Fibrosis Severity in MASLD Determines the Predictive Value of Lp-PLA2 for Carotid Atherosclerosis in Type 2 Diabetes: A Cross-Sectional Study
Abstract
1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Diagnosis Criteria
2.2.1. T2DM
2.2.2. MASLD
2.2.3. MS
2.3. Clinical Estimation
2.4. Laboratory Determinations
2.5. Liver Steatosis and Fibrosis Assessments
2.6. Carotid Atherosclerosis (CAS) Evaluation
2.7. Statistical Methods
3. Results
3.1. Baseline Characteristics of MASLD
3.2. Lp-PLA2 Activity and MASLD Status
3.3. Lp-PLA2 and Atherosclerosis in MASLD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crane, H.; Eslick, G.D.; Gofton, C.; Shaikh, A.; Cholankeril, G.; Cheah, M.; Zhong, J.-H.; Svegliati-Baroni, G.; Vitale, A.; Kim, B.K.; et al. Global prevalence of metabolic dysfunction-associated fatty liver disease-related hepatocellular carcinoma: A systematic review and meta-analysis. Clin. Mol. Hepatol. 2024, 30, 436–448. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef]
- Huang, F.; Wang, K.; Shen, J. Lipoprotein-associated phospholipase A2: The story continues. Med. Res. Rev. 2020, 40, 79–134. [Google Scholar] [CrossRef]
- Dimitroglou, Y.; Sakalidis, A.; Mavroudis, A.; Kalantzis, C.; Valatsou, A.; Andrikou, I.; Christofi, A.; Mantzouranis, E.; Kachrimanidis, I.; Bei, E.; et al. Lipoprotein-associated Phospholipase A2 in Coronary Artery Disease. Curr. Top. Med. Chem. 2022, 22, 2344–2354. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, J.; Chen, S.; Zhang, Y.; He, R.; Wang, X.; Ding, F.; Hu, W.; Dai, Y.; Lu, L.; et al. Serum levels of lipoprotein-associated phospholipase A2 are associated with coronary atherosclerotic plaque progression in diabetic and non-diabetic patients. BMC Cardiovasc. Disord. 2024, 24, 251. [Google Scholar] [CrossRef]
- Siddiqui, M.K.; Smith, G.; Jean, P.S.; Dawed, A.Y.; Bell, S.; Soto-Pedre, E.; Kennedy, G.; Carr, F.; Wallentin, L.; White, H.; et al. Diabetes status modifies the long-term effect of lipo-protein-associated phospholipase A2 on major coronary events. Diabetologia 2022, 65, 101–112. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Li, J.; Fu, Y.; Chen, P.; Liu, X.; Zhang, J.; Sun, L.; Zhang, R.; Li, X.; et al. The relationships between biological novel biomarkers Lp-PLA2 and CTRP-3 and CVD in patients with type 2 diabetes mellitus. J. Diabetes 2024, 16, e13574. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, M.; Hu, M.; Zhang, Y.; Jiang, W.; Tang, W.; Ouyang, Y.; Jiang, L.; Mi, Y.; Chen, Z.; et al. Emerging applications of single-cell profiling in precision medicine of atherosclerosis. J. Transl. Med. 2024, 23, 97. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Zheng, Y.; Gao, Z.; Cong, L.; Yang, L.; Zhou, Y. Association of Lipoprotein-Associated Phospholipase A2 with the Prevalence of Nonalcoholic Fatty Liver Disease: A Result from the APAC Study. Sci. Rep. 2018, 8, 10127. [Google Scholar] [CrossRef]
