The Influence of Anesthetics on the Functions of the Endothelium and Oxidative Stress: A Critical Review
Abstract
1. Introduction
2. The Effects of Anesthetics on Endothelium-Mediated Vasodilation and Vasoconstriction
2.1. General Mechanisms of Endothelial Regulation
2.2. Nitrous Oxide (N2O)
2.3. Volatile Anesthetics (Halothane, Enflurane, Isoflurane, Sevoflurane, Desflurane)
2.4. Intravenous Anesthetics
2.4.1. Propofol
2.4.2. Ketamine
2.4.3. Etomidate
2.4.4. Benzodiazepines (Midazolam)
2.5. Opioids
2.6. Local Anesthetics
3. Effect of Anesthetics on Endothelium-Mediated Inhibition and Stimulation of Growth Factors
3.1. General Mechanisms of Growth Factor Regulation
3.2. Propofol and Growth Factors
3.3. Volatile Anesthetics and Growth Factors
3.4. Intravenous Anesthetics and Growth Factors
4. Effects of Anesthetics on Endothelial-Mediated Antithrombotic and Prothrombotic Functions
4.1. General Mechanisms
4.2. Propofol
4.3. Volatile Anesthetics
4.4. Local Anesthetics
4.5. Ketamine
5. The Effect of Anesthetics on the Anti-Inflammatory and Pro-Inflammatory Roles Mediated by the Endothelium
5.1. General Mechanisms of Endothelial Inflammation
5.2. Volatile Anethetics
5.3. Local Anesthetics
5.4. Propofol
5.5. Intravenous Anesthetics
5.6. Clinical Considerations and Anesthesia Techniques
6. Effects of Anesthetics on Endothelial-Mediated Antioxidant and Prooxidant Roles
6.1. General Mechanisms of Oxidative Stress and Endothelial Function
6.2. Propofol
6.3. Intravenous Anesthetics
6.4. Opioids
6.5. Inhalation Anesthetics and Local Anesthetics
7. Effects of Anesthetics on Endothelial Glycoalyx
8. Ferroptosis and Anesthetic Agents in Endothelial Function
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hao, X.; Ou, M.; Zhang, D.; Zhao, W.; Yang, Y.; Liu, J.; Yang, H.; Zhu, T.; Li, Y.; Zhou, C. The Effects of General Anesthetics on Synaptic Transmission. Curr. Neuropharmacol. 2020, 18, 936–965. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, J.A.; Lucchinetti, E.; Clanachan, A.S.; Plane, F.; Zaugg, M. Unraveling Interactions Between Anesthetics and the Endothelium: Update and Novel Insights. Anesth. Analg. 2016, 122, 330–348. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, E.A. Cell biology of endothelial cells. Hum. Pathol. 1987, 18, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Greyling, A.; Hopman, M.T.; Thijssen, D.H.J. Endothelial Function in Health and Disease. In Arterial Disorders; Berbari, A., Mancia, G., Eds.; Springer: Cham, Switzerland, 2015; pp. 161–173. [Google Scholar] [CrossRef]
- Mel’nikova, Y.S.; Makarova, T.P. Endothelial dysfunction as the key link of chronic diseases pathogenesis. Kazan Med. J. 2015, 96, 659–665. [Google Scholar] [CrossRef]
- Søndergaard, E.S.; Fonnes, S.; Gögenur, I. Endothelial dysfunction after non-cardiac surgery: A systematic review. Acta Anaesthesiol. Scand. 2015, 59, 140–146. [Google Scholar] [CrossRef]
- Poredos, P.; Mavric, A.; Leben, L.; Poredos, P.; Jezovnik, M.K. Total Hip Replacement Provokes Endothelial Dysfunction. Angiology 2018, 69, 871–877. [Google Scholar] [CrossRef]
- Ohno, S.; Kohjitani, A.; Miyata, M.; Tohya, A.; Yamashita, K.; Hashiguchi, T.; Ohishi, M.; Sugimura, M. Recovery of Endothelial Function after Minor-to-Moderate Surgery Is Impaired by Diabetes Mellitus, Obesity, Hyperuricemia and Sevoflurane-Based Anesthesia. Int. Heart J. 2018, 59, 559–565. [Google Scholar] [CrossRef]
- Shcheblykin, D.V.; Bolgov, A.A.; Pokrovskii, M.V.; Stepenko, J.V.; Tsuverkalova, J.M.; Shcheblykina, O.V.; Golubinskaya, P.A.; Korokina, L.V. Endothelial dysfunction: Developmental mechanisms and therapeutic strategies. Res. Results Pharmacol. 2022, 8, 115–139. [Google Scholar] [CrossRef]
- Fortini, F.; Vieceli Dalla Sega, F.; Marracino, L.; Severi, P.; Rapezzi, C.; Rizzo, P.; Ferrari, R. Well-Known and Novel Players in Endothelial Dysfunction: Updates on a Notch(ed) Landscape. Biomedicines 2021, 9, 997. [Google Scholar] [CrossRef]
- Xu, S.; Ilyas, I.; Little, P.J.; Li, H.; Kamato, D.; Zheng, X.; Luo, S.; Li, Z.; Liu, P.; Han, J.; et al. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol. Rev. 2021, 73, 924–967. [Google Scholar] [CrossRef]
- Tamunobelema, D.M.S.; Uruaka, C.I. General Anaesthetic Agents and Its Implication on the Cardiovascular System: A Systemic Review. Saudi J. Med. Pharm. Sci. 2023, 9, 171–183. [Google Scholar] [CrossRef]
- Li, X.; Zeng, S.; Wan, J.; Yang, Z.; Wang, F. The role of anesthetic drug and technique in endothelial glycocalyx: A narrative review. Medicine 2023, 102, e34265. [Google Scholar] [CrossRef]
- Poredos, P.; Poredos, A.V.; Gregoric, I. Endothelial Dysfunction and Its Clinical Implications. Angiology 2021, 72, 604–615. [Google Scholar] [CrossRef]
- Bayo Jimenez, M.T.; Hahad, O.; Kuntic, M.; Daiber, A.; Münzel, T. Noise, Air, and Heavy Metal Pollution as Risk Factors for Endothelial Dysfunction. Eur. Cardiol. 2023, 18, e09. [Google Scholar] [CrossRef]
