Deep Brain Stimulation for Parkinson’s Disease—A Narrative Review
Abstract
1. Introduction
2. Anatomy and Function of Basal Ganglia
2.1. Subthalamic Nucleus in PD
2.2. Dentato-Rubro-Thalamic Tract and Its Role in Motor Modulation
2.3. Simultaneous STN and DRTt Stimulation in PD
2.4. Implications for DBS Strategy and Future Directions
2.5. Alternative and Adjunct DBS Targets: PPN, Zona Incerta, and Globus Pallidus Internus
2.6. Ventral Intermediate Nucleus Stimulation in PD
2.7. Post-Subthalamic Area in PD
2.8. Nucleus Basalis of Meynert Stimulation in PD Dementia
2.9. Cuneiform Nucleus in PD
2.10. Centromedian–Parafascicular Complex in PD
2.11. Hypothalamic Stimulation for Autonomic Dysfunction in PD
2.12. Medial Forebrain Bundle in PD
3. Visualization Methods for STN and DRTt
3.1. Visualization Methods for the Subthalamic Nucleus and Dentato-Rubro-Thalamic Tract (DRTt)
3.2. Calculation of the Electric Field in DBS and Its Anatomical Correlation with STN and DRTt
- The shortest distance between the EF boundary and the centerline or edge of the DRTt
- The degree of volumetric overlap between the EF and the anatomical extent of the STN or DRTt
- The percentage of DRTt fibers within the EF
4. Clinical and Anatomical Results
4.1. Clinical and Anatomical Results of STN and DRTt Stimulation in PD
4.2. Anatomical Correlation
5. Clinical Implications and Future Directions
5.1. Implications for Optimizing DBS in PD
5.2. Future Research Directions
- Large-scale randomized controlled trials (RCTs) are necessary to compare traditional STN-DBS against strategies that intentionally co-stimulate the DRTt. Stratification based on motor phenotype (e.g., tremor-dominant vs. akinetic-rigid) and cognitive baseline would clarify which subgroups derive the most benefit [77,78].
- Standardization of tractography protocols remains a priority. While many studies successfully reconstruct the DRTt using diffusion-weighted imaging (DWI), variability in region-of-interest (ROI) placement and algorithm selection limits reproducibility. Collaborative efforts to define validated tractography atlases for DRTt and STN would enhance targeting accuracy [38,81].
- Electrophysiological studies could identify DRTt-specific oscillatory signatures or biomarkers of effective stimulation, potentially useful for real-time control in adaptive DBS systems [83].
6. Critical Considerations
7. Conclusions
7.1. Summary and Clinical Significance of STN and DRTt Stimulation in PD
7.2. Clinical and Research Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CM-Pf | centromedian–parafascicular |
CnF | cuneiform nucleus |
cZI | caudal zona incerta |
DBS | Deep brain stimulation |
DRTt | dentato-rubro-thalamic tract |
FOG | freezing of gait |
GPe | external globus pallidus |
GPi | internal globus pallidus |
EFs | electric fields |
MCI | mild cognitive impairment |
MFB | medial forebrain bundle |
MLR | mesencephalic locomotor region |
NBM | nucleus basalis of Meynert |
PD | Parkinson’s disease |
PDD | Parkinson’s disease dementia |
PPN | pedunculopontine nucleus |
PSA | post-subthalamic area |
RN | red nucleus |
SNc | substantia nigra pars compacta |
SNr | substantia nigra pars reticulata |
STN | subthalamic nucleus |
VA | ventral anterior nucleus |
VIM | ventral intermediate nucleus |
VL | ventral lateral nucleus |
VM | ventral medial nucleus |
VTA | volume of tissue activated |
ZI | zona incerta |
References