- Colak, Y.; Senates, E.; Ozturk, O.; Doganay, H.L.; Coskunpinar, E.; Oltulu, Y.M.; Eren, A.; Sahin, O.; Ozkanli, S.; Enc, F.Y.; et al. Association of serum lipoprotein-associated phospholipase A2 level with nonalcoholic fatty liver disease. Metab. Syndr. Relat. Disord. 2012, 10, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Torp, N.; Israelsen, M.; Johansen, S.; Semmler, G.; Hansen, C.D.; Bech, K.T.; Andersen, M.L.; Thorhauge, K.H.; Andersen, P.; Schnefeld, H.L.; et al. MetALD: Diagnosis and Prognosis with Non-Invasive Tests. Aliment Pharmacol Ther. 2025; Epub ahead of print. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef]
- Chinese Elderly Type 2 Diabetes Prevention and Treatment of Clinical Guidelines Writing Group; Geriatric Endocrinology and Metabolism Branch of Chinese Geriatric Society; Geriatric Endocrinology and Metabolism Branch of Chinese Geriatric Health Care Society; Geriatric Professional Committee of Beijing Medical Award Foundation; National Clinical Medical Research Center for Geriatric Diseases (PLA General Hospital). Clinical guidelines for prevention and treatment of type 2 diabetes mellitus in the elderly in China (2022 edition). Chin. J. Intern. Med. 2022, 61, 12–50. [Google Scholar]
- Chen, Q.; Hu, P.; Hou, X.; Sun, Y.; Jiao, M.; Peng, L.; Dai, Z.; Yin, X.; Liu, R.; Li, Y.; et al. Association between triglycer-ide-glucose related indices and mortality among individuals with non-alcoholic fatty liver disease or metabolic dysfunction-associated steatotic liver disease. Cardiovasc. Diabetol. 2024, 4, 232. [Google Scholar] [CrossRef]
- Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of metabolic dys-function-associated (non-alcoholic) fatty liver disease (Version 2024). Chin. J. Hepatol. 2024, 32, 418–434. [Google Scholar]
- Starekova, J.; Hernando, D.; Pickhardt, P.J.; Reeder, S.B. Quantification of Liver Fat Content with CT and MRI: State of the Art. Radiology 2021, 301, 250–262. [Google Scholar] [CrossRef]
- Mózes, F.E.; Lee, J.A.; Selvaraj, E.A.; Jayaswal, A.N.A.; Trauner, M.; Boursier, J.; Fournier, C.; Staufer, K.; Stauber, R.E.; Bugianesi, E.; et al. Diagnostic accuracy of non-invasive tests for ad-vanced fibrosis in patients with NAFLD: An individual patient data meta-analysis. Gut. 2022, 71, 1006–1019. [Google Scholar] [CrossRef] [PubMed]
- Touboul, P.-J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Hernandez, R.H.; et al. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc. Dis. 2012, 34, 290–296. [Google Scholar] [PubMed]
