Autoimmune Thyroid Diseases and Physical Activity and Sports—More Unknowns than Facts
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. The Effects of Autoimmune Thyroid Disease on Physical Activity and Sport
4.2. The Effects of Physical Activity and Sport on the Course of Autoimmune Thyroid Disease
4.3. Thyroid Hormones as Potential Doping
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GD | Graves’ disease |
HT | Hashimoto’s thyroiditis |
Tregs | T cells |
TPO-Ab | anti-thyroid peroxidase antibody |
TG-Ab | anti-thyroglobulin antibody |
TSH | thyroid-stimulating hormone |
TSHR-Ab | thyroid-stimulating hormone receptor antibody |
WADA | World Anti-Doping Agency |
FT3 | free triiodothyronine |
T3 | total triiodothyronine |
T4 | thyroxine |
FT4 | free thyroxine |
References
- Davison, T.C.; Letton, A.H. Hashimoto’s disease. J. Clin. Endocrinol. Metab. 1949, 9, 980–986. [Google Scholar] [CrossRef]
- Antonelli, A.; Ferrari, S.M.; Corrado, A.; Di Domenicantonio, A.; Fallahi, P. Autoimmune thyroid disorders. Autoimmun. Rev. 2015, 14, 174–180. [Google Scholar] [CrossRef]
- McDermott, M.T. Hypothyroidism. Ann. Intern. Med. 2020, 173, ITC1–ITC16. [Google Scholar] [CrossRef]
- Jonklaas, J. Optimal Thyroid Hormone Replacement. Endocr. Rev. 2022, 43, 366–404. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Chen, Y.; Shen, Y.; Tian, R.; Sheng, Y.; Que, H. Global prevalence and epidemiological trends of Hashimoto’s thyroiditis in adults: A systematic review and meta-analysis. Front. Public Health 2022, 10, 1020709. [Google Scholar] [CrossRef]
- Tenyaeva, E.; Turova, E.; Golovach, A.; Badtieva, V.; Artikulova, I. 454 The influence of subclinical hypothyroidism on physical performance of elite athletes. Br. J. Sports Med. 2021, 55, A173. [Google Scholar]
- Rydzewska, M.; Jaromin, M.; Pasierowska, I.E.; Stożek, K.; Bossowski, A. Role of the T and B lymphocytes in pathogenesis of autoimmune thyroid diseases. Thyroid Res. 2018, 11, 2. [Google Scholar] [CrossRef]
- Ehlers, M.; Thiel, A.; Bernecker, C.; Porwol, D.; Papewalis, C.; Willenberg, H.S.; Schinner, S.; Hautzel, H.; Scherbaum, W.A.; Schott, M. Evidence of a combined cytotoxic thyroglobulin and thyroperoxidase epitope-specific cellular immunity in Hashimoto’s thyroiditis. J. Clin. Endocrinol. Metab. 2012, 97, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
- Wrońska, K.; Hałasa, M.; Szczuko, M. The Role of the Immune System in the Course of Hashimoto’s Thyroiditis: The Current State of Knowledge. Int. J. Mol. Sci. 2024, 25, 6883. [Google Scholar] [CrossRef] [PubMed]
- Pyzik, A.; Grywalska, E.; Matyjaszek-Matuszek, B.; Roliński, J. Immune disorders in Hashimoto’s thyroiditis: What do we know so far? J. Immunol. Res. 2015, 2015, 979167. [Google Scholar] [CrossRef]
- Li, J.; Huang, Q.; Sun, S.; Zhou, K.; Wang, X.; Pan, K.; Zhang, Y.; Wang, Y.; Han, Q.; Si, C.; et al. Thyroid antibodies in Hashimoto’s thyroiditis patients are positively associated with inflammation and multiple symptoms. Sci. Rep. 2024, 14, 27902. [Google Scholar] [CrossRef]
- Diana, T.; Krause, J.; Olivo, P.D.; König, J.; Kanitz, M.; Decallonne, B.; Kahaly, G.J. Prevalence and clinical relevance of thyroid stimulating hormone receptor-blocking antibodies in autoimmune thyroid disease. Clin. Exp. Immunol. 2017, 189, 304–309. [Google Scholar] [CrossRef]
