Head-to-Head in Heart Failure: Comparative Insights on Empagliflozin and Dapagliflozin
Abstract
1. Introduction
2. Mechanism of Action
- Osmotic diuresis and natriuresis: By inhibiting sodium and glucose reabsorption, these agents promote mild diuresis and natriuresis, leading to reduced plasma volume. This volume reduction decreases cardiac preload and afterload, thereby alleviating hemodynamic stress on the failing heart.
- Reduction in cardiac remodeling: Preclinical and clinical studies suggest that SGLT2 inhibitors may exert anti-inflammatory and antifibrotic effects, contributing to attenuation of maladaptive myocardial remodeling.
- Improved endothelial function and vascular tone: These drugs may enhance endothelial function and lower systemic vascular resistance, thereby improving vascular health.
- Sympathetic nervous system modulation: SGLT2 inhibition has been associated with reduced sympathetic nervous system activation, a key pathophysiological driver of heart failure progression [9].
- Potency and Selectivity
- b.
- Pharmacokinetics (Absorption and Half-Life)
- c.
- Effects Beyond the Kidneys
3. Evidence in Chronic Heart Failure
3.1. Comparison of Empagliflozin and Dapagliflozin in HFrEF
3.2. Comparison of Empagliflozin and Dapagliflozin in HFpEF and HFmrEF
3.3. Comparative Meta-Analyses and Head-to-Head Observational Studies
4. Evidence in Acute Heart Failure
Comparison of Empagliflozin and Dapagliflozin in Acute Heart Failure
5. Evidence Post Myocardial Infarction Heart Failure Prevention
6. Safety Considerations
6.1. Impact on Renal Function for Patient with HF Treated with SGLT2-i
6.2. Diuretic Effect of SGLT2i in Patient with HF
6.3. Impact of Treatment with SGLT2-i on Hyperkaliemia in Patient with HF
6.4. Genital Infections
6.5. Euglycemic Diabetic Ketoacidosis in Heart Failure Patients
7. Cost-Effectiveness and Health Policy Considerations
7.1. Cost per QALY Gained
7.2. Impact on Hospitalization Costs
7.3. Access, Reimbursement, and Guideline Recommendations
8. Future Directions and Limitations of the Study
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HF | Heart Failure |
HFrEF | Heart Failure with Reduced Ejection Fraction |
HFpEF | Heart Failure with Preserved Ejection Fraction |
HFmrEF | Heart Failure with Mildly Reduced Ejection Fraction |
SGLT2 | Sodium-Glucose Cotransporter-2 |
T2DM | Type 2 Diabetes Mellitus |
NT-proBNP | N-terminal pro-B-type Natriuretic Peptide |
eGFR | Estimated Glomerular Filtration Rate |
KCCQ | Kansas City Cardiomyopathy Questionnaire |
6MWD | 6-Minute Walk Distance |
RAASi | Renin–Angiotensin–Aldosterone System Inhibitor |
MRA | Mineralocorticoid Receptor Antagonist |
ARNI | Angiotensin Receptor–Neprilysin Inhibitor |
AHF | Acute Heart Failure |
MI | Myocardial Infarction |
LV | Left Ventricle |
LVEF | Left Ventricular Ejection Fraction |
QALY | Quality-Adjusted Life Year |
ICER | Incremental Cost-Effectiveness Ratio |
NYHA | New York Heart Association |
GDMT | Guideline-Directed Medical Therapy |
euDKA | Euglycemic Diabetic Ketoacidosis |
UTI | Urinary Tract Infection |
nsMRA | Nonsteroidal Mineralocorticoid Receptor Antagonist |
References
