. Acetaminophen use in pregnancy: Examining prevalence, timing, and indication of use in a prospective birth cohort. Paediatr. Perinat. Epidemiol. 2020, 34, 237–246. [Google Scholar] [CrossRef]
- Liew, Z.; Ernst, A. Intrauterine Exposure to Acetaminophen and Adverse Developmental Outcomes: Epidemiological Findings and Methodological Issues. Curr. Environ. Health Rep. 2021, 8, 23–33. [Google Scholar] [CrossRef]
- Zafeiri, A.; Raja, E.A.; Mitchell, R.T.; Hay, D.C.; Bhattacharya, S.; Fowler, P.A. Maternal over-the-counter analgesics use during pregnancy and adverse perinatal outcomes: Cohort study of 151 141 singleton pregnancies. BMJ Open 2022, 12, e048092. [Google Scholar] [CrossRef]
- Rebordosa, C.; Zelop, C.M.; Kogevinas, M.; Sørensen, H.T.; Olsen, J. Use of acetaminophen during pregnancy and risk of preeclampsia, hypertensive and vascular disorders: A birth cohort study. J. Matern. Fetal Neonatal Med. 2010, 23, 371–378. [Google Scholar] [CrossRef]
- Black, R.A.; Hill, D.A. Over-the-counter medications in pregnancy. Am. Fam. Physician 2003, 67, 2517–2524. [Google Scholar]
- Thiele, K.; Kessler, T.; Arck, P.; Erhardt, A.; Tiegs, G. Acetaminophen and pregnancy: Short- and long-term consequences for mother and child. J. Reprod. Immunol. 2013, 97, 128–139. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. FDA Responds to Evidence of Possible Association Between Autism and Acetaminophen Use During Pregnancy. 2025. Available online: https://www.fda.gov/news-events/press-announcements/fda-responds-evidence-possible-association-between-autism-and-acetaminophen-use-during-pregnancy (accessed on 1 October 2025).
- Etminan, M.; Sadatsafavi, M.; Jafari, S.; Doyle-Waters, M.; Aminzadeh, K.; FitzGerald, J.M. Acetaminophen Use and the Risk of Asthma in Children and Adults. Chest 2009, 136, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Wang, B.; Liu, C.; Li, D. Prenatal paracetamol use and asthma in childhood: A systematic review and meta-analysis. Allergol. Immunopathol. (Madr.) 2017, 45, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, S.O.; Lundholm, C.; Brew, B.K.; Almqvist, C. Prescribed analgesics in pregnancy and risk of childhood asthma. Eur. Respir. J. 2019, 53, 1801090. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liew, Z.; Olsen, J.; Pedersen, L.H.; Bech, B.H.; Agerbo, E.; Yuan, W.; Li, J. Association of prenatal exposure to acetaminophen and coffee with childhood asthma: Prenatal Acetaminophen Exposure and Asthma. Pharmacoepidemiol. Drug Saf. 2016, 25, 188–195. [Google Scholar] [CrossRef]
- Migliore, E.; Zugna, D.; Galassi, C.; Merletti, F.; Gagliardi, L.; Rasero, L.; Trevisan, M.; Rusconi, F.; Richiardi, L. Prenatal Paracetamol Exposure and Wheezing in Childhood: Causation or Confounding? PLoS ONE 2015, 10, e0135775. [Google Scholar] [CrossRef]
- Lourido-Cebreiro, T.; Salgado, F.J.; Valdes, L.; Gonzalez-Barcala, F.J. The association between paracetamol and asthma is still under debate. J. Asthma 2017, 54, 32–38. [Google Scholar] [CrossRef]
- Piler, P.; Švancara, J.; Kukla, L.; Pikhart, H. Role of combined prenatal and postnatal paracetamol exposure on asthma development: The Czech ELSPAC study. J. Epidemiol. Community Health 2018, 72, 349–355. [Google Scholar] [CrossRef]
- Magnus, M.C.; Karlstad, Ø.; Håberg, S.E.; Nafstad, P.; Davey Smith, G.; Nystad, W. Prenatal and infant paracetamol exposure and development of asthma: The Norwegian Mother and Child Cohort Study. Int. J. Epidemiol. 2016, 45, 512–522. [Google Scholar] [CrossRef]
- Källén, B.; Finnström, O.; Nygren, K.G.; Otterblad Olausson, P. Maternal drug use during pregnancy and asthma risk among children. Pediatr. Allergy Immunol. 2013, 24, 28–32. [Google Scholar] [CrossRef]