- Cau, S.B.A.; Evora, P.R.B.; Tostes, R.C. Vasoconstrictor Substances Produced by the Endothelium. In Endothelium and Cardiovascular Diseases; Da Luz, P.L., Libby, P., Chagas, A.C.P., Laurindo, F.R.M., Eds.; Academic Press: London, UK, 2018; pp. 115–125. [Google Scholar] [CrossRef]
- Kubota, T. Role of vasoactive substances on endometrial and ovarian function. Reprod. Med. Biol. 2007, 6, 157–164. [Google Scholar] [CrossRef]
- Gulati, A. Vascular Endothelium and Hypovolemic Shock. Curr. Vasc. Pharmacol. 2016, 14, 187–195. [Google Scholar] [CrossRef]
- He, G.W. Endothelial Function and Interaction Between the Endothelium and Smooth Muscle in Arterial Grafts. In Arterial Grafting for Coronary Artery Bypass Surgery; Springer: Berlin/Heidelberg, Germany, 2006; pp. 17–23. [Google Scholar] [CrossRef]
- Mangana, C.; Lorigo, M.; Cairrao, E. Implications of Endothelial Cell-Mediated Dysfunctions in Vasomotor Tone Regulation. Biologics 2021, 1, 231–251. [Google Scholar] [CrossRef]
- Sena, C.M.; Pereira, A.M.; Seiça, R. Endothelial dysfunction—A major mediator of diabetic vascular disease. Biochim. Biophys. Acta 2013, 1832, 2216–2231. [Google Scholar] [CrossRef]
- Wu, D.; Hu, Q.; Zhu, D. An Update on Hydrogen Sulfide and Nitric Oxide Interactions in the Cardiovascular System. Oxid. Med. Cell. Longev. 2018, 2018, 4579140. [Google Scholar] [CrossRef]
- Dashdorj, N.; Corrie, K.; Napolitano, A.; Petersen, E.; Mahajan, R.P.; Auer, D.P. Effects of Subanesthetic Dose of Nitrous Oxide on Cerebral Blood Flow and Metabolism: A Multimodal Magnetic Resonance Imaging Study in Healthy Volunteers. Anesthesiology 2013, 118, 577–586. [Google Scholar] [CrossRef]
- Hancock, S.M.; Eastwood, J.R.; Mahajan, R.P. Effects of inhaled nitrous oxide 50% on estimated cerebral perfusion pressure and zero flow pressure in healthy volunteers. Anaesthesia 2005, 60, 129–132. [Google Scholar] [CrossRef]
- Hughes, J.M.; Sill, J.C.; Pettis, M.; Rorie, D.K. Nitrous oxide constricts epicardial coronary arteries in pigs: Evidence suggesting inhibitory effects on the endothelium. Anesth. Analg. 1993, 77, 232–240. [Google Scholar] [CrossRef]
- Reinstrup, P.; Hesselgard, K.; Ekman, R. Possible mechanism behind the vasodilating effect of nitrous oxide in the human brain. Internet J. Anesthesiol. 2006, 14, 1–5. [Google Scholar]
- Lam, A.M.; Mayberg, T.S.; Eng, C.C.; Cooper, J.O.; Bachenberg, K.L.; Mathisen, T.L. Nitrous oxide-isoflurane anesthesia causes more cerebral vasodilation than an equipotent dose of isoflurane in humans. Anesth. Analg. 1994, 78, 462–468. [Google Scholar] [CrossRef]
- Myles, P.S.; Leslie, K.; Silbert, B.; Paech, M.J.; Peyton, P. A review of the risks and benefits of nitrous oxide in current anaesthetic practice. Anaesth. Intensive Care 2004, 32, 165–172. [Google Scholar] [CrossRef]
- Nunn, J.F. Clinical aspects of the interaction between nitrous oxide and vitamin B12. Br. J. Anaesth. 1987, 59, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Ermens, A.A.; Refsum, H.; Rupreht, J.; Spijkers, L.J.; Guttormsen, A.B.; Lindemans, J.; Ueland, P.M.; Abels, J. Monitoring cobalamin inactivation during nitrous oxide anesthesia by determination of homocysteine and folate in plasma and urine. Clin. Pharmacol. Ther. 1991, 49, 385–393. [Google Scholar] [CrossRef]
- Badner, N.H.; Drader, K.; Freeman, D.; Spence, J.D. The use of intraoperative nitrous oxide leads to postoperative increases in plasma homocysteine. Anesth. Analg. 1998, 87, 711–713. [Google Scholar] [CrossRef]
- Schlaich, M.P.; Parnell, M.M.; Ahlers, B.A.; Finch, S.; Marshall, T.; Zhang, W.Z.; Kaye, D.M. Impaired L-arginine transport and endothelial function in hypertensive and genetically predisposed normotensive subjects. Circulation 2004, 110, 3680–3686. [Google Scholar] [CrossRef]
- Forstermann, U.; Munzel, T. Endothelial nitric oxide synthase in vascular disease: From marvel to menace. Circulation 2006, 113, 1708–1714. [Google Scholar] [CrossRef]
- Athiraman, U.; Aum, D.; Vellimana, A.K.; Osbun, J.W.; Dhar, R.; Tempelhoff, R.; Zipfel, G.J. Evidence for a conditioning effect of inhalational anesthetics on angiographic vasospasm after aneurysmal subarachnoid hemorrhage. J. Neurosurg. 2019, 133, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Takemura, M.; Shiokawa, Y.; Okamoto, S. Volatile anesthetics constrict pulmonary artery in rabbit lung perfusion model. J. Anesth. 2005, 19, 343–346. [Google Scholar] [CrossRef]
- Krishnakumar, M.; Ramesh, V.; Goyal, A.; Pruthi, N. Clinical visualization of cerebral vasodilatation by desflurane. Can. J. Anesth./J. Can. Anesth. 2020, 67, 605–606. [Google Scholar] [CrossRef] [PubMed]
- Rocha, T.L.A.; Borges, T.F.; Rodrigues, S.D.; Martins, L.Z.; da Silva, M.L.S.; Bonacio, G.F.; Rizzi, E.; Dias-Junior, C.A. Sevoflurane and isoflurane anesthesia induce redox imbalance, but only sevoflurane impairs vascular contraction. Fundam. Clin. Pharmacol. 2023, 37, 937–946. [Google Scholar] [CrossRef]
- Blaise, G.; Guy, C.; To, Q.; Sauvé, R. Do enflurane and isoflurane interfere with the release, action, or stability of endothelium-derived relaxing factors? Can. J. Anaesth. 1997, 44, 550–558. [Google Scholar] [CrossRef]