- McIntyre, C.C.; Savasta, M.; Kerkerian-Le Goff, L.; Vitek, J.L. Uncovering the Mechanism(s) of Action of Deep Brain Stimulation: Activation, Inhibition, or Both. Clin. Neurophysiol. 2004, 115, 1239–1248. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, C.C.; Savasta, M.; Walter, B.L.; Vitek, J.L. How Does Deep Brain Stimulation Work? Present Understanding and Future Questions. J. Clin. Neurophysiol. 2004, 21, 40–50. [Google Scholar] [CrossRef]
- Benabid, A.L. Deep Brain Stimulation for Parkinson’s Disease. Curr. Opin. Neurobiol. 2003, 13, 696–706. [Google Scholar] [CrossRef]
- Lees, A.J.; Hardy, J.; Revesz, T. Parkinson’s Disease. Lancet 2009, 373, 2055–2066. [Google Scholar] [CrossRef]
- Limousin, P.; Krack, P.; Pollak, P.; Benazzouz, A.; Ardouin, C.; Hoffmann, D.; Benabid, A.-L. Electrical Stimulation of the Subthalamic Nucleus in Advanced Parkinson’s Disease. N. Engl. J. Med. 1998, 339, 1105–1111. [Google Scholar] [CrossRef]
- Moro, E.; Lozano, A.M.; Pollak, P.; Agid, Y.; Rehncrona, S.; Volkmann, J.; Kulisevsky, J.; Obeso, J.A.; Albanese, A.; Hariz, M.I.; et al. Long-Term Results of a Multicenter Study on Subthalamic and Pallidal Stimulation in Parkinson’s Disease. Mov. Disord. 2010, 25, 578–586. [Google Scholar] [CrossRef]
- Hariz, M.; Blomstedt, P. Deep Brain Stimulation for Parkinson’s Disease. J. Intern. Med. 2022, 292, 764–778. [Google Scholar] [CrossRef] [PubMed]
- Sobstyl, M.; Aleksandrowicz, M.; Ząbek, M.; Pasterski, T. Hemorrhagic Complications Seen on Immediate Intraprocedural Stereotactic Computed Tomography Imaging during Deep Brain Stimulation Implantation. J. Neurol. Sci. 2019, 400, 97–103. [Google Scholar] [CrossRef]
- Vetkas, A.; Yang, A.; Boutet, A.; Cheyuo, C.; Santyr, B.; Sarica, C.; Davidson, B.; Fomenko, A.; Samuel, N.; Lang, S.; et al. One Side or Two? A Systematic Review of Deep Brain Stimulation Approaches in Movement Disorders. Mov. Disord. Clin. Pract. 2025. [Google Scholar] [CrossRef]
- Wiśniewski, K.; Gajos, A.; Zaczkowski, K.; Szulia, A.; Grzegorczyk, M.; Dąbkowska, A.; Wójcik, R.; Bobeff, E.J.; Kwiecień, K.; Brandel, M.G.; et al. Overlapping Stimulation of Subthalamic Nucleus and Dentato-Rubro-Thalamic Tract in Parkinson’s Disease after Deep Brain Stimulation. Acta Neurochir. 2024, 166, 106. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, R.; Gajos, A.; Debska, A.; Zaczkowski, K.; Podstawka, M.; Szmyd, B.; Bobeff, E.; Brandel, M.; Fahlstrom, A.; Jaskolski, D.; et al. Preoperative Brain Atrophy as a Predictor of Motor Outcomes After STN Deep Brain Stimulation in Parkinson’s Disease. 2025; under review. [Google Scholar]
- DeLong, M.R.; Wichmann, T. Circuits and Circuit Disorders of the Basal Ganglia. Arch. Neurol. 2007, 64, 20–24. [Google Scholar] [CrossRef]
- Follett, K.A.; Weaver, F.M.; Stern, M.; Hur, K.; Harris, C.L.; Luo, P.; Marks, W.J.; Rothlind, J.; Sagher, O.; Moy, C.; et al. Pallidal versus Subthalamic Deep-Brain Stimulation for Parkinson’s Disease. N. Engl. J. Med. 2010, 362, 2077–2091. [Google Scholar] [CrossRef]
- Gallay, M.N.; Jeanmonod, D.; Liu, J.; Morel, A. Human Pallidothalamic and Cerebellothalamic Tracts: Anatomical Basis for Functional Stereotactic Neurosurgery. Brain Struct. Funct. 2008, 212, 443–463. [Google Scholar] [CrossRef] [PubMed]
- Coenen, V.A.; Allert, N.; Mädler, B. A Role of Diffusion Tensor Imaging Fiber Tracking in Deep Brain Stimulation Surgery: DBS of the Dentato-Rubro-Thalamic Tract (Drt) for the Treatment of Therapy-Refractory Tremor. Acta Neurochir. 2011, 153, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Deuter, D.; Torka, E.; Kohl, Z.; Schmidt, N.O.; Schlaier, J. Mediation of Tremor Control by the Decussating and Nondecussating Part of the Dentato-Rubro-Thalamic Tract in Deep Brain Stimulation in Essential Tremor: Which Part Should Be Stimulated? Neuromodulation 2023, 26, 1668–1679. [Google Scholar] [CrossRef] [PubMed]