- Andersen, A.B.; Pedersen, L.; Mehnert Ehrenstein, V.; Erichsen, R. Use of prescription paracetamol during pregnancy and risk of asthma in children: A population-based Danish cohort study. Clin Epidemiol. 2012, 4, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Beasley, R.W.; O Clayton, T.; Crane, J.; Lai, C.K.W.; Montefort, S.R.; Von Mutius, E.; Stewart, A.W.; ISAAC Phase Three Study Group. Acetaminophen Use and Risk of Asthma, Rhinoconjunctivitis, and Eczema in Adolescents: International Study of Asthma and Allergies in Childhood Phase Three. Am. J. Respir. Crit. Care Med. 2011, 183, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Persky, V.; Piorkowski, J.; Hernandez, E.; Chavez, N.; Wagner-Cassanova, C.; Vergara, C.; Pelzel, D.; Enriquez, R.; Gutierrez, S.; Busso, A. Prenatal exposure to acetaminophen and respiratory symptoms in the first year of life. Ann. Allergy Asthma Immunol. 2008, 101, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Eneli, I.; Sadri, K.; Camargo, C.; Graham Barr, R. Acetaminophen and the Risk of Asthma. Chest 2005, 127, 604–612. [Google Scholar] [CrossRef]
- Henderson, A.J.; Shaheen, S.O. Acetaminophen and asthma. Paediatr. Respir. Rev. 2013, 14, 9–16. [Google Scholar] [CrossRef]
- Nuttall, S.L.; Williams, J.; Kendall, M.J. Does paracetamol cause asthma? J. Clin. Pharm. Ther. 2003, 28, 251–257. [Google Scholar] [CrossRef]
- Sordillo, J.E.; Scirica, C.V.; Rifas-Shiman, S.L.; Gillman, M.W.; Bunyavanich, S.; Camargo, C.A., Jr.; Weiss, S.T.; Gold, D.R.; Litonjua, A.A. Prenatal and infant exposure to acetaminophen and ibuprofen and the risk for wheeze and asthma in children. J. Allergy Clin. Immunol. 2015, 135, 441–448. [Google Scholar] [CrossRef]
- Garcia-Marcos, L.; Sanchez-Solis, M.; Perez-Fernandez, V. Early exposure to acetaminophen and allergic disorders. Curr. Opin. Allergy Clin. Immunol. 2011, 11, 162–173. [Google Scholar] [CrossRef]
- Shaheen, S.O.; Newson, R.B.; Smith, G.D.; Henderson, A.J. Prenatal paracetamol exposure and asthma: Further evidence against confounding. Int. J. Epidemiol. 2010, 39, 790–794. [Google Scholar] [CrossRef]
- Perzanowski, M.S.; Miller, R.L.; Tang, D.; Ali, D.; Garfinkel, R.S.; Chew, G.L.; Goldstein, I.F.; Perera, F.P.; Barr, R.G. Prenatal acetaminophen exposure and risk of wheeze at age 5 years in an urban low-income cohort. Thorax 2010, 65, 118–123. [Google Scholar] [CrossRef]
- Shaheen, S.O.; Newson, R.B.; Henderson, A.J.; Headley, J.E.; Stratton, F.D.; Jones, R.W.; Strachan, D.P.; the ALSPAC Study Team. Prenatal paracetamol exposure and risk of asthma and elevated immunoglobulin E in childhood. Clin. Htmlent Glyphamp. Asciiamp. Exp. Allergy 2005, 35, 18–25. [Google Scholar] [CrossRef]
- Shaheen, S.O.; Newson, R.B.; Ring, S.M.; Rose-Zerilli, M.J.; Holloway, J.W.; Henderson, A.J. Prenatal and infant acetaminophen exposure, antioxidant gene polymorphisms, and childhood asthma. J. Allergy Clin. Immunol. 2010, 126, 1141–1148.e7. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Barcala, F.J.; Pertega, S.; Castro, T.P.; Sampedro, M.; Lastres, J.S.; Gonzalez, M.A.S.J.; Bamonde, L.; Garnelo, L.; Valdes, L.; Carreira, J.-M.; et al. Exposure to paracetamol and asthma symptoms. Eur. J. Public Health 2013, 23, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Goksör, E.; Thengilsdottir, H.; Alm, B.; Norvenius, G.; Wennergren, G. Prenatal paracetamol exposure and risk of wheeze at preschool age. Acta Paediatr. 2011, 100, 1567–1571. [Google Scholar] [CrossRef] [PubMed]
- Amberbir, A.; Medhin, G.; Alem, A.; Britton, J.; Davey, G.; Venn, A. The Role of Acetaminophen and Geohelminth Infection on the Incidence of Wheeze and Eczema: A Longitudinal Birth-cohort Study. Am. J. Respir. Crit. Care Med. 2011, 183, 165–170. [Google Scholar] [CrossRef]