- Blaise, G.; To, Q.; Parent, M.; Lagarde, B.; Asenjo, F.; Sauvé, R. Does halothane interfere with the release, action, or stability of endothelium-derived relaxing factor/nitric oxide? Anesthesiology 1994, 80, 417–426. [Google Scholar] [CrossRef]
- Sitkin, S. Possibilities of Inhalation Anesthetics in Blocking an Excessive Inflammatory Response: A Review. Ann. Crit. Care 2022, 3, 102–110. [Google Scholar] [CrossRef]
- Akata, T. General anesthetics and vascular smooth muscle: Direct actions of general anesthetics on cellular mechanisms regulating vascular tone. Anesthesiology 2007, 106, 365–391. [Google Scholar] [CrossRef]
- Villeneuve, E.; Blaise, G.; Sill, J.C.; Guerard, M.J.; Buluran, J.; Girard, D. Halothane 1.5 MAC, isoflurane 1.5 MAC, and the contractile responses of coronary arteries obtained from human hearts. Anesth. Analg. 1991, 72, 454–461. [Google Scholar] [CrossRef]
- Beaussier, M.; Mouren, S.; Souktani, R.; Arthaud, M.; Massias, L.; Vicaut, E.; Lienhart, A.; Coriat, P. Role of nitric oxide and cyclooxygenase pathways in the coronary vascular effects of halothane, isoflurane and desflurane in red blood cell-perfused isolated rabbit hearts. Br. J. Anaesth. 2002, 88, 399–407. [Google Scholar] [CrossRef]
- Lischke, V.; Busse, R.; Hecker, M. Inhalation anesthetics inhibit the release of endothelium-derived hyperpolarizing factor in the rabbit carotid artery. Anesthesiology 1995, 83, 574–582. [Google Scholar] [CrossRef]
- Boillot, A.; Vallet, B.; Marty, J.; Auclerc, A.; Barale, F. Effects of halothane, enflurane and isoflurane on contraction of rat aorta induced by endothelin-1. Br. J. Anaesth. 1995, 75, 761–767. [Google Scholar] [CrossRef]
- Petros, A.J.; Bogle, R.G.; Pearson, J.D. Propofol stimulates nitric oxide release from cultured porcine aortic endothelial cells. Br. J. Pharmacol. 1993, 109, 6–7. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, W. Propofol induces endothelial nitric oxide synthase phosphorylation and activation in human umbilical vein endothelial cells by inhibiting protein kinase C delta expression. Eur. J. Anaesthesiol. 2010, 27, 258–264. [Google Scholar] [CrossRef]
- Wang, H.H.; Zhou, H.Y.; Chen, C.C.; Zhang, X.L.; Cheng, G. Propofol attenuation of renal ischemia/reperfusion injury involves heme oxygenase-1. Acta. Pharmacol. Sin. 2007, 28, 1175–1180. [Google Scholar] [CrossRef]
- Djuric, M.; Nikolic Turnic, T.; Kostic, S.; Stankovic, S.; Radonjic, K.; Djuric, D.; Zivkovic, V.; Jakovljevic, V.; Stevanovic, P. The effects of gasotransmitters inhibition on biochemical and haematological parameters and oxidative stress in propofol-anaesthetized Wistar male rats. Can. J. Physiol. Pharmacol. 2019, 97, 1073–1079. [Google Scholar] [CrossRef]
- Tiurmina, O.A.; Conlay, L.A.; Medvedev, O.S. Propofol podavliaet simpaticheskuiu aktivnost’ i ingibiruet baroretseptornyĭ refleks u bodrstvuiushchikh krys [Propofol suppresses sympathetic activity and inhibits the baroreceptor reflex in waking rats]. Eksp. Klin. Farmakol. 1993, 56, 21–24. [Google Scholar]
- Wallerstedt, S.M.; Törnebrandt, K.; Bodelsson, M. Relaxant effects of propofol on human omental arteries and veins. Br. J. Anaesth. 1998, 80, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Xuan, Y.T.; Glass, P.S. Propofol regulation of calcium entry pathways in cultured A10 and rat aortic smooth muscle cells. Br. J. Pharmacol. 1996, 117, 5–12. [Google Scholar] [CrossRef]
- Klockgether-Radke, A.P.; Schulze, H.; Neumann, P.; Hellige, G. Activation of the K+ channel BK(Ca) is involved in the relaxing effect of propofol on coronary arteries. Eur. J. Anaesthesiol. 2004, 21, 226–230. [Google Scholar] [CrossRef]
- Sinha, S.; Sinharoy, P.; Bratz, I.N.; Damron, D.S. Propofol causes vasodilation in vivo via TRPA1 ion channels: Role of nitric oxide and BKCa channels. PLoS ONE 2015, 10, e0122189. [Google Scholar] [CrossRef]
- Suzuki, M.; Li, R.A.; Miki, T.; Uemura, H.; Sakamoto, N.; Ohmoto-Sekine, Y.; Tamagawa, M.; Ogura, T.; Seino, S.; Marbán, E.; et al. Functional roles of cardiac and vascular ATP-sensitive potassium channels clarified by Kir6.2-knockout mice. Circ. Res. 2001, 88, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, M.L.; Huang, Y.; Liu, D.P.; Liang, C.C. KATP channel: Relation with cell metabolism and role in the cardiovascular system. Int. J. Biochem. Cell Biol. 2005, 37, 751–764. [Google Scholar] [CrossRef]
- Meng, T.; Bu, W.; Ren, X.; Chen, X.; Yu, J.; Eckenhoff, R.G.; Gao, W.D. Molecular mechanism of anesthetic-induced depression of myocardial contraction. FASEB J. 2016, 30, 2915–2925. [Google Scholar] [CrossRef] [PubMed]
- Djuric, M.; Nikolic Turnic, T.; Kostic, S.; Radonjic, K.; Jeremic, J.; Petkovic, A.; Bradic, J.; Milosavljevic, I.; Srejovic, I.; Zivkovic, V.; et al. Inhibition of gasotransmitters production and calcium influx affect cardiodynamic variables and cardiac oxidative stress in propofol-anesthetized male Wistar rats. Can. J. Physiol. Pharmacol. 2019, 97, 850–856. [Google Scholar] [CrossRef]