- Ziaeian, B.; Fonarow, G.C. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 2016, 13, 368–378. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; Anker, S.D.; Filippatos, G.; Khan, M.S.; Ferreira, J.P.; Pocock, S.J.; Giannetti, N.; Januzzi, J.L.; Pina, I.L.; Lam, C.S.P.; et al. Empagliflozin and health-related quality of life outcomes in patients with heart failure with reduced ejection fraction: The EMPEROR-Reduced trial. Eur. Heart J. 2021, 42, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Zannad, F.; Ferreira, J.P.; Pocock, S.J.; Zeller, C.; Anker, S.D.; Butler, J.; Filippatos, G.; Hauske, S.J.; Brueckmann, M.; Pfarr, E.; et al. Cardiac and kidney benefits of empagliflozin in heart failure across the spectrum of kidney function: Insights from EMPEROR-Reduced. Circulation 2021, 143, 310321. [Google Scholar] [CrossRef]
- Solomon, S.D.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; Shah, S.J.; Lindholm, D.; et al. Dapagliflozin in heart failure with preserved and mildly reduced ejection fraction: Rationale and design of the DELIVER trial. Eur. J. Heart Fail. 2021, 23, 1217–1225. [Google Scholar] [CrossRef]
- Gallo, L.A.; Wright, E.M.; Vallon, V. Probing SGLT2 as a therapeutic target for diabetes: Basic physiology and consequences. Diabetes Vasc. Dis. Res. 2015, 12, 78–89. [Google Scholar] [CrossRef]
- Ferrannini, E.; Berk, A.; Hantel, S.; Pinnetti, S.; Hach, T.; Woerle, H.J.; Broedl, U.C. Long-term safety and efficacy of empagliflozin, sitagliptin, and metformin: An active-controlled, parallel-group, randomized, 78-week open-label extension study in patients with type 2 diabetes. Diabetes Care 2013, 36, 4015–4021. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Vallon, V.; Thomson, S.C. Targeting renal glucose reabsorption to treat hyperglycaemia: The pleiotropic effects of SGLT2 inhibition. Diabetologia 2017, 60, 215–225. [Google Scholar] [CrossRef]
- Trum, M.; Riechel, J.; Wagner, S. Cardioprotection by SGLT2 Inhibitors-Does It All Come Down to Na+? Int. J. Mol. Sci. 2021, 22, 7976. [Google Scholar] [CrossRef]
- Preda, A.; Montecucco, F.; Carbone, F.; Camici, G.G.; Lüscher, T.F.; Kraler, S.; Liberale, L. SGLT2 inhibitors: From glucose-lowering to cardiovascular benefits. Cardiovasc. Res. 2024, 120, 443–460. [Google Scholar] [CrossRef] [PubMed]
- Matteucci, A.; Pandozi, C.; Bonanni, M.; Mariani, M.V.; Sgarra, L.; Nesti, L.; Pierucci, N.; La Fazia, V.M.; Lavalle, C.; Nardi, F.; et al. Impact of Empagliflozin and Dapagliflozin on Sudden Cardiac Death: A Systematic Review and Meta-Analysis of Adjudicated Randomized Evidence. Heart Rhythm. 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Heise, T.; Seewaldt-Becker, E.; Macha, S.; Hantel, S.; Pinnetti, S.; Seman, L.; Woerle, H.J. Safety, tolerability, pharmacokinetics and pharmacodynamics following 4 weeks’ treatment with empagliflozin once daily in patients with type 2 diabetes. Diabetes Obes. Metab. 2013, 15, 613–621. [Google Scholar] [CrossRef]
- Volino, L.; Pan, E.; Mansukhani, R. Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors in Type 2 Diabetes: A Literature Review of Approved Products. Pharmacol. Pharm. 2014, 5, 1029–1058. [Google Scholar] [CrossRef]