- Kahaly, G.J.; Diana, T.; Glang, J.; Kanitz, M.; Pitz, S.; König, J. Thyroid Stimulating Antibodies Are Highly Prevalent in Hashimoto’s Thyroiditis and Associated Orbitopathy. J. Clin. Endocrinol. Metab. 2016, 101, 1998–2004. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Jialal, I. Hashimoto Thyroiditis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Ragusa, F.; Fallahi, P.; Elia, G.; Gonnella, D.; Paparo, S.R.; Giusti, C.; Churilov, L.P.; Ferrari, S.M.; Antonelli, A. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101367. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Hegedüs, L. Graves’ disease. N. Engl. J. Med. 2016, 375, 1552–1565. [Google Scholar] [CrossRef]
- Gallo, D.; Piantanida, E.; Gallazzi, M.; Bartalena, L.; Tanda, M.L.; Bruno, A.; Mortara, L. Immunological Drivers in Graves’ Disease: NK Cells as a Master Switcher. Front. Endocrinol. 2020, 11, 406. [Google Scholar] [CrossRef] [PubMed]
- McLachlan, S.; Rapoport, B. Breaking tolerance to thyroid antigens: Changing concepts in thyroid autoimmunity. Endocr. Rev. 2014, 35, 59–151. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y.; Ding, X.; Zhang, M.; He, M.; Zhao, Y.; Hu, S.; Zhao, F.; Wang, J.; Xie, B.; et al. The proportion of peripheral blood tregs among the CD4+ T cells of autoimmune thyroid disease patients: A meta-analysis. Endocr. J. 2020, 67, 317–326. [Google Scholar] [CrossRef]
- Kim, B.; Carvalho-Bianco, S.D.; Larsen, P.R. Thyroid hormone and adrenergic signaling in the heart. Arq. Bras. Endocrinol. Metabol. 2004, 48, 171–175. [Google Scholar] [CrossRef]
- Harper, M.E.; Seifert, E.L. Thyroid hormone effects on mitochondrial energetics. Thyroid 2008, 18, 145–156. [Google Scholar] [CrossRef]
- Mullur, R.; Liu, Y.Y.; Brent, G.A. Thyroid hormone regulation of metabolism. Physiol. Rev. 2014, 94, 355–382. [Google Scholar] [CrossRef] [PubMed]
- Cicatiello, A.G.; Di Girolamo, D.; Dentice, M. Metabolic Effects of the Intracellular Regulation of Thyroid Hormone: Old Players, New Concepts. Front. Endocrinol. 2018, 9, 474. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, D.; Simonides, W.S.; Dentice, M.; Zavacki, A.M.; Larsen, P.R. Thyroid hormones and skeletal muscle--new insights and potential implications. Nat. Rev. Endocrinol. 2014, 10, 206–214. [Google Scholar] [CrossRef]
- Nappi, A.; Moriello, C.; Morgante, M.; Fusco, F.; Crocetto, F.; Miro, C. Effects of thyroid hormones in skeletal muscle protein turnover. J. Basic Clin. Physiol. Pharmacol. 2024, 35, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Sharif, K.; Watad, A.; Bragazzi, N.L.; Lichtbroun, M.; Amital, H.; Shoenfeld, Y. Physical activity and autoimmune diseases: Get moving and manage the disease. Autoimmun. Rev. 2018, 17, 53–72. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Hoffman-Goetz, L. Exercise and the immune system: Regulation, integration, and adaptation. Physiol. Rev. 2000, 80, 1055–1081. [Google Scholar] [CrossRef]
- Nieman, D.C.; Wentz, L.M. The compelling link between physical activity and the body’s defense system. J. Sport. Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef]
- Pawson, R.; Greenhalgh, T.; Harvey, G.; Walshe, K. Realist review--a new method of systematic review designed for complex policy interventions. J. Health Serv. Res. Policy 2005, 10 (Suppl. 1), 21–34. [Google Scholar] [CrossRef]
- Pluye, P.; Robert, E.; Cargo, M.; Bartlett, G.; O’Cathain, A.; Griffiths, F.; Boardman, F.; Gagnon, M.P.; Rousseau, M.C. Proposal: A Mixed Methods Appraisal Tool for Systematic Mixed Studies Reviews. Available online: http://mixedmethodsappraisaltoolpublic.pbworks.com (accessed on 1 May 2025).