- Baumgartner, C.; Bollerhey, M.; Ebner, J.; Laacke-Singer, L.; Schuster, T.; Erhardt, W. Effects of ketamine-xylazine intravenous bolus injection on cardiovascular function in rabbits. Can. J. Vet. Res. 2010, 74, 200–208. [Google Scholar]
- Johnstone, M. The cardiovascular effects of ketamine in man. Anaesthesia 1976, 31, 873–882. [Google Scholar] [CrossRef]
- Djuric, M.; Kostic, S.; Nikolic Turnic, T.; Stankovic, S.; Skrbic, R.; Djuric, D.M.; Zivkovic, V.; Jakovljevic, V.; Stevanovic, P. The comparison of the effects of ketamine and etomidate on cardiodynamics, biochemical and oxidative stress parameters in Wistar male rats. Mol. Cell Biochem. 2020, 474, 125–134. [Google Scholar] [CrossRef]
- Flynn, G.; Shehabi, Y. Pro/con debate: Is etomidate safe in hemodynamically unstable critically ill patients? Crit. Care 2012, 16, 227. [Google Scholar] [CrossRef]
- Shirozu, K.; Akata, T.; Yoshino, J.; Setoguchi, H.; Morikawa, K.; Hoka, S. The mechanisms of the direct action of etomidate on vascular reactivity in rat mesenteric resistance arteries. Anesth. Analg. 2009, 108, 496–507. [Google Scholar] [CrossRef]
- Shapiro, B.M.; Wendling, W.W.; Ammaturo, F.J.; Chen, D.; Pham, P.S.; Furukawa, S.; Carlsson, C. Vascular effects of etomidate administered for electroencephalographic burst suppression in humans. J. Neurosurg. Anesthesiol. 1998, 10, 231–236. [Google Scholar] [CrossRef]
- Lischke, V.; Busse, R.; Hecker, M. Volatile and intravenous anesthetics selectively attenuate the release of endothelium-derived hyperpolarizing factor elicited by bradykinin in the coronary microcirculation. Naunyn. Schmiedebergs. Arch. Pharmacol. 1995, 352, 346–349. [Google Scholar] [CrossRef]
- Klockgether-Radke, A.P.; Pawlowski, P.; Neumann, P.; Hellige, G. Mechanisms involved in the relaxing effect of midazolam on coronary arteries. Eur. J. Anaesthesiol. 2005, 22, 135–139. [Google Scholar] [CrossRef]
- Colussi, G.L.; Di Fabio, A.; Catena, C.; Chiuch, A.; Sechi, L.A. Involvement of Endothelium-Dependent and -Independent Mechanisms in Midazolam-Induced Vasodilation. Hypertens. Res. 2011, 34, 929–934. [Google Scholar] [CrossRef]
- Ferry, N.; Hancock, L.E.; Dhanjal, S. Opioid Anesthesia. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: https://www.statpearls.com/ (accessed on 16 September 2024).
- Stefano, G.B.; Hartman, A.; Bilfinger, T.V.; Magazine, H.I.; Liu, Y.; Casares, F.; Goligorsky, M.S. Presence of the mu3 opiate receptor in endothelial cells. Coupling to nitric oxide production and vasodilation. J. Biol. Chem. 1995, 270, 30290–30293. [Google Scholar] [CrossRef]
- Wagner, M.C.; Eckman, J.R.; Wick, T.M. Histamine increases sickle erythrocyte adherence to endothelium. Br. J. Haematol. 2006, 132, 512–522. [Google Scholar] [CrossRef]
- Timponi, C.F.; Oliveira, N.E.; Arruda, R.M.; Meyrelles, S.S.; Vasquez, E.C. Effects of the Local Anaesthetic Ropivacaine on Vascular Reactivity in the Mouse Perfused Mesenteric Arteries. Basic Clin. Pharmacol. Toxicol. 2006, 98, 518–520. [Google Scholar] [CrossRef]
- Newton, D.J.; McLeod, G.A.; Khan, F.; Belch, J.J. Vasoactive characteristics of bupivacaine and levobupivacaine with and without adjuvant epinephrine in peripheral human skin. Br. J. Anaesth. 2005, 94, 662–667. [Google Scholar] [CrossRef]
- Saputra, D.R.; Imansari, I.P.; Elnisa, A.R.; Amania, H.N. Penggunaan Vasokonstriktor dalam Anestesi Lokal Kedokteran Gigi pada Pasien Kompromis Medis: Telaah Pustaka. Stomatognatic 2023, 20, 56–62. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Liang, F.; Liu, G.; Zhao, G. Anesthetic drug propofol inhibits the expression of interleukin-6, interleukin-8 and cyclooxygenase-2, a potential mechanism for propofol in suppressing tumor development and metastasis. Oncol. Lett. 2018, 15, 9523–9528. [Google Scholar] [CrossRef]
- Looney, M.; Doran, P.; Buggy, D.J. Effect of anesthetic technique on serum vascular endothelial growth factor C and transforming growth factor β in women undergoing anesthesia and surgery for breast cancer. Anesthesiology 2010, 113, 1118–1125. [Google Scholar] [CrossRef]
- Liu, Z.; Xia, Z.; Chen, X.; Luo, T. Isoflurane induces expression of vascular endothelial growth factor through activating protein kinase C in myocardial cells. Chin. J. Traumatol. 2010, 13, 284–288. [Google Scholar] [CrossRef]
- Liu, Y.; Paterson, M.; Baumgardt, S.L.; Irwin, M.G.; Xia, Z.; Bosnjak, Z.J.; Ge, Z.D. Vascular endothelial growth factor regulation of endothelial nitric oxide synthase phosphorylation is involved in isoflurane cardiac preconditioning. Cardiovasc. Res. 2019, 115, 168–178. [Google Scholar] [CrossRef]
- Benzonana, L.L.; Perry, N.J.; Watts, H.R.; Yang, B.; Perry, I.A.; Coombes, C.; Takata, M.; Ma, D. Isoflurane, a commonly used volatile anesthetic, enhances renal cancer growth and malignant potential via the hypoxia-inducible factor cellular signaling pathway in vitro. Anesthesiology 2013, 119, 593–605. [Google Scholar] [CrossRef]