- Rebordosa, C.; Kogevinas, M.; Sorensen, H.T.; Olsen, J. Pre-natal exposure to paracetamol and risk of wheezing and asthma in children: A birth cohort study. Int. J. Epidemiol. 2008, 37, 583–590. [Google Scholar] [CrossRef]
- Onisor, M.O.; Turner, S. Routine FEV1 measurement is essential in diagnosis and monitoring of childhood asthma: Myth or maxim? Breathe 2023, 19, 230048. [Google Scholar] [CrossRef]
- Russomanno, G.; Sison-Young, R.; A Livoti, L.; Coghlan, H.; E Jenkins, R.; Kunnen, S.J.; Fisher, C.P.; Reddyhoff, D.; Gardner, I.; Rehman, A.H.; et al. A systems approach reveals species differences in hepatic stress response capacity. Toxicol. Sci. 2023, 196, 112–125. [Google Scholar] [CrossRef]
- Xu, Z.; Kang, Q.; Yu, Z.; Tian, L.; Zhang, J.; Wang, T. Research on the Species Difference of the Hepatotoxicity of Medicine Based on Transcriptome. Front. Pharmacol. 2021, 12, 647084. [Google Scholar] [CrossRef]
- Yoon, E.; Babar, A.; Choudhary, M.; Kutner, M.; Pyrsopoulos, N. Acetaminophen-Induced Hepatotoxicity: A Comprehensive Update. J. Clin. Transl. Hepatol. 2016, 4, 131–142. [Google Scholar] [CrossRef]
- McGill, M.R.; Jaeschke, H. Metabolism and Disposition of Acetaminophen: Recent Advances in Relation to Hepatotoxicity and Diagnosis. Pharm. Res. 2013, 30, 2174–2187. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, A.; Jaeschke, H. Acetaminophen Toxicity: Novel Insights Into Mechanisms and Future Perspectives. Gene Expr. 2018, 18, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Dara, L.; Win, S.; Than, T.A.; Yuan, L.; Abbasi, S.Q.; Liu, Z.-X.; Kaplowitz, N. Regulation of drug-induced liver injury by signal transduction pathways: Critical role of mitochondria. Trends Pharmacol. Sci. 2013, 34, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Jaeschke, H.; McGill, M.R.; Ramachandran, A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: Lessons learned from acetaminophen hepatotoxicity. Drug Metab. Rev. 2012, 44, 88–106. [Google Scholar] [CrossRef]
- Ramachandran, A.; Jaeschke, H. Acetaminophen hepatotoxicity: A mitochondrial perspective. In Advances in Pharmacology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 85, pp. 195–219. [Google Scholar] [CrossRef]
- Craig, D.G.N.; Bates, C.M.; Davidson, J.S.; Martin, K.G.; Hayes, P.C.; Simpson, K.J. Overdose pattern and outcome in paracetamol-induced acute severe hepatotoxicity. Br. J. Clin. Pharmacol. 2011, 71, 273–282. [Google Scholar] [CrossRef]
- Castell, J.V.; Donato, M.T.; Gómez-Lechón, M.J. Metabolism and bioactivation of toxicants in the lung. The in vitro cellular approach. Exp. Toxicol. Pathol. Off. J. Ges. Toxikol. Pathol. 2005, 57 (Suppl. S1), 189–204. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, S.; Wang, J.; Renukuntla, J.; Sirimulla, S.; Chen, J. A comprehensive review of cytochrome P450 2E1 for xenobiotic metabolism. Drug Metab. Rev. 2019, 51, 178–195. [Google Scholar] [CrossRef]
- Botto, F.; Seree, E.; El Khyari, S.; de Sousa, G.; Massacrier, A.; Placidi, M.; Cau, P.; Pellet, W.; Rahmani, R.; Barra, Y. Tissue-specific expression and methylation of the human CYP2E1 gene. Biochem. Pharmacol. 1994, 48, 1095–1103. [Google Scholar] [CrossRef]
- Hukkanen, J.; Hakkola, J.; Anttila, S.; Piipari, R.; Karjalainen, A.; Pelkonen, O.; Raunio, H. Detection of mRNA encoding xenobiotic-metabolizing cytochrome P450s in human bronchoalveolar macrophages and peripheral blood lymphocytes. Mol. Carcinog. 1997, 20, 224–230. [Google Scholar] [CrossRef]
- Hukkanen, J.; Pelkonen, O.; Hakkola, J.; Raunio, H. Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit. Rev. Toxicol. 2002, 32, 391–411. [Google Scholar] [CrossRef]
- Ding, X.; Kaminsky, L.S. Human extrahepatic cytochromes P450: Function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu. Rev. Pharmacol. Toxicol. 2003, 43, 149–173. [Google Scholar] [CrossRef] [PubMed]