- Cavallieri, F.; Fraix, V.; Bove, F.; Mulas, D.; Tondelli, M.; Castrioto, A.; Krack, P.; Meoni, S.; Schmitt, E.; Lhommée, E.; et al. Predictors of Long-Term Outcome of Subthalamic Stimulation in Parkinson Disease. Ann. Neurol. 2021, 89, 587–597. [Google Scholar] [CrossRef]
- Mazzone, P.; Lozano, A.; Stanzione, P.; Galati, S.; Scarnati, E.; Peppe, A.; Stefani, A. Implantation of Human Pedunculopontine Nucleus: A Safe and Clinically Relevant Target in Parkinson’s Disease. Neuroreport 2005, 16, 1877–1881. [Google Scholar] [CrossRef]
- Stefani, A.; Peppe, A.; Pierantozzi, M.; Galati, S.; Moschella, V.; Stanzione, P.; Mazzone, P. Multi-Target Strategy for Parkinsonian Patients: The Role of Deep Brain Stimulation in the Centromedian-Parafascicularis Complex. Brain Res. Bull. 2009, 78, 113–118. [Google Scholar] [CrossRef]
- Ferraye, M.U.; Debû, B.; Fraix, V.; Goetz, L.; Ardouin, C.; Yelnik, J.; Henry-Lagrange, C.; Seigneuret, E.; Piallat, B.; Krack, P.; et al. Effects of Pedunculopontine Nucleus Area Stimulation on Gait Disorders in Parkinson’s Disease. Brain 2010, 133, 205–214. [Google Scholar] [CrossRef]
- Thevathasan, W.; Debu, B.; Aziz, T.; Bloem, B.R.; Blahak, C.; Butson, C.; Czernecki, V.; Foltynie, T.; Fraix, V.; Grabli, D.; et al. Pedunculopontine Nucleus Deep Brain Stimulation in Parkinson’s Disease: A Clinical Review. Mov. Disord. 2018, 33, 10–20. [Google Scholar] [CrossRef]
- Plaha, P.; Ben-Shlomo, Y.; Patel, N.K.; Gill, S.S. Stimulation of the Caudal Zona Incerta Is Superior to Stimulation of the Subthalamic Nucleus in Improving Contralateral Parkinsonism. Brain 2006, 129, 1732–1747. [Google Scholar] [CrossRef] [PubMed]
- Blomstedt, P.; Persson, R.S.; Hariz, G.M.; Linder, J.; Fredricks, A.; Häggström, B.; Philipsson, J.; Forsgren, L.; Hariz, M. Deep Brain Stimulation in the Caudal Zona Incerta versus Best Medical Treatment in Patients with Parkinson’s Disease: A Randomised Blinded Evaluation. J. Neurol. Neurosurg. Psychiatry 2018, 89, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Nowacki, A.; Debove, I.; Rossi, F.; Ai Schlaeppi, J.; Petermann, K.; Wiest, R.; Schüpbach, M.; Pollo, C. Targeting the Posterior Subthalamic Area for Essential Tremor: Proposal for MRI-Based Anatomical Landmarks. J. Neurosurg. 2019, 131, 820–827. [Google Scholar] [CrossRef]
- Coenen, V.A.; Mädler, B.; Schiffbauer, H.; Urbach, H.; Allert, N. Individual Fiber Anatomy of the Subthalamic Region Revealed with Diffusion Tensor Imaging: A Concept to Identify the Deep Brain Stimulation Target for Tremor Suppression. Neurosurgery 2011, 68, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Odekerken, V.J.J.; van Laar, T.; Staal, M.J.; Mosch, A.; Hoffmann, C.F.E.; Nijssen, P.C.G.; Beute, G.N.; van Vugt, J.P.P.; Lenders, M.W.P.M.; Contarino, M.F.; et al. Subthalamic Nucleus versus Globus Pallidus Bilateral Deep Brain Stimulation for Advanced Parkinson’s Disease (NSTAPS Study): A Randomised Controlled Trial. Lancet Neurol. 2013, 12, 37–44. [Google Scholar] [CrossRef]
- Benabid, A.L.; Pollak, P.; Hoffmann, D.; Gervason, C.; Hommel, M.; Perret, J.E.; de Rougemont, J.; Gao, D.M. Long-Term Suppression of Tremor by Chronic Stimulation of the Ventral Intermediate Thalamic Nucleus. Lancet 1991, 337, 403–406. [Google Scholar] [CrossRef]