- Santer, R.; Calado, J. Familial renal glucosuria and SGLT2: From a mendelian trait to a therapeutic target. Clin. J. Am. Soc. Nephrol. 2010, 5, 133–141. [Google Scholar] [CrossRef]
- Macha, S.; Rose, P.; Mattheus, M.; Cinca, R.; Pinnetti, S.; Broedl, U.C.; Woerle, H.J. Pharmacokinetics, safety and tolerability of empagliflozin, a sodium glucose cotransporter 2 inhibitor, in patients with hepatic impairment. Diabetes Obes. Metab. 2014, 16, 118–123. [Google Scholar] [CrossRef]
- Kasichayanula, S.; Liu, X.; Lacreta, F.; Griffen, S.C.; Boulton, D.W. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin. Pharmacokinet. 2014, 53, 17–27. [Google Scholar] [CrossRef]
- Addo, B.; Ibrahim, S.; Akpan, I.; Ansari, F.; Allihien, S.M. Comparative Efficacy Between Dapagliflozin and Empagliflozin on Symptoms and Functional Capacity in Patients with Heart Failure: A Network Meta-analysis. J. Card. Fail. 2025, 31, 258. [Google Scholar] [CrossRef]
- Verma, S.; Rawat, S.; Ho, K.L.; Wagg, C.S.; Zhang, L.; Teoh, H.; Dyck, J.E.; Uddin, G.M.; Oudit, G.Y.; Mayoux, E.; et al. Empagliflozin Increases Cardiac Energy Production in Diabetes: Novel Translational Insights Into the Heart Failure Benefits of SGLT2 Inhibitors. JACC Basic. Transl. Sci. 2018, 3, 575–587. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Pocock, S.J.; Sattar, N.; Brueckmann, M.; Jamal, W.; Cotton, D.; et al. Empagliflozin in Patients with Heart Failure, Reduced Ejection Fraction, and Volume Overload: EMPEROR-Reduced Trial. J. Am. Coll. Cardiol. 2021, 77, 1381–1392. [Google Scholar] [CrossRef]
- Hidalgo Santiago, J.C.; Maraver Delgado, J.; Cayón Blanco, M.; López Saez, J.B.; Gómez-Fernández, P. Effect of dapagliflozin on arterial stiffness in patients with type 2 diabetes mellitus. Med. Clin. 2020, 154, 171–174. (In English) (In Spanish) [Google Scholar] [CrossRef] [PubMed]
- Klen, J.; Dolžan, V. Treatment Response to SGLT2 Inhibitors: From Clinical Characteristics to Genetic Variations. Int. J. Mol. Sci. 2021, 22, 9800. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; McGuire, D.K.; Kosiborod, M.N. Two Tales: One Story: EMPEROR-Reduced and DAPA-HF. Circulation 2020, 142, 2201–2204. [Google Scholar] [CrossRef] [PubMed]
- Zannad, F.; Ferreira, J.P.; Pocock, S.J.; Anker, S.D.; Butler, J.; Filippatos, G.; Brueckmann, M.; Ofstad, A.P.; Pfarr, E.; Jamal, W.; et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 2020, 396, 819–829. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Usman, M.S.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Rocca, H.P.B.; Choi, D.J.; Chopra, V.; et al. Efficacy of empagliflozin in heart failure with preserved versus mid-range ejection fraction: A pre-specified analysis of EMPEROR-Preserved. Nat. Med. 2022, 28, 2512–2520. [Google Scholar] [CrossRef]
- Anker, S.D.; Siddiqi, T.J.; Filippatos, G.; Zannad, F.; Ferreira, J.P.; Pocock, S.J.; Brueckmann, M.; Zeller, C.; Packer, M.; Butler, J. Outcomes with empagliflozin in heart failure with preserved ejection fraction using DELIVER-like endpoint definitions. Eur. J. Heart Fail. 2022, 24, 1400–1405. [Google Scholar] [CrossRef]
