Tumour SNPs Associated with Immune-Related Hepatitis in Patients with Melanoma Receiving Immune Checkpoint Inhibitors
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. SNP Selection and Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ICI | Immune checkpoint inhibitor |
irAE | Immune-related adverse event |
SNP | Single-nucleotide polymorphisms |
CTLA-4 | Cytotoxic T-lymphocyte antigen |
PD-1 | Programmed cell death |
wt | Wild-type allele |
v | Variant allele |
References
- Ralli, M.; Botticelli, A.; Visconti, I.C.; Angeletti, D.; Fiore, M.; Marchetti, P.; Lambiase, A.; De Vincentiis, M.; Greco, A. Immunotherapy in the Treatment of Metastatic Melanoma: Current Knowledge and Future Directions. J. Immunol. Res. 2020, 2020, 9235638. [Google Scholar] [CrossRef]
- Lopes, J.; Rodrigues, C.M.P.; Gaspar, M.M.; Reis, C.P. Melanoma Management: From Epidemiology to Treatment and Latest Advances. Cancers 2022, 14, 4652. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer Cancer Tomorrow. Estimated Number of New Cases from 2020 to 2040 of Melanoma of Skin and Non-Melanoma Skin Cancer. Available online: https://Gco.Iarc.Fr/Tomorrow/En/Dataviz/Isotype?Cancers=16_17&single_unit=50000&group_cancers=1&multiple_cancers=1 (accessed on 8 January 2025).
- Spain, L.; Larkin, J.; Turajlic, S. New Survival Standards for Advanced Melanoma. Br. J. Cancer 2020, 122, 1275–1276. [Google Scholar] [CrossRef] [PubMed]
- Pardoll, D.M. The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse Effects of Immune-Checkpoint Inhibitors: Epidemiology, Management and Surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef]
- Knight, A.; Karapetyan, L.; Kirkwood, J.M. Immunotherapy in Melanoma: Recent Advances and Future Directions. Cancers 2023, 15, 1106. [Google Scholar] [CrossRef]
- Robert, C.; Ribas, A.; Schachter, J.; Arance, A.; Grob, J.-J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.M.; Lotem, M.; et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma (KEYNOTE-006): Post-Hoc 5-Year Results from an Open-Label, Multicentre, Randomised, Controlled, Phase 3 Study. Lancet Oncol. 2019, 20, 1239–1251. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Del Vecchio, M.; Mandalá, M.; Gogas, H.; Arance, A.M.; Dalle, S.; Cowey, C.L.; Schenker, M.; Grob, J.-J.; Chiarion-Sileni, V.; et al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage IIIB–C and Stage IV Melanoma (CheckMate 238): 4-Year Results from a Multicentre, Double-Blind, Randomised, Controlled, Phase 3 Trial. Lancet Oncol. 2020, 21, 1465–1477. [Google Scholar] [CrossRef]
- Postow, M.A.; Chesney, J.; Pavlick, A.C.; Robert, C.; Grossmann, K.; McDermott, D.; Linette, G.P.; Meyer, N.; Giguere, J.K.; Agarwala, S.S.; et al. Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma. N. Engl. J. Med. 2015, 372, 2006–2017. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef]
- National Cancer Institute. Immune Checkpoint Inhibitors. Available online: https://www.Cancer.Gov/about-Cancer/Treatment/Types/Immunotherapy/Checkpoint-Inhibitors (accessed on 8 January 2025).
- Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. JCO 2021, 39, 4073–4126. [Google Scholar] [CrossRef]
- Trichkova, K.P.; Görtler, F.; Bjørge, L.; Schuster, C. Assessment of Variables Related to the Risk of Severe Adverse Events in Cutaneous Melanoma Patients Treated with Immune Checkpoint Inhibitors. Cancers 2024, 16, 250. [Google Scholar] [CrossRef]
- Bjursten, S.; Zhao, Z.; Al Remawi, H.; Studahl, M.; Pandita, A.; Simrén, J.; Zetterberg, H.; Lundell, A.C.; Rudin, A.; Ny, L.; et al. Concentrations of S100B and neurofilament light chain in blood as biomarkers for checkpoint inhibitor-induced CNS inflammation. EBioMedicine 2024, 100, 104955. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Salem, J.-E.; Cohen, J.V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L.; et al. Fatal Toxic Effects Associated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. JAMA Oncol. 2018, 4, 1721, Erratum in JAMA Oncol. 2018, 4, 1792. [Google Scholar] [CrossRef] [PubMed]
- Rogiers, A.; Dimitriou, F.; Lobon, I.; Harvey, C.; Vergara, I.A.; Pires Da Silva, I.; Lo, S.N.; Scolyer, R.A.; Carlino, M.S.; Menzies, A.M.; et al. Seasonal Patterns of Toxicity in Melanoma Patients Treated with Combination Anti-PD-1 and Anti-CTLA-4 Immunotherapy. Eur. J. Cancer 2024, 198, 113506. [Google Scholar] [CrossRef]
- Abdel-Wahab, N.; Diab, A.; Yu, R.K.; Futreal, A.; Criswell, L.A.; Tayar, J.H.; Dadu, R.; Shannon, V.; Shete, S.S.; Suarez-Almazor, M.E. Genetic Determinants of Immune-Related Adverse Events in Patients with Melanoma Receiving Immune Checkpoint Inhibitors. Cancer Immunol. Immunother. 2021, 70, 1939–1949. [Google Scholar] [CrossRef] [PubMed]
- Refae, S.; Gal, J.; Ebran, N.; Otto, J.; Borchiellini, D.; Peyrade, F.; Chamorey, E.; Brest, P.; Milano, G.; Saada-Bouzid, E. Germinal Immunogenetics Predict Treatment Outcome for PD-1/PD-L1 Checkpoint Inhibitors. Investig. New Drugs 2020, 38, 160–171, Erratum in Investig. New Drugs 2021, 39, 287–292. [Google Scholar] [CrossRef]
- Chin, I.S.; Khan, A.; Olsson-Brown, A.; Papa, S.; Middleton, G.; Palles, C. Germline Genetic Variation and Predicting Immune Checkpoint Inhibitor Induced Toxicity. npj Genom. Med. 2022, 7, 73. [Google Scholar] [CrossRef]
- Common Terminology Criteria for Adverse Events. (CTCAE v5.0). Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_5x7.pdf (accessed on 4 September 2025).
- The 1000 Genomes Project Consortium. A Global Reference for Human Genetic Variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef]
- Yang, J.; Liu, J.; Chen, Y.; Tang, W.; Liu, C.; Sun, Y.; Chen, J. Association of CTLA-4 Tagging Polymorphisms and Haplotypes with Hepatocellular Carcinoma Risk: A Case-Control Study. Medicine 2019, 98, e16266. [Google Scholar] [CrossRef]