- Koller, W.; Pahwa, R.; Busenbark, K.; Hubble, J.; Wilkinson, S.; Lang, A.; Tuite, P.; Sime, E.; Lazano, A.; Hauser, R.; et al. High-Frequency Unilateral Thalamic Stimulation in the Treatment of Essential and Parkinsonian Tremor. Ann. Neurol. 1997, 42, 292–299. [Google Scholar] [CrossRef]
- Schuurman, P.R.; Bosch, D.A.; Bossuyt, P.M.M.; Bonsel, G.J.; van Someren, E.J.W.; de Bie, R.M.A.; Merkus, M.P.; Speelman, J.D. A Comparison of Continuous Thalamic Stimulation and Thalamotomy for Suppression of Severe Tremor. N. Engl. J. Med. 2000, 342, 461–468. [Google Scholar] [CrossRef]
- Coenen, V.A.; Sajonz, B.; Prokop, T.; Reisert, M.; Piroth, T.; Urbach, H.; Jenkner, C.; Reinacher, P.C. The Dentato-Rubro-Thalamic Tract as the Potential Common Deep Brain Stimulation Target for Tremor of Various Origin: An Observational Case Series. Acta Neurochir. 2020, 162, 1053–1066. [Google Scholar] [CrossRef]
- Kumar, R.; Lozano, A.M.; Sime, E.; Lang, A.E. Long-Term Follow-up of Thalamic Deep Brain Stimulation for Essential and Parkinsonian Tremor. Neurology 2003, 61, 1601–1604. [Google Scholar] [CrossRef]
- Blomstedt, P.; Sandvik, U.; Tisch, S. Deep Brain Stimulation in the Posterior Subthalamic Area in the Treatment of Essential Tremor. Mov. Disord. 2010, 25, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Barbe, M.T.; Reker, P.; Hamacher, S.; Franklin, J.; Kraus, D.; Dembek, T.A.; Becker, J.; Steffen, J.K.; Allert, N.; Wirths, J.; et al. DBS of the PSA and the VIM in Essential Tremor. Neurology 2018, 91, e543–e550. [Google Scholar] [CrossRef]
- Hampstead, B.M.; Brown, G.S.; Hartley, J.F. Transcranial Direct Current Stimulation Modulates Activation and Effective Connectivity during Spatial Navigation. Brain Stimul. 2014, 7, 314–324. [Google Scholar] [CrossRef]
- Akram, H.; Georgiev, D.; Mahlknecht, P.; Hyam, J.; Foltynie, T.; Limousin, P.; Jahanshahi, M.; Hariz, M.; Zrinzo, L.; Ashburner, J.; et al. Subthalamic Deep Brain Stimulation Sweet Spots and Hyperdirect Cortical Connectivity in Parkinson’s Disease. Neuroimage 2017, 158, 332–345. [Google Scholar] [CrossRef]
- Al-Fatly, B.; Ewert, S.; Kübler, D.; Kroneberg, D.; Horn, A.; Kühn, A.A. Connectivity Profile of Thalamic Deep Brain Stimulation to Effectively Treat Essential Tremor. Brain 2019, 142, 3086–3098. [Google Scholar] [CrossRef]
- Ossowska, K. Zona Incerta as a Therapeutic Target in Parkinson’s Disease. J. Neurol. 2020, 267, 591–606. [Google Scholar] [CrossRef]
- Sammartino, F.; Krishna, V.; King, N.K.K.; Lozano, A.M.; Schwartz, M.L.; Huang, Y.; Hodaie, M. Tractography-Based Ventral Intermediate Nucleus Targeting: Novel Methodology and Intraoperative Validation. Mov. Disord. 2016, 31, 1217–1225. [Google Scholar] [CrossRef]
- Lévy, J.P.; Nguyen, T.A.K.; Lachenmayer, L.; Debove, I.; Tinkhauser, G.; Petermann, K.; Amil, A.S.; Michelis, J.; Schüpbach, M.; Nowacki, A.; et al. Structure-Function Relationship of the Posterior Subthalamic Area with Directional Deep Brain Stimulation for Essential Tremor. NeuroImage Clin. 2020, 28, 102486. [Google Scholar] [CrossRef]
- Gratwicke, J.; Zrinzo, L.; Kahan, J.; Peters, A.; Beigi, M.; Akram, H.; Hyam, J.; Oswal, A.; Day, B.; Mancini, L.; et al. Bilateral Deep Brain Stimulation of the Nucleus Basalis of Meynert for Parkinson Disease Dementia a Randomized Clinical Trial. JAMA Neurol. 2018, 75, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Freund, H.J.; Kuhn, J.; Lenartz, D.; Mai, J.K.; Schnell, T.; Klosterkoetter, J.; Sturm, V. Cognitive Functions in a Patient with Parkinson-Dementia Syndrome Undergoing Deep Brain Stimulation. Arch. Neurol. 2009, 66, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, J.; Hardenacke, K.; Lenartz, D.; Gruendler, T.; Ullsperger, M.; Bartsch, C.; Mai, J.K.; Zilles, K.; Bauer, A.; Matusch, A.; et al. Deep Brain Stimulation of the Nucleus Basalis of Meynert in Alzheimer’s Dementia. Mol. Psychiatry 2015, 20, 353–360. [Google Scholar] [CrossRef]