- Stein, J.H.; Korcarz, C.E.; Hurst, R.T.; Lonn, E.; Kendall, C.B.; Mohler, E.R.; Najjar, S.S.; Rembold, C.M.; Post, W.S. Use of carotid ultrasound to identify sub-clinical vascular disease and evaluate cardiovascular disease risk: A consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J. Am. Soc. Echocardiogr. 2008, 21, 93–111. [Google Scholar]
- Wang, G.-H.; Jin, J.; Liu, Y.-Q.; Yang, F.-Y.; Shi, D.; Zhang, Y.; Zhao, Y.-M.; Wang, Y. The changes of Lp-PLA2 in patients with gestational diabetes and its clinical significance. Medicine 2021, 100, e26786. [Google Scholar] [CrossRef] [PubMed]
- Detopoulou, P.; Nomikos, T.; Fragopoulou, E.; Antonopoulou, S. Association of PAF and its Metabolic Enzymes with GGT and the Fatty Liver Index in Healthy Volunteers. Curr. Vasc. Pharmacol. 2021, 19, 663–672. [Google Scholar] [CrossRef]
- Law, S.-H.; Chan, M.-L.; Marathe, G.K.; Parveen, F.; Chen, C.-H.; Ke, L.-Y. An Updated Review of Lysophosphatidylcholine Metabolism in Human Diseases. Int. J. Mol. Sci. 2019, 20, 1149. [Google Scholar] [CrossRef]
- Yao, J.; Zhao, Y. Lp-PLA2 silencing ameliorates inflammation and autophagy in nonalcoholic steatohepatitis through inhibiting the JAK2/STAT3 pathway. PeerJ 2023, 11, e15639. [Google Scholar] [CrossRef]
- Tellis, C.; Tselepis, A. Pathophysiological role and clinical significance of lipoprotein-associated phospholipase A2 (Lp-PLA2) bound to LDL and HDL. Curr. Pharm. Des. 2014, 20, 6256–6269. [Google Scholar] [CrossRef] [PubMed]
- Tellis, C.C.; Tselepis, A.D. The role of lipoprotein-associated phospholipase A2 in atherosclerosis may depend on its lipoprotein carrier in plasma. Biochim. Biophys. Acta 2009, 1791, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Dandan, M.; Han, J.; Mann, S.; Kim, R.; Li, K.; Mohammed, H.; Chuang, J.-C.; Zhu, K.; Billin, A.N.; Huss, R.S.; et al. Acetyl-CoA carboxylase inhibitor increases LDL-apoB production rate in NASH with cirrhosis: Prevention by fenofibrate. J. Lipid Res. 2023, 64, 100339. [Google Scholar] [CrossRef] [PubMed]
- Bril, F.; Pearce, R.W.; Collier, T.S.; McPhaul, M.J. Differences in HDL-Bound Apolipoproteins in Patients with Advanced Liver Fi-brosis Due to Nonalcoholic Fatty Liver Disease. J. Clin. Endocrinol. Metab. 2022, 108, 42–51. [Google Scholar] [CrossRef]
Non-MASLD | MASLD | All | p | |
---|---|---|---|---|
Characteristics | N = 421 | N = 674 | N = 1095 | |
Age (year) | 58.1 ± 11.9 | 52.8 ± 12.9 | 54.8 ± 12.8 | <0.001 |
Male (n, %) | 272 (64.6) | 411 (61.0) | 683 (62.4) | 0.25 |
Duration (month) † | 47 (11–91) | 51 (14–97) | 48(10–102) | 0.43 |
Body mass index (kg/m2) | 23.0 ± 2.9 | 25.9 ± 3.2 | 24.8 ± 3.4 | <0.001 |
Waist circumstance (cm) | 86.2 ± 8.7 | 93.4 ± 8.8 | 90.7 ± 9.4 | <0.001 |
Hypertension (n, %) | 162 (38.5) | 266 (39.5) | 428 (39.1) | 0.79 |
Systolic blood pressure (mmHg) | 131 ± 20 | 134 ± 19 | 132 ± 19 | 0.011 |
Diastolic blood pressure (mmHg) | 79 ± 10 | 84 ± 11 | 82 ± 11 | <0.001 |