- Lucchinetti, E.; Zeisberger, S.M.; Baruscotti, I.; Wacker, J.; Feng, J.; Zaugg, K.; Dubey, R.; Zisch, A.H.; Zaugg, M. Stem cell-like human endothelial progenitors show enhanced colony-forming capacity after brief sevoflurane exposure: Preconditioning of angiogenic cells by volatile anesthetics. Anesth. Analg. 2009, 109, 1117–1126. [Google Scholar] [CrossRef]
- Hakimoglu, Y.; Can, M.; Hakimoglu, S.; Gorkem Mungan, A.; Acikgoz, S.; Cikcikoglu Yildirim, N.; Aydin Mungan, N.; Ozkocak Turan, I. The effects of nitrous oxide on vascular endothelial growth factor (VEGF) and its soluble receptor 1 (VEGFR1) in patient undergoing urological surgery. Pak. J. Med. Sci. 2014, 30, 45–49. [Google Scholar] [CrossRef]
- Yan, T.; Zhang, G.H.; Wang, B.N.; Sun, L.; Zheng, H. Effects of propofol/remifentanil-based total intravenous anesthesia versus sevoflurane-based inhalational anesthesia on the release of VEGF-C and TGF-β and prognosis after breast cancer surgery: A prospective, randomized and controlled study. BMC Anesthesiol. 2018, 18, 131. [Google Scholar] [CrossRef]
- Galoș, E.V.; Tat, T.F.; Popa, R.; Efrimescu, C.I.; Finnerty, D.; Buggy, D.J.; Ionescu, D.C.; Mihu, C.M. Neutrophil extracellular trapping and angiogenesis biomarkers after intravenous or inhalation anaesthesia with or without intravenous lidocaine for breast cancer surgery: A prospective, randomised trial. Br. J. Anaesth. 2020, 125, 712–721. [Google Scholar] [CrossRef]
- Fourcade, O.; Simon, M.F.; Litt, L.; Samii, K.; Chap, H. Propofol inhibits human platelet aggregation induced by proinflammatory lipid mediators. Anesth. Analg. 2004, 99, 393–398. [Google Scholar] [CrossRef]
- Chung, H.G.; Myung, S.A.; Son, H.S.; Kim, Y.H.; Namgung, J.; Cho, M.L.; Choi, H.; Lim, C.H. In vitro effect of clinical propofol concentrations on platelet aggregation. Artif. Organs 2013, 37, E51-55. [Google Scholar] [CrossRef]
- Son, S.C.; Lee, W.H.; Lee, J.H.; Lee, J.H.; Cho, H.Y.; Shin, Y.S. The Effects of Propofol-remifentanil Total Intravenous Anesthesia on Platelet Function. Korean J. Anesthesiol. 2008, 54, 134–138. [Google Scholar] [CrossRef]
- Wacker, J.; Lucchinetti, E.; Jamnicki, M.; Aguirre, J.; Härter, L.; Keel, M.; Zaugg, M. Delayed inhibition of agonist-induced granulocyte-platelet aggregation after low-dose sevoflurane inhalation in humans. Anesth. Analg. 2008, 106, 1749–1758. [Google Scholar] [CrossRef]
- Tobias, M.D.; Henry, C.; Augostides, Y.G. Lidocaine and bupivacaine exert differential effects on whole blood coagulation. J. Clin. Anesth. 1999, 11, 52–55. [Google Scholar] [CrossRef]
- Dregalla, R.C.; Uribe, Y.; Bodor, M. Effect of local anesthetics on platelet physiology and function. J. Orthop. Res. 2021, 39, 2744–2754. [Google Scholar] [CrossRef]
- Azma, T.; Tuluc, F.; Ito, T.; Aoyama-Mani, C.; Kawahito, S.; Kinoshita, H. Mechanisms of action of anesthetics for the modulation of perioperative thrombosis: Evidence for immune mechanisms from basic and clinical studies. Curr. Pharm. Des. 2014, 20, 5779–5793. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Zhang, Z.; Sun, Y.; Jin, D.; Guo, L.; Li, X.; Zhao, D.; Feng, X.; Qi, W.; Zhu, H. Research Progress and Molecular Mechanisms of Endothelial Cells Inflammation in Vascular-Related Diseases. J. Inflamm. Res. 2023, 16, 3593–3617. [Google Scholar] [CrossRef]
- Tedgui, A.; Mallat, Z. Anti-inflammatory mechanisms in the vascular wall. Circ. Res. 2001, 88, 877–887. [Google Scholar] [CrossRef]
- Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. Role of Nitric Oxide in Inflammatory Diseases. Inflammopharmacology 2007, 15, 252–259. [Google Scholar] [CrossRef]
- Stitham, J.; Midgett, C.; Martin, K.A.; Hwa, J. Prostacyclin: An Inflammatory Paradox. Front. Pharmacol. 2011, 2, 24. [Google Scholar] [CrossRef]
- Kawabe, J.; Ushikubi, F.; Hasebe, N. Prostacyclin in Vascular Diseases—Recent Insights and Future Perspectives. Circ. J. 2010, 74, 836–843. [Google Scholar] [CrossRef]
- Immanuel, J.; Yun, S. Vascular Inflammatory Diseases and Endothelial Phenotypes. Cells 2023, 12, 1640. [Google Scholar] [CrossRef]
- Dri, E.; Lampas, E.; Lazaros, G.; Lazarou, E.; Theofilis, P.; Tsioufis, C.; Tousoulis, D. Inflammatory Mediators of Endothelial Dysfunction. Life 2023, 13, 1420. [Google Scholar] [CrossRef]
- Little, P.J.; Askew, C.D.; Xu, S.; Kamato, D. Endothelial Dysfunction and Cardiovascular Disease: History and Analysis of the Clinical Utility of the Relationship. Biomedicines 2021, 9, 699. [Google Scholar] [CrossRef]
- Zhang, M.; Yin, Y. Dual Roles of Anesthetics in Postoperative Cognitive Dysfunction: Regulation of Microglial Activation Through Inflammatory Signaling Pathways. Front. Immunol. 2023, 14, 1102312. [Google Scholar] [CrossRef]
- Cruz, F.F.; Rocco, P.R.M.; Pelosi, P. Immunomodulators in Anesthesia. Curr. Opin. Anesthesiol. 2021, 34, 357–363. [Google Scholar] [CrossRef]
- Lee, Y.M.; Song, B.C.; Yeum, K.J. Impact of volatile anesthetics on oxidative stress and inflammation. BioMed Res. Int. 2015, 2015, 242709. [Google Scholar] [CrossRef]