- Caggiano, V.; Leiras, R.; Goñi-Erro, H.; Masini, D.; Bellardita, C.; Bouvier, J.; Caldeira, V.; Fisone, G.; Kiehn, O. Midbrain Circuits That Set Locomotor Speed and Gait Selection. Nature 2018, 553, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Josset, N.; Roussel, M.; Lemieux, M.; Lafrance-Zoubga, D.; Rastqar, A.; Bretzner, F. Distinct Contributions of Mesencephalic Locomotor Region Nuclei to Locomotor Control in the Freely Behaving Mouse. Curr. Biol. 2018, 28, 884–901.e3. [Google Scholar] [CrossRef] [PubMed]
- Roseberry, T.K.; Lee, A.M.; Lalive, A.L.; Wilbrecht, L.; Bonci, A.; Kreitzer, A.C. Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia. Cell 2016, 164, 526–537. [Google Scholar] [CrossRef]
- Chang, S.J.; Cajigas, I.; Guest, J.D.; Noga, B.R.; Widerström-Noga, E.; Haq, I.; Fisher, L.; Luca, C.C.; Jagid, J.R. Deep Brain Stimulation of the Cuneiform Nucleus for Levodopa-Resistant Freezing of Gait in Parkinson’s Disease: Study Protocol for a Prospective, Pilot Trial. Pilot Feasibility Stud. 2021, 7, 117. [Google Scholar] [CrossRef]
- Garcia-Rill, E.; Kezunovic, N.; Hyde, J.; Simon, C.; Beck, P.; Urbano, F.J. Coherence and Frequency in the Reticular Activating System (RAS). Sleep Med. Rev. 2013, 17, 227–238. [Google Scholar] [CrossRef]
- Bourilhon, J.; Olivier, C.; You, H.; Collomb-Clerc, A.; Grabli, D.; Belaid, H.; Mullie, Y.; François, C.; Czernecki, V.; Lau, B.; et al. Pedunculopontine and Cuneiform Nuclei Deep Brain Stimulation for Severe Gait and Balance Disorders in Parkinson’s Disease: Interim Results from a Randomized Double-Blind Clinical Trial. J. Parkinsons. Dis. 2022, 12, 639–653. [Google Scholar] [CrossRef] [PubMed]
- Iorio-Morin, C.; Fomenko, A.; Kalia, S.K. Deep-Brain Stimulation for Essential Tremor and Other Tremor Syndromes: A Narrative Review of Current Targets and Clinical Outcomes. Brain Sci. 2020, 10, 925. [Google Scholar] [CrossRef]
- Grinberg, L.T.; Rueb, U.; di Lorenzo Alho, A.T.; Heinsen, H. Brainstem Pathology and Non-Motor Symptoms in PD. J. Neurol. Sci. 2010, 289, 81–88. [Google Scholar] [CrossRef]
- Chang, S.J.; Cajigas, I.; Opris, I.; Guest, J.D.; Noga, B.R. Dissecting Brainstem Locomotor Circuits: Converging Evidence for Cuneiform Nucleus Stimulation. Front. Syst. Neurosci. 2020, 14, 573749. [Google Scholar] [CrossRef]
- Smith, Y.; Raju, D.V.; Pare, J.F.; Sidibe, M. The Thalamostriatal System: A Highly Specific Network of the Basal Ganglia Circuitry. Trends Neurosci. 2004, 27, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Sadikot, A.F.; Rymar, V.V. The Primate Centromedian-Parafascicular Complex: Anatomical Organization with a Note on Neuromodulation. Brain Res. Bull. 2009, 78, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Henderson, J.M.; Carpenter, K.; Cartwright, H.; Halliday, G.M. Loss of Thalamic Intralaminar Nuclei in Progressive Supranuclear Palsy and Parkinson’s Disease: Clinical and Therapeutic Implications. Brain 2000, 123, 1410–1421. [Google Scholar] [CrossRef]
- Halliday, G.M. Thalamic Changes in Parkinson’s Disease. Park. Relat. Disord. 2009, 15 (Suppl. S3), S152–S155. [Google Scholar] [CrossRef]