- Raunio, H.; Hakkola, J.; Hukkanen, J.; Pelkonen, O.; Edwards, R.; Boobis, A.; Anttila, S. Expression of xenobiotic-metabolizing cytochrome P450s in human pulmonary tissues. Arch. Toxicol. Suppl. Arch. Toxikol. Suppl. 1998, 20, 465–469. [Google Scholar] [CrossRef]
- Vieira, I.; Pasanen, M.; Raunio, H.; Cresteil, T. Expression of CYP2E1 in Human Lung and Kidney during Development and in Full-Term Placenta: A Differential Methylation of the Gene is Involved in the Regulation Process. Pharmacol. Toxicol. 1998, 83, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Oesch, F.; Fabian, E.; Landsiedel, R. Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch. Toxicol. 2019, 93, 3419–3489. [Google Scholar] [CrossRef]
- Shimada, T.; Yamazaki, H.; Mimura, M.; Wakamiya, N.; Ueng, Y.F.; Guengerich, F.P.; Inui, Y. Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Drug Metab. Dispos. 1996, 24, 515–522. [Google Scholar]
- Negretti, N.M.; Plosa, E.J.; Benjamin, J.T.; Schuler, B.A.; Habermann, A.C.; Jetter, C.S.; Gulleman, P.; Bunn, C.; Hackett, A.N.; Ransom, M.; et al. A single-cell atlas of mouse lung development. Dev. Camb. Engl. 2021, 148, dev199512. [Google Scholar] [CrossRef]
- Xie, T.; Wang, Y.; Deng, N.; Huang, G.; Taghavifar, F.; Geng, Y.; Liu, N.; Kulur, V.; Yao, C.; Chen, P.; et al. Single-Cell Deconvolution of Fibroblast Heterogeneity in Mouse Pulmonary Fibrosis. Cell Rep. 2018, 22, 3625–3640. [Google Scholar] [CrossRef]
- LungMAP-Home. Available online: https://www.lungmap.net/ (accessed on 4 March 2023).
- McCulley, D.J.; Jensen, E.A.; Sucre, J.M.S.; McKenna, S.; Sherlock, L.G.; Dobrinskikh, E.; Wright, C.J. Racing against time: Leveraging preclinical models to understand pulmonary susceptibility to perinatal acetaminophen exposures. Am. J. Physiol. Lung Cell. Mol. Physiol. 2022, 323, L1–L13. [Google Scholar] [CrossRef]
- Sucre, J.M.S.; Hilgendorff, A.; Eldredge, L.C. Don’t Just Do Something, Stand There: Pressing Pause on Acetaminophen Use in Infants and Children. Am. J. Respir. Cell Mol. Biol. 2025, 73, rcmb.2025-0014ED. [Google Scholar] [CrossRef]
- Grayck, M.R.; Smith, B.J.; Sosa, A.; Golden, E.; McCarthy, W.C.; Solar, M.; Balasubramaniyan, N.; Zheng, L.; Dobrinskikh, E.; Rincon, M.; et al. A Single Early Life Acetaminophen Exposure Causes Persistent Abnormalities in the Murine Lung. Am. J. Respir. Cell Mol. Biol. 2025, 73, rcmb.2024-0452OC. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.; El-Hashash, A.; Carraro, G.; Tiozzo, C.; Sala, F.; Rogers, O.; De Langhe, S.; Kemp, P.J.; Riccardi, D.; Torday, J.; et al. Lung Organogenesis. In Current Topics in Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2010; Volume 90, pp. 73–158. [Google Scholar] [CrossRef]
- Lee, D.C.P.; A Walker, S.; Byrne, A.J.; Gregory, L.G.; Buckley, J.; Bush, A.; O Shaheen, S.; Saglani, S.; Lloyd, C.M. Perinatal paracetamol exposure in mice does not affect the development of allergic airways disease in early life. Thorax 2015, 70, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Karimi, K.; Keßler, T.; Thiele, K.; Ramisch, K.; Erhardt, A.; Huebener, P.; Barikbin, R.; Arck, P.; Tiegs, G. Prenatal acetaminophen induces liver toxicity in dams, reduces fetal liver stem cells, and increases airway inflammation in adult offspring. J. Hepatol. 2015, 62, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.; Castro, O.; De Dios, R.; Sandoval, J.; McKenna, S.; Wright, C.J. Sex-differences in LPS-induced neonatal lung injury. Sci Rep. 2019, 9, 8514. [Google Scholar] [CrossRef]
- Gerriets, V.; Anderson, J.; Patel, P.; Nappe, T.M. Acetaminophen. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK482369/ (accessed on 11 August 2025).