- Grebenchikov, O.A.; Skripkin, Y.V.; Gerasimenko, O.N.; Kadantseva, K.K.; Bachinskiy, A.L.; Berikashvili, L.B.; Likhvantsev, V. Non-anaesthetic effects of modern halogen-containing anaesthetics. Patol. Krovoobrashcheniya Kardiokhirurgiya 2020, 24, 26. [Google Scholar] [CrossRef]
- Weinschenk, S.; Weiss, C.; Benrath, J.; von Baehr, V.; Strowitzki, T.; Feißt, M. Anti-Inflammatory Characteristics of Local Anesthetics: Inhibition of TNF-α Secretion of Lipopolysaccharide-Stimulated Leucocytes in Human Blood Samples. Int. J. Mol. Sci. 2022, 23, 3283. [Google Scholar] [CrossRef]
- Hsing, C.H.; Lin, M.C.; Choi, P.C.; Huang, W.C.; Kai, J.I.; Tsai, C.C.; Cheng, Y.L.; Hsieh, C.Y.; Wang, C.Y.; Chang, Y.P.; et al. Anesthetic propofol reduces endotoxic inflammation by inhibiting reactive oxygen species-regulated Akt/IKKβ/NF-κB signaling. PLoS ONE 2011, 6, e17598. [Google Scholar] [CrossRef]
- Taniguchi, T.; Yamamoto, K. Anti-inflammatory effects of intravenous anesthetics on endotoxemia. Mini Rev. Med. Chem. 2005, 5, 241–245. [Google Scholar] [CrossRef]
- Zanos, P.; Moaddel, R.; Morris, P.J.; Riggs, L.M.; Highland, J.N.; Georgiou, P.; Pereira, E.F.R.; Albuquerque, E.X.; Thomas, C.J.; Zarate Jr, C.A.; et al. Ketamine and ketamine metabolite pharmacology: Insights into therapeutic mechanisms. Pharmacol. Rev. 2018, 70, 621–660. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Ahangar, N.; Zamani, E.; Shaki, F. L-Carnitine prevents behavioural alterations in ketamine-induced schizophrenia in mice: Possible involvement of oxidative stress and inflammation pathways. J. Toxicol. 2023, 2023, 9093231. [Google Scholar] [CrossRef] [PubMed]
- Welden, B.; Gates, G.; Mallari, R.; Garrett, N. Effects of anesthetics and analgesics on natural killer cell activity. AANA J. 2009, 77, 287–292. [Google Scholar] [PubMed]
- Schneemilch, C.E.; Schilling, T.; Bank, U. Effects of general anaesthesia on inflammation. Best Pract. Res. Clin. Anaesthesiol. 2004, 18, 493–507. [Google Scholar] [CrossRef] [PubMed]
- Rossaint, J.; Zarbock, A. Perioperative Inflammation and Its Modulation by Anesthetics. Anesth. Analg. 2018, 126, 1058–1067. [Google Scholar] [CrossRef]
- Alhayyan, A.; McSorley, S.; Roxburgh, C.; Kearns, R.; Horgan, P.; McMillan, D. The effect of anesthesia on the postoperative systemic inflammatory response in patients undergoing surgery: A systematic review and meta-analysis. Surg. Open Sci. 2019, 2, 1–21. [Google Scholar] [CrossRef]
- Heil, L.B.B.; Silva, P.L.; Pelosi, P.; Rocco, P.R.M. Immunomodulatory effects of anesthetics in obese patients. World J. Crit. Care Med. 2017, 6, 140–152. [Google Scholar] [CrossRef]
- Higashi, Y. Roles of Oxidative Stress and Inflammation in Vascular Endothelial Dysfunction-Related Disease. Antioxidants 2022, 11, 1958. [Google Scholar] [CrossRef]
- Higashi, Y.; Maruhashi, T.; Noma, K.; Kihara, Y. Oxidative stress and endothelial dysfunction: Clinical evidence and therapeutic implications. Trends Cardiovasc. Med. 2014, 24, 165–169. [Google Scholar] [CrossRef]
- Mathy-Hartert, M.; Mouithys-Mickalad, A.; Kohnen, S.; Deby-Dupont, G.; Lamy, M.; Hans, P. Effects of propofol on endothelial cells subjected to a peroxynitrite donor (SIN-1). Anaesthesia 2000, 55, 1066–1071. [Google Scholar] [CrossRef]
- Ansley, D.M.; Lee, J.; Godin, D.V.; Garnett, M.E.; Qayumi, A.K. Propofol enhances red cell antioxidant capacity in swine and humans. Can. J. Anaesth. 1998, 45, 233–239. [Google Scholar] [CrossRef]
- Li Volti, G.; Avola, R.; Tibullo, D. Editorial—Propofol as an intraoperative strategy for organ protection. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 3980–3981. [Google Scholar]
- Chang, K.S.; Davis, R.F. Propofol produces endothelium-independent vasodilation and may act as a Ca2+ channel blocker. Anesth. Analg. 1993, 76, 24–32. [Google Scholar] [CrossRef]
- Liu, Y.C.; Chang, A.Y.; Tsai, Y.C.; Chan, J.Y. Differential protection against oxidative stress and nitric oxide overproduction in cardiovascular and pulmonary systems by propofol during endotoxemia. J. Biomed. Sci. 2009, 16, 8. [Google Scholar] [CrossRef]
- Xie, C.L.; Pan, Y.B.; Hu, L.Q.; Qian, Y.N. Propofol attenuates hydrogen peroxide-induced apoptosis in human umbilical vein endothelial cells via multiple signaling pathways. Korean J. Anesthesiol. 2015, 68, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.Y.; Jeon, H.O.; Kim, E.J.; Kim, C.H.; Yoon, J.U.; Park, B.S.; Yu, S.B.; Kwak, J.W. Propofol protects human keratinocytes from oxidative stress via autophagy expression. J. Dent. Anesth. Pain Med. 2017, 17, 21–28. [Google Scholar] [CrossRef]
- Hans, P.; Deby-Dupont, G.; Deby, C.; Pieron, F.; Verbesselt, R.; Franssen, C.; Lamy, M. Increase in antioxidant capacity of plasma during propofol anesthesia. J. Neurosurg. Anesthesiol. 1997, 9, 234–236. [Google Scholar] [CrossRef]
- Manataki, A.D.; Tselepis, A.D.; Glantzounis, G.K.; Arnaoutoglou, H.M.; Tsimoyiannis, E.C.; Stavropoulos, N.E. Lipid peroxidation and the use of emulsified propofol in laparoscopic surgery. Surg. Endosc. 2001, 15, 950–953. [Google Scholar] [CrossRef]