- Kosiborod, M.N.; Bhatt, A.S.; Claggett, B.L.; Vaduganathan, M.; Kulac, I.J.; Lam, C.S.P.; Hernandez, A.F.; Martinez, F.A.; Inzucchi, S.E.; Shah, S.J.; et al. Effect of Dapagliflozin on Health Status in Patients with Preserved or Mildly Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2023, 81, 460–473. [Google Scholar] [CrossRef]
- Kusi-Yeboah, T.; Gianfrancesco, I.; Jabbar, M.A.D.A.; Collins, P.; Bally, D.J.; Thornton, J.; Williams, K.; Ishola, A.; Hong, L.; Toong, P.J.; et al. Investigating the effect of SGLT2 inhibitors on cardiovascular related health status in HFmrEF and HFpEF: Systematic review and meta analysis. Front. Cardiovasc. Med. 2025, 12, 1556606. [Google Scholar] [CrossRef]
- Bonnesen, K.; Heide-Jørgensen, U.; Christensen, D.H.; Lash, T.L.; Hennessy, S.; Matthews, A.; Pedersen, L.; Thomsen, R.W.; Schmidt, M. Comparative Cardiovascular Effectiveness of Empagliflozin Versus Dapagliflozin in Adults with Treated Type 2 Diabetes: A Target Trial Emulation. Circulation 2024, 150, 1401–1411. [Google Scholar] [CrossRef]
- Modzelewski, K.L.; Pipilas, A.; Bosch, N.A. Comparative Outcomes of Empagliflozin to Dapagliflozin in Patients with Heart Failure. JAMA Netw. Open 2024, 7, e249305. [Google Scholar] [CrossRef]
- Lim, J.; Kwak, S.; Choi, Y.J.; Rhee, T.M.; Park, C.S.; Kim, B.; Han, K.D.; Lee, H.; Park, J.B.; Kim, Y.J.; et al. Differing Efficacy of Dapagliflozin Versus Empagliflozin on the Risk of Incident Atrial Fibrillation in Patients with Type 2 Diabetes: A Real-World Observation Using a Nationwide, Population-Based Cohort. J. Am. Heart Assoc. 2024, 13, e030552. [Google Scholar] [CrossRef] [PubMed]
- Biegus, J.; Voors, A.A.; Collins, S.P.; Kosiborod, M.N.; Teerlink, J.R.; Angermann, C.E.; Tromp, J.; Ferreira, J.P.; Nassif, M.E.; Psotka, M.A.; et al. Impact of empagliflozin on decongestion in acute heart failure: The EMPULSE trial. Eur. Heart J. 2023, 44, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Cox, Z.L.; Collins, S.P.; Aaron, M.; Hernandez, G.A.; Iii, A.T.M.; Davidson, B.T.; Fowler, M.; Lindsell, C.J.; Frank, E.H., Jr.; Jenkins, C.A.; et al. Efficacy and safety of dapagliflozin in acute heart failure: Rationale and design of the DICTATE-AHF trial. Am. Heart J. 2021, 232, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Damman, K.; Beusekamp, J.C.; Boorsma, E.M.; Swart, H.P.; Smilde, T.D.J.; Elvan, A.; van Eck, J.M.; Heerspink, H.J.; Voors, A.A. Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). Eur. J. Heart Fail. 2020, 22, 713–722. [Google Scholar] [CrossRef]
- Berg, D.D.; Patel, S.M.; Haller, P.M.; Bělohlávek, J.; Desai, A.S.; Drożdż, J.; Inzucchi, S.E.; McMurray, J.J.V.; Merkely, B.; O’Meara, E.; et al. Rationale and Design of the Dapagliflozin Effect on Cardiovascular Events in Acute Heart Failure (DAPA ACT HF)-TIMI 68 Trial. JACC Heart Fail. 2025, 13, 829–839. [Google Scholar] [CrossRef]
- Frantz, S.; Bauersachs, J. Left ventricular remodeling after myocardial infarction. Eur. Heart J. 2022, 43, 2549–2564. [Google Scholar] [CrossRef]
- Butler, J.; Jones, W.S.; Udell, J.A.; Anker, S.D.; Petrie, M.C.; Harrington, J.; Mattheus, M.; Zwiener, I.; Amir, O.; Bahit, M.C.; et al. Empagliflozin after Acute Myocardial Infarction. N. Engl. J. Med. 2024, 390, 1455–1466. [Google Scholar] [CrossRef]