- Thiele, K.; Solano, M.E.; Huber, S.; Flavell, R.A.; Kessler, T.; Barikbin, R.; Jung, R.; Karimi, K.; Tiegs, G.; Arck, P.C. Prenatal Acetaminophen Affects Maternal Immune and Endocrine Adaptation to Pregnancy, Induces Placental Damage, and Impairs Fetal Development in Mice. Am. J. Pathol. 2015, 185, 2805–2818. [Google Scholar] [CrossRef]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef]
- Hay-Schmidt, A.; Finkielman, O.T.E.; Jensen, B.A.H.; Høgsbro, C.F.; Holm, J.B.; Johansen, K.H.; Jensen, T.K.; Andrade, A.M.; Swan, S.H.; Bornehag, C.-G.; et al. Prenatal exposure to paracetamol/acetaminophen and precursor aniline impairs masculinisation of male brain and behaviour. Reprod. Camb. Engl. 2017, 154, 145–152. [Google Scholar] [CrossRef]
- Holm, J.B.; Mazaud-Guittot, S.; Danneskiold-Samsøe, N.B.; Chalmey, C.; Jensen, B.; Nørregård, M.M.; Hansen, C.H.; Styrishave, B.; Svingen, T.; Vinggaard, A.M.; et al. Intrauterine Exposure to Paracetamol and Aniline Impairs Female Reproductive Development by Reducing Follicle Reserves and Fertility. Toxicol. Sci. Off. J. Soc. Toxicol. 2016, 150, 178–189. [Google Scholar] [CrossRef]
- Baker, B.H.; Rafikian, E.E.; Hamblin, P.B.; Strait, M.D.; Yang, M.; Pearson, B.L. Sex-specific neurobehavioral and prefrontal cortex gene expression alterations following developmental acetaminophen exposure in mice. Neurobiol. Dis. 2023, 177, 105970. [Google Scholar] [CrossRef]
- Dobrinskikh, E.; Al-Juboori, S.I.; Zarate, M.A.; Zheng, L.; De Dios, R.; Balasubramaniyan, D.; Sherlock, L.G.; Orlicky, D.J.; Wright, C.J. Pulmonary implications of acetaminophen exposures independent of hepatic toxicity. Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 321, L941–L953. [Google Scholar] [CrossRef]
- Sandoval, J.; Orlicky, D.J.; Allawzi, A.; Butler, B.; Ju, C.; Phan, C.T.; Toston, R.; De Dios, R.; Nguyen, L.; McKenna, S.; et al. Toxic Acetaminophen Exposure Induces Distal Lung ER Stress, Proinflammatory Signaling, and Emphysematous Changes in the Adult Murine Lung. Oxid. Med. Cell Longev. 2019, 2019, 1–15. [Google Scholar] [CrossRef]
- Dobrinskikh, E.; Sherlock, L.G.; Orlicky, D.J.; Zheng, L.; De Dios, R.; Balasubramaniyan, D.; Sizemore, T.; Butler, B.; Wright, C.J. The developing murine lung is susceptible to acetaminophen toxicity. Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 320, L969–L978. [Google Scholar] [CrossRef]
- Cederbaum, A.I. Nrf2 and antioxidant defense against CYP2E1 toxicity. Subcell. Biochem. 2013, 67, 105–130. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Han, X.D.; Kan, Y.W. An important function of Nrf2 in combating oxidative stress: Detoxification of acetaminophen. Proc. Natl. Acad. Sci. USA 2001, 98, 4611–4616. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Magilnick, N.; Lee, C.; Kalmaz, D.; Ou, X.; Chan, J.Y.; Lu, S.C. Nrf1 and Nrf2 Regulate Rat Glutamate-Cysteine Ligase Catalytic Subunit Transcription Indirectly via NF-kappaB and AP-1. Mol. Cell Biol. 2005, 25, 5933–5946. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, P.R.; Rudraiah, S.; Goedken, M.J.; Manautou, J.E. Is Nuclear Factor Erythroid 2–Related Factor 2 Responsible for Sex Differences in Susceptibility to Acetaminophen-Induced Hepatotoxicity in Mice? Drug Metab. Dispos. 2014, 42, 1663–1674. [Google Scholar] [CrossRef]
- Cho, H.Y.; Kleeberger, S.R. Nrf2 protects against airway disorders. Toxicol. Appl. Pharmacol. 2010, 244, 43–56. [Google Scholar] [CrossRef]
- Sherlock, L.G.; Balasubramaniyan, D.; Zheng, L.; Grayck, M.; McCarthy, W.C.; De Dios, R.C.; A Zarate, M.; Orlicky, D.J.; Wright, C.J. APAP-Induced IκBβ/NFκB Signaling Drives Hepatic Il6 Expression and Associated Sinusoidal Dilation. Toxicol. Sci. 2022, 185, 158–169. [Google Scholar] [CrossRef]
- Ito, Y. Inhibition of Matrix Metalloproteinases Minimizes Hepatic Microvascular Injury in Response to Acetaminophen in Mice. Toxicol Sci. 2004, 83, 190–196. [Google Scholar] [CrossRef]
- Sun, J.; Wen, Y.; Zhou, Y.; Jiang, Y.; Chen, Y.; Zhang, H.; Guan, L.; Yao, X.; Huang, M.; Bi, H. p53 attenuates acetaminophen-induced hepatotoxicity by regulating drug-metabolizing enzymes and transporter expression. Cell Death Dis. 2018, 9, 536. [Google Scholar] [CrossRef]