- Minamimoto, T.; Hori, Y.; Kimura, M. Neuroscience: Complementary Process to Response Bias in the Centromedian Nucleus of the Thalamus. Science 2005, 308, 1798–1801. [Google Scholar] [CrossRef]
- Abdallat, M.; Saryyeva, A.; Blahak, C.; Wolf, M.E.; Weigel, R.; Loher, T.J.; Runge, J.; Heissler, H.E.; Kinfe, T.M.; Krauss, J.K. Centromedian–Parafascicular and Somatosensory Thalamic Deep Brain Stimulation for Treatment of Chronic Neuropathic Pain: A Contemporary Series of 40 Patients. Biomedicines 2021, 9, 731. [Google Scholar] [CrossRef]
- Ilyas, A.; Pizarro, D.; Romeo, A.K.; Riley, K.O.; Pati, S. The Centromedian Nucleus: Anatomy, Physiology, and Clinical Implications. J. Clin. Neurosci. 2019, 63, 1–7. [Google Scholar] [CrossRef]
- Koeglsperger, T.; Palleis, C.; Hell, F.; Mehrkens, J.H.; Bötzel, K. Deep Brain Stimulation Programming for Movement Disorders: Current Concepts and Evidence-Based Strategies. Front. Neurol. 2019, 10. [Google Scholar] [CrossRef]
- Peppe, A.; Gasbarra, A.; Stefani, A.; Chiavalon, C.; Pierantozzi, M.; Fermi, E.; Stanzione, P.; Caltagirone, C.; Mazzone, P. Deep Brain Stimulation of CM/PF of Thalamus Could Be the New Elective Target for Tremor in Advanced Parkinson’s Disease? Park. Relat. Disord. 2008, 14, 501–504. [Google Scholar] [CrossRef]
- Hines, K.; Noecker, A.M.; Frankemolle-Gilbert, A.M.; Liang, T.W.; Ratliff, J.; Heiry, M.; McIntyre, C.C.; Wu, C. Prospective Connectomic-Based Deep Brain Stimulation Programming for Parkinson’s Disease. Mov. Disord. 2024, 39, 2249–2258. [Google Scholar] [CrossRef] [PubMed]
- Saper, C.B.; Fuller, P.M. Wake–Sleep Circuitry: An Overview. Curr. Opin. Neurobiol. 2017, 44, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, E.E. The Central Autonomic Network: Functional Organization, Dysfunction, and Perspective. Mayo Clin. Proc. 1993, 68, 988–1001. [Google Scholar] [CrossRef]
- Leone, M.; Franzini, A.; Broggi, G.; Bussone, G. Hypothalamic Stimulation for Intractable Cluster Headache: Long-Term Experience. Neurology 2006, 67, 150–152. [Google Scholar] [CrossRef]
- Samuels, E.; Szabadi, E. Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part I: Principles of Functional Organisation. Curr. Neuropharmacol. 2008, 6, 235–253. [Google Scholar] [CrossRef]
- Bellini, G.; Best, L.A.; Brechany, U.; Mills, R.; Pavese, N. Clinical Impact of Deep Brain Stimulation on the Autonomic System in Patients with Parkinson’s Disease. Mov. Disord. Clin. Pract. 2020, 7, 373–382. [Google Scholar] [CrossRef]
- Remy, P.; Doder, M.; Lees, A.; Turjanski, N.; Brooks, D. Depression in Parkinson’s Disease: Loss of Dopamine and Noradrenaline Innervation in the Limbic System. Brain 2005, 128, 1314–1322. [Google Scholar] [CrossRef]
- Kirsch-Darrow, L.; Fernandez, H.F.; Marsiske, M.; Okun, M.S.; Bowers, D. Dissociating Apathy and Depression in Parkinson Disease. Neurology 2006, 67, 33–38. [Google Scholar] [CrossRef]
- Schlaepfer, T.E.; Cohen, M.X.; Frick, C.; Kosel, M.; Brodesser, D.; Axmacher, N.; Joe, A.Y.; Kreft, M.; Lenartz, D.; Sturm, V. Deep Brain Stimulation to Reward Circuitry Alleviates Anhedonia in Refractory Major Depression. Neuropsychopharmacology 2008, 33, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Coenen, V.A.; Bewernick, B.H.; Kayser, S.; Kilian, H.; Boström, J.; Greschus, S.; Hurlemann, R.; Klein, M.E.; Spanier, S.; Sajonz, B.; et al. Superolateral Medial Forebrain Bundle Deep Brain Stimulation in Major Depression: A Gateway Trial. Neuropsychopharmacology 2019, 44, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A.; Daniele, A.; Albanese, A. Treatment of Motor and Non-Motor Features of Parkinson’s Disease with Deep Brain Stimulation. Lancet Neurol. 2012, 11, 429–442. [Google Scholar] [CrossRef]