- Stratford, N.; Murphy, P. Antioxidant activity of propofol in blood from anaesthetized patients. Eur. J. Anaesthesiol. 1998, 15, 158–160. [Google Scholar] [CrossRef]
- Wilson, J.X.; Gelb, A.W. Free radicals, antioxidants, and neurologic injury: Possible relationship to cerebral protection by anesthetics. J. Neurosurg. Anesthesiol. 2002, 14, 66–79. [Google Scholar] [CrossRef]
- Yu, H.P.; Lui, P.W.; Hwang, T.L.; Yen, C.H.; Lau, Y.T. Propofol improves endothelial dysfunction and attenuates vascular superoxide production in septic rats. Crit. Care Med. 2006, 34, 453–460. [Google Scholar] [CrossRef]
- Heyne, B.; Brault, D.; Fontaine-Aupart, M.P.; Kohnen, S.; Tfibel, F.; Mouithys-Mickalad, A.; Deby-Dupont, G.; Hans, P.; Hoebeke, M. Reactivity towards singlet oxygen of propofol inside liposomes and neuronal cells. Biochim. Biophys. Acta 2005, 1724, 100–107. [Google Scholar] [CrossRef] [PubMed]
- González-Correa, J.A.; Cruz-Andreotti, E.; Arrebola, M.M.; López-Villodres, J.A.; Jódar, M.; De La Cruz, J.P. Effects of propofol on the leukocyte nitric oxide pathway: In vitro and ex vivo studies in surgical patients. Naunyn Schmiedebergs Arch. Pharmacol. 2008, 376, 331–339. [Google Scholar] [CrossRef]
- Acquaviva, R.; Campisi, A.; Murabito, P.; Raciti, G.; Avola, R.; Mangiameli, S.; Musumeci, I.; Barcellona, M.L.; Vanella, A.; Li Volti, G. Propofol attenuates peroxynitrite-mediated DNA damage and apoptosis in cultured astrocytes: An alternative protective mechanism. Anesthesiology 2004, 101, 1363–1371. [Google Scholar] [CrossRef]
- Salo, M.; Pirttikangas, C.O.; Pulkki, K. Effects of propofol emulsion and thiopentone on T helper cell type-1/type-2 balance in vitro. Anaesthesia 1997, 52, 341–344. [Google Scholar] [CrossRef]
- Đurić, M.D. Mechanisms of Cardiodynamic and Vasoactive Effects of Propofol in Rats: The Significance of Oxidative Stress, Gasotransmitters and Cardiovascular Biomarkers. Ph.D. Thesis, Faculty of Medicine, University of Belgrade, Belgrade, Serbia, 2022. [Google Scholar]
- De Oliveira, L.; Spiazzi, C.M.; Bortolin, T.; Canever, L.; Petronilho, F.; Mina, F.G.; Dal-Pizzol, F.; Quevedo, J.; Zugno, A.I. Different sub-anesthetic doses of ketamine increase oxidative stress in the brain of rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 1003–1008. [Google Scholar] [CrossRef]
- Inoue, G.; Ohtaki, Y.; Satoh, K.; Odanaka, Y.; Katoh, A.; Suzuki, K.; Tomita, Y.; Eiraku, M.; Kikuchi, K.; Harano, K.; et al. Sedation Therapy in Intensive Care Units: Harnessing the Power of Antioxidants to Combat Oxidative Stress. Biomedicines 2023, 11, 2129. [Google Scholar] [CrossRef]
- Ahiskalioglu, E.O.; Aydin, P.; Ahiskalioglu, A.; Suleyman, B.; Kuyrukluyildiz, U.; Kurt, N.; Altuner, D.; Coskun, R.; Suleyman, H. The effects of ketamine and thiopental used alone or in combination on the brain, heart, and bronchial tissues of rats. Arch. Med. Sci. 2018, 14, 645–654. [Google Scholar] [CrossRef]
- Cai, Y.; Yang, L.; Hu, G.; Chen, X.; Niu, F.; Yuan, L.; Liu, H.; Xiong, H.; Arikkath, J.; Buch, S. Regulation of morphine-induced synaptic alterations: Role of oxidative stress, ER stress, and autophagy. J. Cell Biol. 2016, 215, 245–258. [Google Scholar] [CrossRef]
- Almeida, M.; Costa-Malaquias, A.; Nascimento, J.; Oliveira, K.; Herculano, A.; Crespo-López, M. Therapeutic concentrations of morphine reduces oxidative stress in glioma cell line. Braz. J. Med. Biol. Res. 2014, 47, 398–402. [Google Scholar] [CrossRef]
- Reymond, S.; Vujić, T.; Schvartz, D.; Sanchez, J.-C. Morphine-induced modulation of Nrf2-antioxidant response element signaling pathway in primary human brain microvascular endothelial cells. Sci. Rep. 2022, 12, 4588. [Google Scholar] [CrossRef]
- Bakr, M.H.; Radwan, E.; Shaltout, A.S.; Farrag, A.A.; Mahmoud, A.R.; Abd-Elhamid, T.H.; Ali, M. Chronic exposure to tramadol induces cardiac inflammation and endothelial dysfunction in mice. Sci. Rep. 2021, 11, 18772. [Google Scholar] [CrossRef]
- Druzhyna, O.; Loskutov, O. Impact of general anesthesia on the activity of lipids peroxidase oxidation during cardiac surgery for elderly patients. J. Progress. Res. Chem. 2015, 2, 92–96. [Google Scholar]
- Lee, J.M.; Suh, J.K.; Jeong, J.S.; Cho, S.Y.; Kim, D.W. Antioxidant effect of lidocaine and procaine on reactive oxygen species-induced endothelial dysfunction in the rabbit abdominal aorta. Korean J. Anesthesiol. 2010, 59, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Cosgun, Z.C.; Fels, B.; Kusche-Vihrog, K. Nanomechanics of the endothelial glycocalyx: From structure to function. Am. J. Pathol. 2020, 190, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Song, J.W.; Goligorsky, M.S. Perioperative implication of the endothelial glycocalyx. Korean J. Anesthesiol. 2018, 71, 92–102. [Google Scholar] [CrossRef]