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; De Vries, E.; Whiteman, D.C.; Bray, F. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatol. 2022, 158, 495. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [PubMed]
- De Joode, K.; Mora, A.R.; Van Schaik, R.H.N.; Zippelius, A.; Van Der Veldt, A.; Gerard, C.L.; Läubli, H.; Michielin, O.; Von Moos, R.; Joerger, M.; et al. Effects of CTLA-4 Single Nucleotide Polymorphisms on Toxicity of Ipilimumab-Containing Regimens in Patients with Advanced Stage Melanoma. J. Immunother. 2024, 47, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Queirolo, P.; Dozin, B.; Morabito, A.; Banelli, B.; Carosio, R.; Fontana, V.; Ferrucci, P.F.; Martinoli, C.; Cocorocchio, E.; Ascierto, P.A.; et al. CTLA-4 Gene Variant -1661A>G May Predict the Onset of Endocrine Adverse Events in Metastatic Melanoma Patients Treated with Ipilimumab. Eur. J. Cancer 2018, 97, 59–61. [Google Scholar] [CrossRef]
- Akturk, H.K.; Couts, K.L.; Baschal, E.E.; Karakus, K.E.; Van Gulick, R.J.; Turner, J.A.; Pyle, L.; Robinson, W.A.; Michels, A.W. Analysis of Human Leukocyte Antigen DR Alleles, Immune-Related Adverse Events, and Survival Associated with Immune Checkpoint Inhibitor Use Among Patients with Advanced Malignant Melanoma. JAMA Netw. Open 2022, 5, e2246400. [Google Scholar] [CrossRef]
- Wölffer, M.; Battke, F.; Schulze, M.; Feldhahn, M.; Flatz, L.; Martus, P.; Forschner, A. Biomarkers Associated with Immune-Related Adverse Events under Checkpoint Inhibitors in Metastatic Melanoma. Cancers 2022, 14, 302. [Google Scholar] [CrossRef]
- Bins, S.; Basak, E.A.; El Bouazzaoui, S.; Koolen, S.L.W.; Oomen-De Hoop, E.; Van Der Leest, C.H.; Van Der Veldt, A.A.M.; Sleijfer, S.; Debets, R.; Van Schaik, R.H.N.; et al. Association between Single-Nucleotide Polymorphisms and Adverse Events in Nivolumab-Treated Non-Small Cell Lung Cancer Patients. Br. J. Cancer 2018, 118, 1296–1301. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Z.; Zhang, N.; Tian, B.; Chen, X.; Zhao, H.; Wang, H. Hepatitis Associated with Immune Checkpoint Inhibitors-Based Combinations of Other Therapies: A Real-World Pharmacovigilance Analysis Based on the FDA Adverse Event Reporting System (FAERS) Database. Cancer Immunol. Immunother. 2024, 74, 25. [Google Scholar] [CrossRef]
- Li, C.; Qi, X.; Yan, M. Chemotherapy-induced immunogenic cell death in combination with ICIs: A brief review of mechanisms, clinical insights, and therapeutic implications. Front. Pharmacol. 2025, 16, 1572195. [Google Scholar] [CrossRef]
Gene Ontology | Gene | SNP wt > v |
---|---|---|
Immunologic response | CTLA4 (cytotoxic T-lymphocyte-associated protein 4) | rs11571302 G > T |
rs1863800 C > T | ||
rs3087243 G > A | ||