- Gacek, M.; Wojtowicz, A.; Kędzior, J. Physical Activity, Nutritional Behaviours and Depressive Symptoms in Women with Hashimoto’s Disease. Healthcare 2025, 13, 620. [Google Scholar] [CrossRef]
- Yılmaz, F.; Babayeva, A.; Yetkin, İ.; Boşnak-Güçlü, M. Comparison of exercise capacity and physical activity in patients with hyperthyroidism and controls. J. Bodyw. Mov. Ther. 2024, 40, 1752–1760. [Google Scholar] [CrossRef]
- Hanke, L.; Poeten, P.; Spanke, L.; Britz, S.; Diel, P. The Influence of Levothyroxine on Body Composition and Physical Performance in Subclinical Hypothyroidism. Horm. Metab. Res. 2023, 55, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Lankhaar, J.A.C.; Kemler, E.; Hofstetter, H.; Collard, D.C.M.; Zelissen, P.M.J.; Stubbe, J.H.; Backx, F.J.G. Physical activity, sports participation and exercise-related constraints in adult women with primary hypothyroidism treated with thyroid hormone replacement therapy. J. Sports Sci. 2021, 39, 2493–2502. [Google Scholar] [CrossRef]
- Tanriverdi, A.; Ozcan Kahraman, B.; Ozsoy, I.; Bayraktar, F.; Ozgen Saydam, B.; Acar, S.; Ozpelit, E.; Akdeniz, B.; Savci, S. Physical activity in women with subclinical hypothyroidism. J. Endocrinol. Investig. 2019, 42, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Lankhaar, J.A.; de Vries, W.R.; Jansen, J.A.; Zelissen, P.M.; Backx, F.J. Impact of overt and subclinical hypothyroidism on exercise tolerance: A systematic review. Res. Q. Exerc. Sport. 2014, 85, 365–389. [Google Scholar] [CrossRef] [PubMed]
- Mainenti, M.R.; Vigário, P.S.; Teixeira, P.F.; Maia, M.D.; Oliveira, F.P.; Vaisman, M. Effect of levothyroxine replacement on exercise performance in subclinical hypothyroidism. J. Endocrinol. Investig. 2009, 32, 470–473. [Google Scholar] [CrossRef]
- Tian, L.; Lu, C.; Teng, W. Association between physical activity and thyroid function in American adults: A survey from the NHANES database. BMC Public Health 2024, 24, 1277. [Google Scholar] [CrossRef]
- Vuletić, M.; Kaličanin, D.; Barić Žižić, A.; Cvek, M.; Sladić, S.; Škrabić, V.; Punda, A.; Boraska Perica, V. Occupational Physical Activity and Regular Exercise Are Inversely Correlated with Thyroid Function in Patients with Hashimoto’s Thyroiditis. Diseases 2024, 12, 281. [Google Scholar] [CrossRef]
- Almas, S.P.; Werneck, F.Z.; Coelho, E.F.; Teixeira, P.F.S.; Vaisman, M. Endurance training improves heart rate on-kinetics in women with subclinical hypothyroidism: A preliminary study. J. Endocrinol. Investig. 2023, 46, 51–57. [Google Scholar] [CrossRef]
- Matsumura, M.E.; Bucciarelli, M.; Perilli, G. Relationship Between Training Intensity and Volume and Hypothyroidism Among Female Runners. Clin. J. Sport Med. 2015, 25, 551–553. [Google Scholar] [CrossRef]
- Duñabeitia, I.; González-Devesa, D.; Varela-Martínez, S.; Diz-Gómez, J.C.; Ayán-Pérez, C. Effect of physical exercise in people with hypothyroidism: Systematic review and meta-analysis. Scand. J. Clin. Lab. Investig. 2023, 83, 523–532. [Google Scholar] [CrossRef]
- Biernat, E.; Stupnicki, R.; Gajewski, A.K. Międzynarodowy Kwestionariusz Aktywności Fizycznej (IPAQ)—Wersja polska [International Physical Activity Questionnaire (IPAQ)—Polish version]. Wych. Fiz. Sport 2007, 51, 47–54. [Google Scholar]
- Smyth, B.; Lawlor, A.; Berndsen, J.; Feely, C. Recommendations for marathon runners: On the application of recommender systems and machine learning to support recreational marathon runners. User Model. User-Adapt Interact. 2022, 32, 787–838. [Google Scholar] [CrossRef] [PubMed]