Smoking (n, %) | 137 (32.5) | 184 (27.3) | 321 (29.3) | 0.07 |
Use of statins (n, %) | 77 (18.3) | 82 (12.2) | 159 (14.5) | 0.007 |
Use of antiplatelet drugs (n, %) | 70 (16.6) | 62 (9.2) | 132 (12.1) | <0.001 |
Alanine aminotransferase (U/L) † | 18 (13–24) | 27(19–37) | 22(16–32) | <0.001 |
Aspartate aminotransferase (U/L) † | 19 (16–24) | 22(18–29) | 21(17–26) | <0.001 |
Uric acid (μmol/L) | 343 ± 99 | 378 ± 104 | 364 ± 103 | <0.001 |
eGFR (mL/min/1.73 m2) | 90.9 ± 23.7 | 99.7 ± 18.1 | 96.3 ± 20.9 | <0.001 |
Total cholesterol (mmol/L) | 5.1 ± 1.5 | 5.3 ± 1.4 | 5.2 ± 1.5 | 0.011 |
Triglycerides (mmol/L) † | 1.3 (0.9–1.7) | 1.8 (1.3–2.6) | 1.6 (1.1–2.3) | <0.001 |
HDL-c (mmol/L) | 1.2 ± 0.3 | 1.1 ± 0.3 | 1.1 ± 0.3 | <0.001 |
LDL-c (mmol/L) | 3.3 ± 1.1 | 3.4 ± 1.0 | 3.4 ± 1.0 | 0.008 |
Fasting blood glucose (mmol/L) | 8.5 ± 3.6 | 9.2 ± 3.1 | 8.9 ± 3.3 | 0.001 |
HbA1c (%) | 9.8 ± 2.6 | 9.9 ± 2.0 | 9.9 ± 2.3 | 0.24 |
TyG index | 9.02 ± 0.75 | 9.50 ± 0.73 | 9.32 ± 0.77 | <0.001 |
Lp-PLA2 (U/L) | 540 ± 170 | 573 ± 164 | 560 ± 167 | 0.002 |
Use of diabetes drugs | ||||
Metformin (n, %) | 168 (39.9) | 248 (36.8) | 416 (38.0) | 0.33 |
Insulin secretagogues (n, %) | 106 (25.2) | 129 (19.1) | 235 (21.5) | 0.022 |
Insulin (n, %) | 91 (21.6) | 84 (12.5) | 175 (16.0) | <0.001 |
Metabolic syndrome (n, %) | 216 (57.0) | 511(83.4) | 727(73.3) | <0.001 |
CIMT (cm) | 1.11 ± 0.23 | 1.06 ± 0.24 | 1.08 ± 0.24 | <0.001 |
Carotid plaque (n, %) | 232 (55.1) | 281 (41.7) | 513 (46.8) | <0.001 |
Carotid atherosclerosis (n, %) | 320 (76.0) | 444 (65.9) | 764 (69.8) | <0.001 |
DKD (n, %) | 117 (27.8) | 119 (17.7) | 236 (21.6) | <0.001 |
ASCVD (n, %) | 66 (15.7) | 56 (8.3) | 122 (11.1) | <0.001 |
Q1 [96,450] | Q2 (450,556] | Q3 (556,666] | Q4 (666,1380] | p | |
---|---|---|---|---|---|
N = 276 | N = 277 | N = 268 | N = 274 | ||
Age (year) | 56.9 ± 12.6 d | 56.1 ± 12.5 d | 54.2 ± 12.3 | 52.2 ± 13.3 | <0.001 |
Male (n, %) | 157 (56.9) d | 168 (60.6) | 164 (61.2) | 194 (70.8) | 0.006 |
Duration (month) † | 78 (12–156) cd | 60 (12–120) cd | 36(6–108) d | 24 (2–72) | <0.001 |
Body mass index (kg/m2) | 24.8 ± 3.5 | 24.7 ± 3.2 | 24.6 ± 3.2 | 25.1 ± 3.7 | 0.29 |
Waist circumstance (cm) | 90.7 ± 9.5 | 90.1 ± 8.8 | 90.1 ± 9.5 | 91.7 ± 9.9 | 0.15 |
Hypertension (n, %) | 133 (48.2) cd | 118 (42.6) | 90 (33.6) | 87 (31.8) | <0.001 |
Systolic blood pressure (mmHg) | 132 ± 19 | 132 ± 20 | 133 ± 19 | 132 ± 20 | 0.82 |
Diastolic blood pressure (mmHg) | 81 ± 11 | 81 ± 11 | 83 ± 11 | 83 ± 11 | 0.09 |
Smoking (n, %) | 74 (26.8) | 81 (29.2) | 71 (26.5) | 95 (34.7) | 0.12 |
Use of statins (n, %) | 78 (28.3) bcd | 49 (17.7) cd | 20 (7.5) | 12 (4.4) | <0.001 |
Use of antiplatelet drugs (n, %) | 52 (18.8) cd | 44 (15.9) d | 24 (9.0) | 12 (4.4) | <0.001 |