- Chen, D.; Ni, H.; Wang, L.; Ma, X.; Yu, J.; Ding, W.; Zhang, L. p53 Up-regulated Modulator of Apoptosis Induction Mediates Acetaminophen-Induced Necrosis and Liver Injury in Mice. Hepatology 2019, 69, 2164–2179. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Q.; Liu, A.; Anadón, A.; Rodríguez, J.-L.; Martínez-Larrañaga, M.-R.; Yuan, Z.; Martínez, M.-A. Paracetamol: Overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro. Drug Metab. Rev. 2017, 49, 395–437. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.Q.; Hou, A.N. Hyperoxia-induced lung injury increases CDKN1A levels in a newborn rat model of bronchopulmonary dysplasia. Exp. Lung Res. 2018, 44, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Blázquez-Prieto, J.; Huidobro, C.; López-Alonso, I.; Amado-Rodriguez, L.; Martín-Vicente, P.; López-Martínez, C.; Crespo, I.; Pantoja, C.; Fernandez-Marcos, P.J.; Serrano, M.; et al. Activation of p21 limits acute lung injury and induces early senescence after acid aspiration and mechanical ventilation. Transl. Res. 2021, 233, 104–116. [Google Scholar] [CrossRef]
- O’REilly, M.A.; Staversky, R.J.; Watkins, R.H.; Reed, C.K.; Jensen, K.L.d.M.; Finkelstein, J.N.; Keng, P.C. The Cyclin-Dependent Kinase Inhibitor p21 Protects the Lung from Oxidative Stress. Am. J. Respir. Cell Mol. Biol. 2001, 24, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Cui, H.; Xie, N.; Banerjee, S.; Liu, R.-M.; Dai, H.; Thannickal, V.J.; Liu, G. ATF4 Mediates Mitochondrial Unfolded Protein Response in Alveolar Epithelial Cells. Am. J. Respir. Cell Mol. Biol. 2020, 63, 478–489. [Google Scholar] [CrossRef]
- Rangasamy, T.; Guo, J.; Mitzner, W.A.; Roman, J.; Singh, A.; Fryer, A.D.; Yamamoto, M.; Kensler, T.W.; Tuder, R.M.; Georas, S.N.; et al. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J. Exp. Med. 2005, 202, 47–59. [Google Scholar] [CrossRef]
- Crawford, E.L.; A Weaver, D.; DeMuth, J.P.; Jackson, C.M.; A Khuder, S.; Frampton, M.W.; Utell, M.J.; Thilly, W.G.; Willey, J.C. Measurement of cytochrome P450 2A6 and 2E1 gene expression in primary human bronchial epithelial cells. Carcinogenesis. 1998, 19, 1867–1871. [Google Scholar] [CrossRef]
- Macé, K.; Bowman, E.D.; Vautravers, P.; Shields, P.G.; Harris, C.C.; Pfeifer, A.M. Characterisation of xenobiotic-metabolising enzyme expression in human bronchial mucosa and peripheral lung tissues. Eur. J. Cancer 1998, 34, 914–920. [Google Scholar] [CrossRef]
- Hart, S.G.; Cartun, R.W.; Wyand, D.S.; Khairallah, E.A.; Cohen, S.D. Immunohistochemical localization of acetaminophen in target tissues of the CD-1 mouse: Correspondence of covalent binding with toxicity. Fundam. Appl. Toxicol. Off. J. Soc. Toxicol. 1995, 24, 260–274. [Google Scholar] [CrossRef]
- Gu, J.; Cui, H.; Behr, M.; Zhang, L.; Zhang, Q.-Y.; Yang, W.; Hinson, J.A.; Ding, X. In vivo mechanisms of tissue-selective drug toxicity: Effects of liver-specific knockout of the NADPH-cytochrome P450 reductase gene on acetaminophen toxicity in kidney, lung, and nasal mucosa. Mol. Pharmacol. 2005, 67, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Neff, S.B.; Neff, T.A.; Kunkel, S.L.; Hogaboam, C.M. Alterations in cytokine/chemokine expression during organ-to-organ communication established via acetaminophen-induced toxicity. Exp. Mol. Pathol. 2003, 75, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Placke, M.E.; Wyand, D.S.; Cohen, S.D. Extrahepatic lesions induced by acetaminophen in the mouse. Toxicol. Pathol. 1987, 15, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, E.H.; Haschek, W.M. Protection by dimethylsulfoxide against acetaminophen-induced hepatic, but not respiratory toxicity in the mouse. Toxicol. Appl. Pharmacol. 1988, 93, 452–461. [Google Scholar] [CrossRef]
- Bartolone, J.B.; Beierschmitt, W.P.; Birge, R.B.; Hart, S.G.; Wyand, S.; Cohen, S.D.; Khairallah, E.A. Selective acetaminophen metabolite binding to hepatic and extrahepatic proteins: An in vivo and in vitro analysis. Toxicol. Appl. Pharmacol. 1989, 99, 240–249. [Google Scholar] [CrossRef]