- Skrzypiec-Spring, M.; Kuliczkowska-Płaksej, J.; Szeląg, A.; Bolanowski, M. Atypical thyroid tests in an athlete treated for hypothyroidism as the first symptom of pituitary dysfunction due to relative energy deficiency. Endocrinol. Diabetes Metab. Case Rep. 2024, 2024, 24–0066. [Google Scholar] [CrossRef]
- Skrzypiec-Spring, M.; Pokrywka, A.; Bombała, W.; Berezovska, D.; Rozmus, J.; Brawańska, K.; Nowicki, K.; Abu Faraj, G.; Rynkowski, M.; Szeląg, A. Illegal Use of Testosterone and Other Anabolic-Androgenic Steroids in the Population of Amateur Athletes in Wrocław, Poland-An Unfavorable Lifestyle Trend in the Population of Men of Reproductive Age. J. Clin. Med. 2024, 13, 3719. [Google Scholar] [CrossRef]
- Gild, M.L.; Stuart, M.; Clifton-Bligh, R.J.; Kinahan, A.; Handelsman, D.J. Thyroid Hormone Abuse in Elite Sports: The Regulatory Challenge. J. Clin. Endocrinol. Metab. 2022, 107, e3562–e3573. [Google Scholar] [CrossRef]
- Mark, P.B.; Watkins, S.; Dargie, H.J. Cardiomyopathy induced by performance enhancing drugs in a competitive bodybuilder. Heart 2005, 91, 888. [Google Scholar] [CrossRef]
- Chen, Y.C.; Fang, J.T.; Chang, C.T.; Chou, H.H. Thyrotoxic periodic paralysis in a patient abusing thyroxine for weight reduction. Ren. Fail. 2001, 23, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Kwak, T.; Al Zoubi, M.; Bhavith, A.; Rueda Rios, C.; Kumar, S. Acute myocarditis in bodybuilder from coxsackievirus and thyrotoxicosis. J. Cardiol. Cases 2016, 14, 123–126. [Google Scholar] [CrossRef]
- Daher, G.; Hassanieh, I.; Malhotra, N.; Alderson, L. Acute Decompensated Heart Failure Secondary to Exogenous Triiodothyronine Use in a Young Non-athlete Weightlifter. Cureus 2019, 11, e5964. [Google Scholar] [CrossRef] [PubMed]
- Roomi, S.; Ullah, W.; Iqbal, I.; Ahmad, A.; Saleem, S.; Sattar, Z. Thyrotoxicosis factitia: A rare cause of junctional rhythm and cardiac arrest. J. Community Hosp. Intern. Med. Perspect. 2019, 9, 258–263. [Google Scholar] [CrossRef]
- Patel, A.J.; Tejera, S.; Klek, S.P.; Rothberger, G.D. Thyrotoxic Periodic Paralysis in a Competitive Bodybuilder with Thyrotoxicosis Factitia. AACE Clin. Case Rep. 2020, 6, e252–e256. [Google Scholar] [CrossRef]
- van Bokhorst, Q.N.E.; Krul-Poel, Y.H.M.; Smit, D.L.; de Ronde, W. A 29-year-old Bodybuilder with Liothyronine-induced Thyrotoxic Hypokalaemic Periodic Paralysis. Eur. J. Case Rep. Intern. Med. 2021, 8, 002362. [Google Scholar] [CrossRef]
- Bonnar, C.E.; Brazil, J.F.; Okiro, J.O.; Giblin, L.; Smyth, Y.; O’Shea, P.M.; Finucane, F.M. Making weight: Acute muscle weakness and hypokalaemia exacerbated by thyrotoxicosis factitia in a bodybuilder. Endocrinol. Diabetes Metab. Case Rep. 2021, 2021, 21–0060. [Google Scholar] [CrossRef] [PubMed]
- Momoh, R.; Hassan, A. A Case Report of an Acute Severe Tachyarrhythmia Presentation with Underlying Cardiomyopathy in a Patient With Anabolic Androgenic Steroid and Thyroxine Misuse. Cureus 2024, 16, e62806. [Google Scholar] [CrossRef]
- Warner, B.E.; Woodrow, C.J.; Pal, A. Delayed diagnosis of T3 supplementation in a bodybuilder presenting with tachycardia and features of sepsis. BMJ Case Rep. 2020, 13, e232867. [Google Scholar] [CrossRef] [PubMed]
- Handelsman, D.J.; Gild, M.; Clifton-Bligh, R.; Speers, N.; Kouzios, D.; McMartin, M.C.; Desai, R. Thyroid Hormone Abuse Among Elite Athletes. J. Endocr. Soc. 2023, 7, bvad027. [Google Scholar] [CrossRef] [PubMed]
- World Anti-Doping Agency. World Anti-Doping Code. 2021. Available online: https://www.wada-ama.org/en/resources/world-anti-doping-program/world-anti-doping-code (accessed on 12 May 2025).