rs4553808 A > G | ||
rs16840252 C > T | ||
rs231775 A > G | ||
rs5742909 C > T | ||
MIR146A/ MIR3142HG | rs2910164 C > G | |
Central nervous system development | GABRP (gamma-aminobutyric acid type A receptor subunit pi) | rs11743438 C > T |
rs11743735 C > A | ||
SEMA5A (semaphorin 5A) | rs3026321 A > T | |
RGMA (repulsive guidance molecule BMP co-receptor A) | rs4778080 G > T | |
Post-transcriptional regulation of gene expression | TAGAP-AS1 (antisense RNA 1, lncRNA) | rs1738074 T > C |
PNPT1 (polyribonucleotide nucleotidyltransferase 1) | rs782637 T > C | |
LINC00973/RNU6–1263P (long intergenic non-protein coding RNA 973, U6 small nuclear 1263, pseudogene) | rs2062059 A > G | |
Signalling pathways | PTPN11 (protein tyrosine phosphatase non-receptor type 11) | rs2301756 A > G |
Cell motility | CFAP65/ LOC100129175 (cilia- and flagella-associated protein 65, lncRNA) | rs359975 C > G |
CFAP36 (cilia- and flagella-associated protein) | rs3762513 C > T | |
Chaperons and chaperonins | PACRG (parkin co-regulated gene protein) | rs55733913 T > C |
rs66502444 A > T |
Patient Characteristics | No. (%) | |
---|---|---|
Sex | Male | 32 (46.4%) |
Female | 37 (53.6%) | |
Biopsy specimen | Primary tumour | 50 (72.5%) |
Non-nodal metastasis | 14 (20.3%) | |
Lymph nodes | 5 (7.2%) | |
BRAF status | Wild type | 38 (55.9%) |
V600E mutation | 30 (44.1%) | |
Immunotherapy regimen | Nivolumab | 45 (65.2%) |
Pembrolizumab | 15 (21.8%) | |
Ipilimumab | 2 (2.9%) | |
Ipilimumab + nivolumab | 7 (10.1%) | |
Hepatitis toxicity | Grade 0 | 61 (88.4%) |
Grade1 | 1 (1.4%) | |
Grade 2 | 3 (4.4%) | |
Grade 3 | 4 (5.8%) | |
Grade 4–5 | 0 (0%) |
SNP wt > v | Genotype Frequency | Allele Frequency | 1000 Genomes European Allele Frequency | MAF |
---|---|---|---|---|
rs11571302 G > T | GG = 12 (17.6%) GT = 33 (48.5%) TT = 23 (33.9%) | G = 41.9% T = 58.1% | G = 51.1% T = 48.9% | 0.43 (T) |
rs1863800 C > T | CC = 16 (23.9%) CT = 33 (49.2%) TT = 18 (26.9%) | C = 48.5% T = 51.5% | C = 55.0% T = 45.0% | 0.41 (T) |
rs3087243 G > A | GG = 14 (23.7%) GA = 10 (16.9%) AA = 35 (59.4%) | G = 32.2% A = 67.8% | G = 53% A = 47% | 0.37 (A) |
rs4553808 A > G | AA = 41 (63.1%) AG = 23 (35.4%) GG = 1 (1.5%) | A = 80.8% G = 19.2% | A = 83.1% G = 16.9% | 0.13 (G) |
rs16840252 C > T | CC = 42 (61.8%) CT = 25 (36.8%) TT = 1 (1.4%) | C = 80.1% T = 19.9% | C = 83.1% T = 16.9% | 0.13 (T) |
rs231775 A > G | AA = 37 (54.4%) AG = 25 (36.8%) GG = 6 (8.8%) | A = 72.8% G = 27.2% | A = 64.1% G = 35.9% | 0.43 (G) |
rs5742909 C > T | CC = 61 (88.4%) CT = 8 (11.6%) TT = 0 | C = 94.2% T = 5.8% | C = 91.6% T = 8.4% | 0.05 (T) |
rs2910164 C > G | CC = 5 (7.6%) CG = 22 (33.3%) GG = 39 (59.1%) | C = 24.3% G = 75.7% | C = 26% G = 74% | 0.26 (C) |