- Breen, K.; Wandscheer, J.C.; Peignoux, M.; Pessayre, D. In situ formation of the acetaminophen metabolite covalently bound in kidney and lung. Supportive evidence provided by total hepatectomy. Biochem. Pharmacol. 1982, 31, 115–116. [Google Scholar] [CrossRef]
- Bulera, S.J.; Cohenb, S.D.; Khairallah, E.A. Acetaminophen-arylated proteins are detected in hepatic subcellular fractions and numerous extra-hepatic tissues in CD-1 and C57B1/6J mice. Toxicology 1996, 109, 85–99. [Google Scholar] [CrossRef]
- Nassini, R.; Materazzi, S.; Andrè, E.; Sartiani, L.; Aldini, G.; Trevisani, M.; Carnini, C.; Massi, D.; Pedretti, P.; Carini, M.; et al. Acetaminophen, via its reactive metabolite N-acetyl-p-benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation, causes neurogenic inflammation in the airways and other tissues in rodents. FASEB J. 2010, 24, 4904–4916. [Google Scholar] [CrossRef]
- Micheli, L.; Cerretani, D.; Fiaschi, A.I.; Giorgi, G.; Romeo, M.R.; Runci, F.M. Effect of acetaminophen on glutathione levels in rat testis and lung. Environ. Health Perspect. 1994, 102 (Suppl. S9), 63–64. [Google Scholar] [CrossRef]
- Dimova, S.; Hoet, P.H.; Nemery, B. Paracetamol (acetaminophen) cytotoxicity in rat type II pneumocytes and alveolar macrophages in vitro. Biochem. Pharmacol. 2000, 59, 1467–1475. [Google Scholar] [CrossRef]
- Dimova, S.; Hoet, P.H.M.; Dinsdale, D.; Nemery, B. Acetaminophen decreases intracellular glutathione levels and modulates cytokine production in human alveolar macrophages and type II pneumocytes in vitro. Int. J. Biochem. Cell Biol. 2005, 37, 1727–1737. [Google Scholar] [CrossRef] [PubMed]
- Akashi, S.; Tominaga, M.; Naitou, K.; Fujisawa, N.; Nakahara, Y.; Hiura, K.; Hayashi, S. [Two cases of acetaminophen-induced pneumonitis]. Nihon Kyobu Shikkan Gakkai Zasshi 1997, 35, 974–979. [Google Scholar] [PubMed]
- Price, L.M.; Poklis, A.; Johnson, D.E. Fatal acetaminophen poisoning with evidence of subendocardial necrosis of the heart. J. Forensic Sci. 1991, 36, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Baudouin, S.V.; Howdle, P.; O’Grady, J.G.; Webster, N.R. Acute lung injury in fulminant hepatic failure following paracetamol poisoning. Thorax 1995, 50, 399–402. [Google Scholar] [CrossRef]
- McKeever, T.M.; Lewis, S.A.; Smit, H.A.; Burney, P.; Britton, J.R.; Cassano, P.A. The Association of Acetaminophen, Aspirin, and Ibuprofen with Respiratory Disease and Lung Function. Am. J. Respir. Crit. Care Med. 2005, 171, 966–971. [Google Scholar] [CrossRef]
- Du, Y.; A Kitzmiller, J.; Sridharan, A.; Perl, A.K.; Bridges, J.P.; Misra, R.S.; Pryhuber, G.S.; Mariani, T.J.; Bhattacharya, S.; Guo, M.; et al. Lung Gene Expression Analysis (LGEA): An integrative web portal for comprehensive gene expression data analysis in lung development. Thorax 2017, 72, 481–484. [Google Scholar] [CrossRef]
- Boström, H.; Willetts, K.; Pekny, M.; Levéen, P.; Lindahl, P.; Hedstrand, H.; Pekna, M.; Hellström, M.; Gebre-Medhin, S.; Schalling, M.; et al. PDGF-A Signaling Is a Critical Event in Lung Alveolar Myofibroblast Development and Alveogenesis. Cell 1996, 85, 863–873. [Google Scholar] [CrossRef]
- Li, R.; Li, X.; Hagood, J.; Zhu, M.S.; Sun, X. Myofibroblast contraction is essential for generating and regenerating the gas-exchange surface. J. Clin. Investig. 2020, 130, 2859–2871. [Google Scholar] [CrossRef]
- Lindahl, P.; Karlsson, L.; Hellström, M.; Gebre-Medhin, S.; Willetts, K.; Heath, J.K.; Betsholtz, C. Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Dev. Camb. Engl. 1997, 124, 3943–3953. [Google Scholar] [CrossRef]
- McGowan, S.E.; Grossmann, R.E.; Kimani, P.W.; Holmes, A.J. Platelet-Derived Growth Factor Receptor-Alpha-Expressing Cells Localize to the Alveolar Entry Ring and Have Characteristics of Myofibroblasts During Pulmonary Alveolar Septal Formation. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2008, 291, 1649–1661. [Google Scholar] [CrossRef]
- Li, R.; Bernau, K.; Sandbo, N.; Gu, J.; Preissl, S.; Sun, X. Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response. eLife 2018, 7, e36865. [Google Scholar] [CrossRef]
- US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. July 2005. Available online: https://www.fda.gov/media/72309/download (accessed on 11 August 2025).