- James, S.; Erlinge, D.; Storey, R.F.; McGuire, D.K.; de Belder, M.; Björkgren, I.; Johansson, P.A.; Langkilde, A.M.; Ridderstråle, W.; Parvaresh Rizi, E.; et al. Rationale and design of the DAPA-MI trial: Dapagliflozin in patients without diabetes mellitus with acute myocardial infarction. Am. Heart J. 2023, 266, 188–197. [Google Scholar] [CrossRef]
- Hernandez, A.F.; Udell, J.A.; Jones, W.S.; Anker, S.D.; Petrie, M.C.; Harrington, J.; Mattheus, M.; Seide, S.; Zwiener, I.; Amir, O.; et al. Effect of Empagliflozin on Heart Failure Outcomes After Acute Myocardial Infarction: Insights From the EMPACT-MI Trial. Circulation 2024, 149, 1627–1638. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner-La Rocca, H.P.; Choi, D.J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Brenner, B.M.; Lawler, E.V.; Mackenzie, H.S. The hyperfiltration theory: A paradigm shift in nephrology. Kidney Int. 1996, 49, 1774–1777. [Google Scholar] [CrossRef]
- Chatur, S.; Vaduganathan, M.; Claggett, B.L.; Mc Causland, F.R.; Desai, A.S.; Jhund, P.S.; de Boer, R.A.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; et al. Dapagliflozin in patients with heart failure and deterioration in renal function. J. Am. Coll. Cardiol. 2023, 82, 1854–1863. [Google Scholar] [CrossRef]
- Coca, S.G. SGLT2i and deterioration of kidney function in heart failure: Another demonstration for tolerance of “hypercreatininemia”. J. Am. Coll. Cardiol. 2023, 82, 1864–1867. [Google Scholar] [CrossRef]
- Cox, Z.L.; Collins, S.P.; Hernandez, G.A.; McRae, A.T., III; Davidson, B.T.; Adams, K.; Aaron, M.; Cunningham, L.; Jenkins, C.A.; Lindsell, C.J.; et al. Efficacy and safety of dapagliflozin in patients with acute heart failure. J. Am. Coll. Cardiol. 2024, 83, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
- Schulze, P.C.; Bogoviku, J.; Westphal, J.; Aftanski, P.; Haertel, F.; Grund, S.; von Haehling, S.; Schumacher, U.; Möbius-Winkler, S.; Busch, M. Effects of early empagliflozin initiation on diuresis and kidney function in patients with acute decompensated heart failure (EMPAG-HF). Circulation 2022, 146, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Merlo, A.; D’Elia, E.; Di Odoardo, L.; Sciatti, E.; Senni, M. SGLT2 inhibitors and new frontiers in heart failure treatment regardless of ejection fraction and setting. Eur. Heart J. Suppl. 2025, 27 (Suppl. S1), i137–i140. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.P.; Zannad, F.; Butler, J.; Filipattos, G.; Ritter, I.; Schüler, E.; Kraus, B.J.; Pocock, S.J.; Anker, S.D.; Packer, M. Empagliflozin and serum potassium in heart failure: An analysis from EMPEROR-Pooled. Eur. Heart J. 2022, 43, 2984–2993. [Google Scholar] [CrossRef]
- Greene, S.J.; Spahillari, A.; Shahzeb Khan, M. Enabling medical therapy for heart failure: New tools bring a new reality for hyperkalemia. J. Am. Coll. Cardiol. 2024, 84, 1309–1312. [Google Scholar] [CrossRef]
- Kittipibul, V.; Cox, Z.L.; Chesdachai, S.; Fiuzat, M.; Lindenfeld, J.; Mentz, R.J. Genitourinary Tract Infections in Patients Taking SGLT2 Inhibitors: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2024, 83, 1568–1578. [Google Scholar] [CrossRef]