- Lee, B.; Shin, H.J.; Kweon, K.H.; Kim, N.Y. Effect of sevoflurane-remifentanil and propofol-remifentanil anesthesia on glycocalyx shedding during deep inferior epigastric perforator flap breast reconstruction: A prospective randomized, controlled trial. Anesth. Pain Med. 2023, 18, 148–158. [Google Scholar] [CrossRef]
- Maldonado, F.; Morales, D.; Gutiérrez, R.; Barahona, M.; Cerda, O.; Cáceres, M. Effect of sevoflurane and propofol on tourniquet-induced endothelial damage: A pilot randomized controlled trial for knee-ligament surgery. BMC Anesthesiol. 2020, 20, 121. [Google Scholar] [CrossRef]
- Fang, F.-Q.; Sun, J.-H.; Wu, Q.-L.; Feng, L.-Y.; Fan, Y.-X.; Ye, J.-X.; Gao, W.; He, G.-L.; Wang, W.-J. Protective effect of sevoflurane on vascular endothelial glycocalyx in patients undergoing heart valve surgery: A randomised controlled trial. Eur. J. Anaesthesiol. 2021, 38, 477–486. [Google Scholar] [CrossRef]
- Oh, C.-S.; Choi, J.M.; Park, E.H.; Piao, L.; Park, H.-J.; Rhee, K.-Y.; Kim, S.-H.; Choi, G.J. Impact of anesthetic agents on endothelial glycocalyx injury during total knee arthroplasty: Desflurane- vs. propofol-based anesthesia-a prospective randomized controlled trial. BioMed Res. Int. 2021, 2021, 8880267. [Google Scholar] [CrossRef]
- Kang, C.; Cho, A.R.; Kim, H.; Kwon, J.Y.; Lee, H.J.; Kim, E. Sedation with propofol and isoflurane differs in terms of microcirculatory parameters: A randomized animal study using dorsal skinfold chamber mouse model. Microvasc. Res. 2024, 153, 104655. [Google Scholar] [CrossRef]
- Mathis, S.; Putzer, G.; Schneeberger, S.; Martini, J. The endothelial glycocalyx and organ preservation-from physiology to possible clinical implications for solid organ transplantation. Int. J. Mol. Sci. 2021, 22, 4019. [Google Scholar] [CrossRef]
- Pustetto, M.; Goldsztejn, N.; Touihri, K.; Engelman, E.; Ickx, B.; Van Obbergh, L. Intravenous lidocaine to prevent endothelial dysfunction after major abdominal surgery: A randomized controlled pilot trial. BMC Anesthesiol. 2020, 20, 155. [Google Scholar] [CrossRef]
- Astapenko, D.; Gorskaja, D.; Zrzavecky, M.; Kawashima, H.; Ssali, E.; Navratil, P.; Hana, L.; Motesicky, J.; Radochova, V.; Hyspler, R.; et al. The modulation of endothelial glycocalyx by sulodexide on the porcine model of enzymatic endothelial glycocalyx damage—A pilot study. Clin. Hemorheol. Microcirc. 2025, 89, 181–188. [Google Scholar] [CrossRef]
- Sutanto, H.; Pratiwi, L.; Fetarayani, D. Exploring ferroptosis in allergic inflammatory diseases: Emerging mechanisms and therapeutic perspectives. Cell. Biol. Int. 2025, 49, 739–756. [Google Scholar] [CrossRef]
- Yuan, W.; Xia, H.; Xu, Y.; Xu, C.; Chen, N.; Shao, C.; Dai, Z.; Chen, R.; Tao, A. The role of ferroptosis in endothelial cell dysfunction. Cell Cycle 2022, 21, 1897–1914. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yan, Y.; Niu, F.; Wang, Y.; Chen, X.; Su, G.; Liu, Y.; Zhao, X.; Qian, L.; Liu, P.; et al. Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 2021, 7, 193. [Google Scholar] [CrossRef]
- Abudurousuli, G.; Xu, S.; Che, J.; Ding, X.; Gui, B.; Zhu, L. Role of ferroptosis in effects of anesthetics on multiple organ diseases: A literature review. Heliyon 2023, 9, e20405. [Google Scholar] [CrossRef]
- Zhang, M.; Lyu, D.; Wang, F.; Shi, S.; Wang, M.; Yang, W.; Huang, H.; Wei, Z.; Chen, S.; Xu, Y.; et al. Ketamine may exert rapid antidepressant effects through modulation of neuroplasticity, autophagy, and ferroptosis in the habenular nucleus. Neuroscience 2022, 506, 29–37. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, X.; Luo, Y.; Stary, C.M. Ferroptosis contributes to isoflurane neurotoxicity. Front. Mol. Neurosci. 2019, 11, 486. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djuric, M.; Nenadic, I.; Radisavljevic, N.; Todorovic, D.; Stojanovic, M.; Dimic, N.; Bobos, M.; Bojic, S.; Stevanovic, P.; Savic, P.; et al. The Influence of Anesthetics on the Functions of the Endothelium and Oxidative Stress: A Critical Review. Biomedicines 2025, 13, 2357. https://doi.org/10.3390/biomedicines13102357
Djuric M, Nenadic I, Radisavljevic N, Todorovic D, Stojanovic M, Dimic N, Bobos M, Bojic S, Stevanovic P, Savic P, et al. The Influence of Anesthetics on the Functions of the Endothelium and Oxidative Stress: A Critical Review. Biomedicines. 2025; 13(10):2357. https://doi.org/10.3390/biomedicines13102357
Chicago/Turabian StyleDjuric, Marko, Irina Nenadic, Nina Radisavljevic, Dusan Todorovic, Maja Stojanovic, Nemanja Dimic, Marina Bobos, Suzana Bojic, Predrag Stevanovic, Predrag Savic, and et al. 2025. "The Influence of Anesthetics on the Functions of the Endothelium and Oxidative Stress: A Critical Review" Biomedicines 13, no. 10: 2357. https://doi.org/10.3390/biomedicines13102357
APA StyleDjuric, M., Nenadic, I., Radisavljevic, N., Todorovic, D., Stojanovic, M., Dimic, N., Bobos, M., Bojic, S., Stevanovic, P., Savic, P., Stojakov, D., Palibrk, I., & Djuric, D. (2025). The Influence of Anesthetics on the Functions of the Endothelium and Oxidative Stress: A Critical Review. Biomedicines, 13(10), 2357. https://doi.org/10.3390/biomedicines13102357