Alanine aminotransferase (U/L) † | 21 (14–29) d | 22 (16–30) d | 22 (16–32) d | 26 (18–39) | <0.001 |
Aspartate aminotransferase (U/L) † | 20 (17–26) | 21 (17–25) | 20 (17–26) | 22 (18–30) | 0.06 |
Uric acid (μmol/L) | 361 ± 101 | 360 ± 103 | 361 ± 99 | 375 ± 109 | 0.28 |
eGFR (mL/min/1.73 m2) | 92.7 ± 20.7 cd | 94.9 ± 21.1 | 98.8 ± 20.0 | 99.0 ± 21.2 | <0.001 |
Total cholesterol (mmol/L) | 4.41 ± 1.20 bcd | 4.79 ± 1.11 cd | 5.52 ± 1.05 d | 6.21 ± 1.67 | <0.001 |
Triglycerides (mmol/L) † | 1.40 (1.00–2.01) cd | 1.44 (1.06–2.04) cd | 1.57 (1.18–2.44) | 1.81 (1.34–2.57) | <0.001 |
HDL-c (mmol/L) | 1.08 ± 0.29 | 1.10 ± 0.27 | 1.11 ± 0.24 | 1.14 ± 0.31 | 0.09 |
LDL-c (mmol/L) | 2.78 ± 0.86 bcd | 3.03 ± 0.79 cd | 3.59 ± 0.69 d | 4.07 ± 1.11 | <0.001 |
Fasting blood glucose (mmol/L) | 8.4 ± 3.3 cd | 8.3 ± 3.1 cd | 9.5 ± 3.3 | 9.6 ± 3.4 | <0.001 |
HbA1c (%) | 9.6 ± 2.3 d | 9.6 ± 2.3 d | 10.1 ± 2.2 | 10.4 ± 2.2 | <0.001 |
TyG index | 9.11 ± 0.75 cd | 9.16 ± 0.78 cd | 9.44 ± 0.75 | 9.56 ± 0.73 | <0.001 |
Lp-PLA2 (U/L) | 359 ± 74 bcd | 504 ± 30 cd | 609 ± 32 d | 771 ± 114 | <0.001 |
Metabolic syndrome (n, %) | 168 (71.5) | 174 (71.0) | 183 (73.2) | 202 (77.1) | 0.39 |
MASLD (n, %) | 152 (55.1) d | 167 (60.3) | 173 (64.6) | 182 (66.4) | 0.031 |
CIMT (cm) | 1.09 ± 0.24 | 1.08 ± 0.24 | 1.09 ± 0.24 | 1.08 ± 0.24 | 0.87 |
Carotid plaque (n, %) | 140 (50.7) | 122 (44.0) | 132 (49.3) | 119 (43.4) | 0.21 |
CAS [n, (%)] | 200 (72.5) | 191 (69.0) | 189 (70.5) | 184 (67.2) | 0.57 |
DKD (n, %) | 78 (28.3%) c | 54 (19.5%) | 46 (17.2%) | 58 (21.2%) | 0.011 |
ASCVD (n, %) | 43 (15.6) d | 35 (12.6) | 23 (8.6) | 21 (7.7) | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, J.; Song, R.; Gong, X.; Li, X.; Shao, C.; Zhong, B. Fibrosis Severity in MASLD Determines the Predictive Value of Lp-PLA2 for Carotid Atherosclerosis in Type 2 Diabetes: A Cross-Sectional Study. Biomedicines 2025, 13, 2431. https://doi.org/10.3390/biomedicines13102431
Ye J, Song R, Gong X, Li X, Shao C, Zhong B. Fibrosis Severity in MASLD Determines the Predictive Value of Lp-PLA2 for Carotid Atherosclerosis in Type 2 Diabetes: A Cross-Sectional Study. Biomedicines. 2025; 13(10):2431. https://doi.org/10.3390/biomedicines13102431
Chicago/Turabian StyleYe, Junzhao, Rui Song, Xiaorong Gong, Xin Li, Congxiang Shao, and Bihui Zhong. 2025. "Fibrosis Severity in MASLD Determines the Predictive Value of Lp-PLA2 for Carotid Atherosclerosis in Type 2 Diabetes: A Cross-Sectional Study" Biomedicines 13, no. 10: 2431. https://doi.org/10.3390/biomedicines13102431
APA StyleYe, J., Song, R., Gong, X., Li, X., Shao, C., & Zhong, B. (2025). Fibrosis Severity in MASLD Determines the Predictive Value of Lp-PLA2 for Carotid Atherosclerosis in Type 2 Diabetes: A Cross-Sectional Study. Biomedicines, 13(10), 2431. https://doi.org/10.3390/biomedicines13102431