- Puckrin, R.; Saltiel, M.P.; Reynier, P.; Azoulay, L.; Yu, O.H.Y.; Filion, K.B. SGLT-2 inhibitors and the risk of infections: A systematic review and meta-analysis of randomized controlled trials. Acta Diabetol. 2018, 55, 503–514. [Google Scholar] [CrossRef]
- Sorensen, M.D.; Krieger, J.N.; Rivara, F.P.; Broghammer, J.A.; Klein, M.B.; Mack, C.D.; Wessells, H. Fournier’s Gangrene: Population based epidemiology and outcomes. J. Urol. 2009, 181, 2120–2126. [Google Scholar] [CrossRef]
- Silverii, G.A.; Dicembrini, I.; Monami, M.; Mannucci, E. Fournier’s gangrene and sodium-glucose co-transporter-2 inhibitors: A meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 2020, 22, 272–275. [Google Scholar] [CrossRef]
- Patil, T.; Cook, M.; Hobson, J.; Kaur, A.; Lee, A. Evaluating the Safety of Sodium-Glucose Cotransporter-2 Inhibitors in a Nationwide Veterans Health Administration Observational Cohort Study. Am. J. Cardiol. 2023, 201, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Fralick, M.; Schneeweiss, S.; Patorno, E. Risk of Diabetic Ketoacidosis after Initiation of an SGLT2 Inhibitor. N. Engl. J. Med. 2017, 376, 2300–2302. [Google Scholar] [CrossRef] [PubMed]
- Meyer, E.J.; Gabb, G.; Jesudason, D. SGLT2 inhibitor-associated euglycemic diabetic ketoacidosis: A South Australian clinical case series and Australian spontaneous adverse event notifications. Diabetes Care 2018, 41, e47–e49. [Google Scholar] [CrossRef] [PubMed]
- Umapathysivam, M.M.; Gunton, J.; Stranks, S.N.; Jesudason, D. Euglycemic Ketoacidosis in Two Patients Without Diabetes After Introduction of Sodium-Glucose Cotransporter 2 Inhibitor for Heart Failure with Reduced Ejection Fraction. Diabetes Care 2024, 47, 140–143. [Google Scholar] [CrossRef]
- Butler, J.; Usman, M.S.; Khan, M.S.; Greene, S.J.; Friede, T.; Vaduganathan, M.; Filippatos, G.; Coats, A.J.S.; Anker, S.D. Efficacy and safety of SGLT2 inhibitors in heart failure: Systematic review and meta-analysis. ESC Heart Fail. 2020, 7, 3298–3309. [Google Scholar] [CrossRef]
- Neuen, B.L.; Oshima, M.; Agarwal, R.; Arnott, C.; Cherney, D.Z.; Edwards, R.; Langkilde, A.M.; Mahaffey, K.W.; McGuire, D.K.; Neal, B.; et al. Sodium-Glucose Cotransporter 2 Inhibitors and Risk of Hyperkalemia in People with Type 2 Diabetes: A Meta-Analysis of Individual Participant Data From Randomized, Controlled Trials. Circulation 2022, 145, 1460–1470. [Google Scholar] [CrossRef]
- Morace, C.; Lorello, G.; Bellone, F.; Quartarone, C.; Ruggeri, D.; Giandalia, A.; Mandraffino, G.; Minutoli, L.; Squadrito, G.; Russo, G.T.; et al. Ketoacidosis and SGLT2 Inhibitors: A Narrative Review. Metabolites 2024, 14, 264. [Google Scholar] [CrossRef]
- Azmi, Y.A.; Alkaff, F.F.; Soetanto, K.M.; Wirjopranoto, S.; Postma, M.J.; Purba, A.K.R. The impact of sodium-glucose cotransporter-2 inhibitors on the incidence, therapy, and outcomes of fournier gangrene: Insights from a systematic review of case reports. Syst. Rev. 2025, 14, 25. [Google Scholar] [CrossRef]
- Chen, H.B.; Yang, Y.L.; Meng, R.S.; Liu, X.W. Indirect comparison of SGLT2 inhibitors in patients with established heart failure: Evidence based on Bayesian methods. ESC Heart Fail. 2023, 10, 1231–1241. [Google Scholar] [CrossRef]