- Al Shoyaib, A.; Archie, S.R.; Karamyan, V.T. Intraperitoneal Route of Drug Administration: Should it Be Used in Experimental Animal Studies? Pharm. Res. 2020, 37, 12. [Google Scholar] [CrossRef]
Target | Assay ID | Protein Name (Abbreviation) |
---|---|---|
Cype2e1 | Mm00491127_m1 | Cytochrome P450, family 2, subfamily e, polypeptide 1 (CYP2E1) |
Gclc | Mm00802655_m1 | Glutamate–cysteine ligase catalytic subunit (GCLC) |
Hmox | Mm00516005_m1 | Heme oxygenase 1 (HMOX) |
Nqo1 | Mm01253561_m1 | NAD(P)H dehydrogenase [quinone] 1 (NQO1) |
Mmp9 | Mm00442991_m1 | Matrix metallopeptidase 9 (MMP9) |
Il6 | Mm00446190_m1 | Interleukin-6 (IL-6) |
Trp53 | Mm01731290_g1 | Transformation-related protein 53 (TRP53) |
Puma (Bbc3) | Mm00519268_m1 | BCL2-binding component 3 (PUMA) |
Noxa (PMAIP1) | Mm00451763_m1 | Phorbol-12-myristate-13-acetate-induced protein 1 (NOXA) |
Cdkn1a | Mm01332263_m1 | Cyclin-dependent kinase inhibitor 1A (Cdkn1a) |
Ddit3 | Mm01135937_g1 | DNA damage-inducible transcript 3 |
Atf4 | Mm00515325_g1 | Activating Transcription Factor 4 |
Sry | Mm00441712_s1 | Sex-determining region Y protein (SRY) |
18S | Mm03928990_g1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golden, E.M.; Li, Z.; Zheng, L.; Solar, M.; Grayck, M.R.; Talaba, N.; McCulley, D.J.; Orlicky, D.J.; Wright, C.J. Developmentally Regulated CYP2E1 Expression Is Associated with a Fetal Pulmonary Transcriptional Response to Maternal Acetaminophen Exposure. Biomedicines 2025, 13, 2446. https://doi.org/10.3390/biomedicines13102446
Golden EM, Li Z, Zheng L, Solar M, Grayck MR, Talaba N, McCulley DJ, Orlicky DJ, Wright CJ. Developmentally Regulated CYP2E1 Expression Is Associated with a Fetal Pulmonary Transcriptional Response to Maternal Acetaminophen Exposure. Biomedicines. 2025; 13(10):2446. https://doi.org/10.3390/biomedicines13102446
Chicago/Turabian StyleGolden, Emma M., Zhuowei Li, Lijun Zheng, Mack Solar, Maya R. Grayck, Nicole Talaba, David J. McCulley, David J. Orlicky, and Clyde J. Wright. 2025. "Developmentally Regulated CYP2E1 Expression Is Associated with a Fetal Pulmonary Transcriptional Response to Maternal Acetaminophen Exposure" Biomedicines 13, no. 10: 2446. https://doi.org/10.3390/biomedicines13102446
APA StyleGolden, E. M., Li, Z., Zheng, L., Solar, M., Grayck, M. R., Talaba, N., McCulley, D. J., Orlicky, D. J., & Wright, C. J. (2025). Developmentally Regulated CYP2E1 Expression Is Associated with a Fetal Pulmonary Transcriptional Response to Maternal Acetaminophen Exposure. Biomedicines, 13(10), 2446. https://doi.org/10.3390/biomedicines13102446