- Pokrywka, A.; Surała, O.; Grabowska, K.; Przybyła, M.; Granda, D.; Małecki, A.; Faiss, R.; Nowacka-Chmielewska, M. “Brain doping” substances: Prohibited or not in sports? Biol. Sport 2025, in press. [Google Scholar] [CrossRef]
Publication | Type of Publication | Main Findings | Study Group |
---|---|---|---|
Gacek et al., (2025) [31] | Questionnaire based study | Among women with Hashimoto’s disease treated with levothyroxine the physical activity was average and sufficient. Moreover, moderate physical activity was associated with a lower intensity of depressive symptoms. | 219 women with Hashimoto’s disease treated with levothyroxine (mean age 33.8 ± 9.9) |
Yılmaz et al., (2024) [32] | Clinical trial | Exercise capacity, respiratory muscle strength and endurance, physical activity level, dyspnoea, and quality of life were affected in patients with hyperthyroidism | 16 patients with hyperthyroidism and healthy controls. |
Hanke et al., (2023) [33] | Clinical trial | Treatment with levothyroxine in subclinical hypothyroidism improves strength, mobility and endurance performance | 25 women (mean age 27.36 ± 5.77) with subclinical hypothyroidism |
Lankhaar et al., (2021) [34] | Cross-sectional matched case–control study | Two-thirds of patients reported limited physical activity performance. This was more pronounced in patients with autoimmune thyroiditis | 1724 women (mean age 53.0 years ± 11.6) and 1802 controls (mean age 52.6 ± 13.2) treated with lewothyroxine |
Tanriverdi et al., (2019) [35] | Cross-sectional study | Women with subclinical hypthyroidism had lower physical activity level compared to healthy controls | 32 women with newly diagnosed subclinical hypthyroidism and 28 healthy women |
Lankhaar et al., (2014) [36] | Systematic review | Exercise intolerance is observed in untreated patients with hypothyroidism. In some patient’s persistent exercise intolerance is recorded, despite treatment. | 38 studies, 1379 patients with hypothyroidism |
Mainenti et al., (2009) [37] | Clinical trial | Submaximal cardiopulmonary exercise performance improved after six months of TSH normalization | 23 patients with subclinical hypothyroidism, 11 treated and 12 untreated |
Publication | Type of Publication | Main Findings | Study Group |
---|---|---|---|
Tian et al., (2024) [38] | Cross-sectional | Thyroid function is strongly affected by higher weekly physical activity and physical activity time, and there is a non-linear relationship between physical activity and thyroid disease. Patients with autoimmune thyroid disease maintained adequate levels of physical activity | Data from The National Health and Nutrition Examination Survey (NHANES) 2007–2012, 5877 American adults |
Vuletić et al., (2024) [39] | Clinical trial | Unlike recreational exercise, occupational physical activity correlates with decreased thyroid function and increased thyroid autoimmunity in patient with overt hypothyroidism | 438 individuals with clinically overt and subclinical hypothyroidism |
Almas et al., (2023) [40] | Clinical trial | 12 weeks of endurance training improve HR on-kinetics and physical activity level in subclinical hypothyroidism | 18 women with subclinical hypothyroidism |
Matsumura et al., (2015) [41] | Clinical trial | Training intensity and duration, including average miles per week, training pace, or years of accumulated running were not associated with thyroid dysfunction. | 1222 female nonelite runners aged ≥ 35 years |
Duñabeitia et al., (2009) [42] | Systematic review | Exercise showed a non-significant trend towards reducing thyroid-stimulating hormone levels | 10 studies, 120 patients |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skrzypiec-Spring, M.; Pokrywka, A.; Szeląg, A.; Zembroń-Łacny, A. Autoimmune Thyroid Diseases and Physical Activity and Sports—More Unknowns than Facts. Biomedicines 2025, 13, 2352. https://doi.org/10.3390/biomedicines13102352
Skrzypiec-Spring M, Pokrywka A, Szeląg A, Zembroń-Łacny A. Autoimmune Thyroid Diseases and Physical Activity and Sports—More Unknowns than Facts. Biomedicines. 2025; 13(10):2352. https://doi.org/10.3390/biomedicines13102352
Chicago/Turabian StyleSkrzypiec-Spring, Monika, Andrzej Pokrywka, Adam Szeląg, and Agnieszka Zembroń-Łacny. 2025. "Autoimmune Thyroid Diseases and Physical Activity and Sports—More Unknowns than Facts" Biomedicines 13, no. 10: 2352. https://doi.org/10.3390/biomedicines13102352
APA StyleSkrzypiec-Spring, M., Pokrywka, A., Szeląg, A., & Zembroń-Łacny, A. (2025). Autoimmune Thyroid Diseases and Physical Activity and Sports—More Unknowns than Facts. Biomedicines, 13(10), 2352. https://doi.org/10.3390/biomedicines13102352