- Davis, J.A.; Booth, D.; McEwan, P.; Solomon, S.D.; McMurray, J.J.V.; de Boer, R.A.; Comin-Colet, J.; Bachus, E.; Chen, J. Cost-effectiveness of dapagliflozin for patients with heart failure across the spectrum of ejection fraction: A pooled analysis of DAPA-HF and DELIVER data. Eur. J. Heart Fail. 2024, 26, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Reifsnider, O.S.; Tafazzoli, A.; Linden, S.; Ishak, J.; Rakonczai, P.; Stargardter, M.; Kuti, E. Cost-Effectiveness Analysis of Empagliflozin for Treatment of Patients with Heart Failure with Reduced Ejection Fraction in the United States. J. Am. Heart Assoc. 2024, 13, e029042. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.N.; Murray, E.; Butler, J.; Cooper, L.B.; Cox, Z.L.; Fiuzat, M.; Green, J.B.; Lindenfeld, J.; McGuire, D.K.; Nassif, M.E.; et al. In-Hospital Initiation of Sodium-Glucose Cotransporter-2 Inhibitors for Heart Failure with Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2021, 78, 2004–2012. [Google Scholar] [CrossRef] [PubMed]
- Stolfo, D.; Lund, L.H.; Benson, L.; Lindberg, F.; Ferrannini, G.; Dahlström, U.; Sinagra, G.; Rosano, G.M.C.; Savarese, G. Real-world use of sodium-glucose cotransporter 2 inhibitors in patients with heart failure and reduced ejection fraction: Data from the Swedish Heart Failure Registry. Eur. J. Heart Fail. 2023, 25, 1648–1658. [Google Scholar] [CrossRef]
- Rashed, A.; Wasef, M.; Kalra, P.R. The 2023 ESC heart failure guideline update and its implications for clinical practice. Br. J. Cardiol. 2024, 31, 65–68. [Google Scholar] [CrossRef]
- Isaza, N.; Calvachi, P.; Raber, I.; Liu, C.L.; Bellows, B.K.; Hernandez, I.; Shen, C.; Gavin, M.C.; Garan, A.R.; Kazi, D.S. Cost-effectiveness of Dapagliflozin for the Treatment of Heart Failure with Reduced Ejection Fraction. JAMA Netw. Open 2021, 4, e2114501. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Vasques-Nóvoa, F.; Saraiva, F.; Oliveira, A.C.; Almeida, J.; Batista, A.B.; Barbosa, A.; Ferreira, A.F.; Costa, C.; Diaz, S.O.; et al. Sodium-Glucose Cotransporter 2 Inhibitor with and Without an Aldosterone Antagonist for Heart Failure with Preserved Ejection Fraction: The SOGALDI-PEF Trial. J. Am. Coll. Cardiol. 2025, 86, 320–333. [Google Scholar] [CrossRef]
- Liu, T.; Fan, Z.; Li, Y.; Xiao, B.; He, C. Combination treatment of SGLT2i and GLP-1RA associated with improved cardiovascular outcomes in type 2 diabetes patients with acute coronary syndrome: A propensity score-matched cohort study. Int. J. Cardiol. 2025, 431, 133229. [Google Scholar] [CrossRef]
- A Study to Determine the Efficacy and Safety of Finerenone and SGLT2i in Combination in Hospitalized Patients with Heart Failure (CONFIRMATION-HF) (CONFIRMATION), ClinicalTrials.gov ID NCT06024746. Available online: https://clinicaltrials.gov/study/NCT06024746 (accessed on 25 August 2025).
- Phase III Study Investigating Heart Failure and Cardiovascular Death with Baxdrostat in Combination with Dapagliflozin (Prevent-HF), ClinicalTrials.gov ID NCT06677060. Available online: https://clinicaltrials.gov/study/NCT06677060 (accessed on 25 August 2025).