- Ewert, S.; Plettig, P.; Li, N.; Chakravarty, M.M.; Collins, D.L.; Herrington, T.M.; Kühn, A.A.; Horn, A. Toward Defining Deep Brain Stimulation Targets in MNI Space: A Subcortical Atlas Based on Multimodal MRI, Histology and Structural Connectivity. Neuroimage 2018, 170, 271–282. [Google Scholar] [CrossRef]
- Plantinga, B.R.; Roebroeck, A.; Kemper, V.G.; Uludağ, K.; Melse, M.; Mai, J.; Kuijf, M.L.; Herrler, A.; Jahanshahi, A.; Romeny, B.M.T.H.; et al. Ultra-High Field MRI Post Mortem Structural Connectivity of the Human Subthalamic Nucleus, Substantia Nigra, and Globus Pallidus. Front. Neuroanat. 2016, 10. [Google Scholar] [CrossRef]
- Fenoy, A.J.; Schiess, M.C. Deep Brain Stimulation of the Dentato-Rubro-Thalamic Tract: Outcomes of Direct Targeting for Tremor. Neuromodulation 2017, 20, 429–436. [Google Scholar] [CrossRef]
- Agrawal, A.; Kapfhammer, J.P.; Kress, A.; Wichers, H.; Deep, A.; Feindel, W.; Sonntag, V.K.H.; Spetzler, R.F.; Preul, M.C. Josef Klingler’s Models of White Matter Tracts: Influences on Neuroanatomy, Neurosurgery, and Neuroimaging. Neurosurgery 2011, 69, 238–252. [Google Scholar] [CrossRef] [PubMed]
- Butson, C.R.; McIntyre, C.C. Role of Electrode Design on the Volume of Tissue Activated during Deep Brain Stimulation. J. Neural Eng. 2006, 3, 1–8. [Google Scholar] [CrossRef]
- Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J.; Schäfer, H.; Bötzel, K.; Daniels, C.; Deutschländer, A.; Dillmann, U.; Eisner, W.; et al. A Randomized Trial of Deep-Brain Stimulation for Parkinson’s Disease. N. Engl. J. Med. 2006, 355, 896–908. [Google Scholar] [CrossRef]
- Weaver, F.M.; Follett, K.; Stern, M.; Hur, K.; Harris, C.; Marks, W.J.; Rothlind, J.; Sagher, O.; Reda, D.; Moy, C.S.; et al. Bilateral Deep Brain Stimulation vs Best Medical Therapy for Patients with Advanced Parkinson Disease: A Randomized Controlled Trial. JAMA 2009, 301, 63–73. [Google Scholar] [CrossRef]
- Krack, P.; Batir, A.; Van Blercom, N.; Chabardes, S.; Fraix, V.; Ardouin, C.; Koudsie, A.; Limousin, P.D.; Benazzouz, A.; LeBas, J.F.; et al. Five-Year Follow-up of Bilateral Stimulation of the Subthalamic Nucleus in Advanced Parkinson’s Disease. N. Engl. J. Med. 2003, 349, 1925–1934. [Google Scholar] [CrossRef]
- Bosch, D.A. Atlas for Stereotaxy of the Human Brain. Clin. Neurol. Neurosurg. 1978, 80, 299. [Google Scholar] [CrossRef]
- Akram, H.; Dayal, V.; Mahlknecht, P.; Georgiev, D.; Hyam, J.; Foltynie, T.; Limousin, P.; De Vita, E.; Jahanshahi, M.; Ashburner, J.; et al. Connectivity Derived Thalamic Segmentation in Deep Brain Stimulation for Tremor. NeuroImage Clin. 2018, 18, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Horn, A.; Reich, M.; Vorwerk, J.; Li, N.; Wenzel, G.; Fang, Q.; Schmitz-Hübsch, T.; Nickl, R.; Kupsch, A.; Volkmann, J.; et al. Connectivity Predicts Deep Brain Stimulation Outcome in Parkinson Disease. Ann. Neurol. 2017, 82, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Kühn, A.A.; Volkmann, J. Innovations in Deep Brain Stimulation Methodology. Mov. Disord. 2017, 32, 11–19. [Google Scholar] [CrossRef] [PubMed]
Target | Circuit/Role | Main Symptoms Improved | Clinical Advantages | Limitations/Considerations |
---|---|---|---|---|