- Ezhumalai, B.; Modi, R.; Panchanatham, M.; Kaliyamoorthy, D. The contemporary role of sodium-glucose co-transporter 2 inhibitor (SGLT2i) and angiotensin receptor-neprilysin inhibitor (ARNI) in the management of heart failure: State-of-the-art review. Indian Heart J. 2024, 76, 229–239. [Google Scholar] [CrossRef]
Feature | Empagliflozin | Dapagliflozin |
---|---|---|
SGLT2 Selectivity | Highly selective for SGLT2, stronger potency in inhibiting glucose reabsorption [13,14] | Highly selective for SGLT2, slightly lower potency [15] |
Potency | Greater potency leading to stronger glucose and sodium excretion [13,14] | Slightly lower potency, but still effective for heart failure [15] |
Half-life | ~12 h, once-daily dosing [16] | ~10–12 h, once-daily dosing [17] |
Kidney Function Effects | Stronger diuretic effects, more significant blood pressure reduction [4,16] | Similar diuretic effects, but slightly less pronounced blood pressure reduction [9,17] |
Cardiovascular Effects | May have stronger myocardial and fibrosis effects, contributing to improved symptoms in HFrEF [18,20] | Stronger impact on vascular stiffness and diastolic dysfunction in HFpEF [5,21] |
Heart Failure Impact | Potentially greater improvement in symptoms and NYHA class in HFrEF [3,8,20] | Greater efficacy in HFpEF in reducing hospitalizations and mortality [2,5] |
Trial Name & Drug | Sample Size | EF Inclusion Criteria | Median Follow-Up | Primary Endpoint | Key Baseline Characteristics | Main Outcome Results |
---|---|---|---|---|---|---|
DAPA-HF [2] (dapagliflozin) | 4744 | LVEF ≤ 40% | 18.2 months | CV death or worsening HF, all-cause mortality |
| ↓26% primary endpoint, ↓CV and all-cause mortality |
EMPEROR-Reduced [3] (empagliflozin) | 3730 | LVEF ≤ 40% | 16 months | CV death or HF hospitalization |
| ↓25% primary endpoint, nonsignificant ↓CV mortality |
DELIVER [5] (dapagliflozin) | 6263 | LVEF > 40% | 2.3 years | CV death or HF hospitalization |
| ↓18% primary endpoint, no sig. CV death, exploratory ↓all-cause mortality |
EMPEROR-Preserved [40] (empagliflozin) | 5988 | LVEF > 40% | 26.2 months | CV death or HF hospitalization |
| ↓21% primary endpoint, driven by HHF reduction, no ↓CV mortality |
EMPULSE [32] (empagliflozin) | 530 | Any EF | 90 days | Clinical benefit composite (death, HF events, QoL) |
| Win ratio 1.36 (p = 0.005), benefit across EF and diabetes status |
DICTATE-AHF [33] (dapagliflozin) | 240 | Any EF | In-hospital | Decongestion metrics (diuretic response) |
| Improved natriuresis, exploratory study, no mortality data |
EMPACT-MI [37] (empagliflozin) | 6522 | LVEF ≤ 45% or pulmonary congestion | 1.5 years | Composite of first HF hospitalization or all-cause mortality |
| Neutral primary composite, favorable trend driven by fewer HF hospitalizations and safe to start early after MI |
DAPA-MI [38] (dapagliflozin) | 4017 | Any EF | 11 months (median registry follow-up) | Biomarker-based surrogate endpoints |
| Modeled benefit only, no hard clinical outcomes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cozma, D.; Văcărescu, C.; Stoicescu, C. Head-to-Head in Heart Failure: Comparative Insights on Empagliflozin and Dapagliflozin. Biomedicines 2025, 13, 2422. https://doi.org/10.3390/biomedicines13102422
Cozma D, Văcărescu C, Stoicescu C. Head-to-Head in Heart Failure: Comparative Insights on Empagliflozin and Dapagliflozin. Biomedicines. 2025; 13(10):2422. https://doi.org/10.3390/biomedicines13102422
Chicago/Turabian StyleCozma, Dragos, Cristina Văcărescu, and Claudiu Stoicescu. 2025. "Head-to-Head in Heart Failure: Comparative Insights on Empagliflozin and Dapagliflozin" Biomedicines 13, no. 10: 2422. https://doi.org/10.3390/biomedicines13102422
APA StyleCozma, D., Văcărescu, C., & Stoicescu, C. (2025). Head-to-Head in Heart Failure: Comparative Insights on Empagliflozin and Dapagliflozin. Biomedicines, 13(10), 2422. https://doi.org/10.3390/biomedicines13102422