Subthalamic Nucleus | Basal ganglia indirect pathway; excitatory drive to GPi/SNr | Bradykinesia, rigidity, tremor (variable) | Allows LEDD reduction, broad motor benefit | Cognitive/mood side effects, variable tremor control |
Globus Pallidus Internus | Major output nucleus of basal ganglia; inhibitory control of thalamus | Dyskinesias, motor fluctuations | Fewer cognitive/psychiatric side effects; good for older patients | Less LEDD reduction, less effective for tremor |
Dentato-Rubro-Thalamic Tract | Cerebello-thalamo-cortical loop | Tremor, fine motor control | Tremor suppression, synergistic with STN | Visualization requires tractography; individual variability |
Ventral Intermediate Nucleus | Thalamic relay of DRTt fibers to cortex | Tremor (resting, postural, intention) | Robust tremor suppression, low cognitive risk | No effect on rigidity/bradykinesia; habituation over time |
Post-Subthalamic Area/Caudal Zona Incerta | White matter convergence zone incl. DRTt | Tremor (all types) | Superior tremor control, lower side effects vs. Vim | Anatomical variability, targeting challenges |
Pedunculopontine Nucleus | Mesencephalic locomotor region; gait/posture control | Freezing of gait, falls, postural instability | May improve axial symptoms resistant to STN/GPi | Inconsistent results, technical targeting difficulties |
Cuneiform Nucleus | Brainstem locomotor drive, glutamatergic | Freezing of gait, locomotion | More reliable than PPN; strong preclinical evidence | Still experimental; limited human data |
Centromedian–Parafascicular Complex | Thalamostriatal pathway, attentional salience | Dyskinesias, refractory tremor, neuropsychiatric | Modulates motor + cognitive/limbic circuits | Pilot data only; not routine target |
Nucleus Basalis of Meynert | Basal forebrain cholinergic projection | Cognitive impairment, attention, executive function | Potential benefit in PD dementia | Experimental, small studies, heterogeneous results |
Hypothalamus | Autonomic regulation | Autonomic dysfunction (orthostatic hypotension, bladder) | Symptom-specific improvement | Very experimental; surgical/ethical risks |
Medial Forebrain Bundle | Dopaminergic & limbic reward/motivation circuit | Apathy, depression, anhedonia | Promising for severe non-motor symptoms | Highly experimental; targeting precision issues |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik, R.; Dębska, A.; Zaczkowski, K.; Szmyd, B.; Podstawka, M.; Bobeff, E.J.; Piotrowski, M.; Ratajczyk, P.; Jaskólski, D.J.; Wiśniewski, K. Deep Brain Stimulation for Parkinson’s Disease—A Narrative Review. Biomedicines 2025, 13, 2430. https://doi.org/10.3390/biomedicines13102430
Wójcik R, Dębska A, Zaczkowski K, Szmyd B, Podstawka M, Bobeff EJ, Piotrowski M, Ratajczyk P, Jaskólski DJ, Wiśniewski K. Deep Brain Stimulation for Parkinson’s Disease—A Narrative Review. Biomedicines. 2025; 13(10):2430. https://doi.org/10.3390/biomedicines13102430
Chicago/Turabian StyleWójcik, Rafał, Anna Dębska, Karol Zaczkowski, Bartosz Szmyd, Małgorzata Podstawka, Ernest J. Bobeff, Michał Piotrowski, Paweł Ratajczyk, Dariusz J. Jaskólski, and Karol Wiśniewski. 2025. "Deep Brain Stimulation for Parkinson’s Disease—A Narrative Review" Biomedicines 13, no. 10: 2430. https://doi.org/10.3390/biomedicines13102430
APA StyleWójcik, R., Dębska, A., Zaczkowski, K., Szmyd, B., Podstawka, M., Bobeff, E. J., Piotrowski, M., Ratajczyk, P., Jaskólski, D. J., & Wiśniewski, K. (2025). Deep Brain Stimulation for Parkinson’s Disease—A Narrative Review. Biomedicines, 13(10), 2430. https://doi.org/10.3390/biomedicines13102430