rs11743438 C > T | CC = 10 (15.1%) CT = 31 (47.0%) TT = 25 (37.9%) | C = 38.6% T = 61.4% | C = 45.9% T = 54.1% | 0.46 (T) |
rs11743735 C > A | CC = 20 (31.7%) CA = 26 (41.3%) AA = 17 (27.0%) | C = 52.4% A = 47.6% | C = 61.2% A = 38.8% | 0.31 (A) |
rs3026321 A > T | AA = 59 (85.5%) AT = 10 (14.5%) TT = 0 | A = 92.8% T = 7.2% | A = 91.4% T = 8.6% | 0.05 (T) |
rs4778080 G > T | GG = 12 (17.6%) GT = 32 (47.1%) TT = 24 (35.3%) | G = 41.2% T = 58.8% | G = 36.5% T = 63.5% | 0.32 (G) |
rs1738074 T > C | TT = 17 (25.8%) TC = 32 (48.4%) CC = 17 (25.8%) | T = 50% C = 50% | T = 43.3% C = 56.7% | 0.47 (C) |
rs782637 T > C | TT = 11 (16.4%) TC = 36 (53.7%) CC = 20 (29.9%) | T = 43.3% C = 56.7% | T = 46.7% C = 53.3% | 0.33 (C) |
rs2062059 A > G | AA = 32 (66.6%) AG = 9 (18.8%) GG = 7 (14.6%) | A = 76% G = 24% | A = 62.1% G = 37.9% | 0.32 (G) |
rs2301756 A > G | AA = 58 (85.3%) AG = 10 (14.7%) GG = 0 | A = 92.6% G = 7.4% | A = 90.3% G = 9.7% | 0.37 (G) |
rs359975 C > G | CC = 53 (79.1%) CG = 12 (17.9%) GG = 2 (3.0%) | C = 88.1% G = 11.9% | C = 87.7% G = 12.3% | 0.26 * (G) |
rs3762513 C > T | CC = 13 (19.4%) CT = 35 (52.2%) TT = 19 (28.4%) | C = 45.5% T = 54.5% | C = 47.8% T = 52.2% | 0.31 (T) |
rs55733913 T > C | TT = 46 (73.0%) TC =15 (23.8%) CC = 2 (3.2%) | T = 84.9% C = 15.1% | T = 76.7% C = 23.3% | 0.20 (C) |
rs66502444 A > T | AA = 52 (78.8%) AT = 13 (19.7%) TT = 1 (1.5%) | A = 88.7% T = 11.3% | A = 81.7% T = 18.3% | 0.13 (T) |
SNP | ICI-Induced Hepatitis n (%) | No ICI-Induced Hepatitis n (%) | TOTAL n (%) | p-Value |
---|---|---|---|---|
rs11571302 | GG = 2 (25%) GT = 4 (50%) TT = 2 (25%) | GG = 10 (16.7%) GT = 29 (48.3%) TT = 21 (35%) | GG = 12 (17.6%) GT = 33 (48.5%) TT = 23 (33.9%) | 0.78 |
rs1863800 | CC = 2 (25%) CT = 5 (62.5%) TT = 1 (12.5%) | CC = 14 (23.7%) CT = 28 (47.5%) TT = 17 (28.8%) | CC = 16 (23.9%) CT = 33 (49.2%) TT = 18 (26.9%) | 0.60 |
rs3087243 | GG = 2 (25%) GA = 1 (12.5) AA = 5 (62.5%) | GG = 12 (23.5%) GA = 9 (17.6%) AA = 30 (58.9%) | GG = 14 (23.7%) GA = 10 (16.9%) AA = 35 (59.4%) | 0.94 |
rs4553808 | AA = 4 (57.1%) AG = 3 (42.8%) GG = 0 | AA = 37 (63.8%) AG = 20 (34.5%) GG = 1 (1.7%) | AA = 41 (63.1%) AG = 23 (35.4%) GG = 1 (1.5%) | 0.87 |
rs16840252 | CC = 4 (50%) CT = 4 (50%) TT = 0 | CC = 38 (63.3%) CT = 21 (35%) TT = 1 (1.7%) | CC = 42 (61.8%) CT = 25 (36.8%) TT = 1 (1.4%) | 0.68 |
rs231775 | AA = 5 (62.5%) AG = 2 (25%) GG = 1 (12.5%) | AA = 32 (53.3%) AG = 23 (38.4%) GG = 5 (8.3%) | AA = 37 (54.4%) AG = 25 (36.8%) GG = 6 (8.8%) | 0.74 |
rs5742909 | CC = 7 (87.5%) CT = 1 (12.5%) TT = 0 | CC = 54 (88.5%) CT = 7 (11.5%) TT = 0 | CC = 61 (88.4%) CT = 8 (11.6%) TT = 0 | 1.00 |
rs2910164 | CC = 0 CG = 1 (14.3%) GG = 6 (85.7%) | CC = 5 (8.5%) CG = 21 (35.6%) GG = 33 (55.9%) | CC = 5 (7.6%) CG = 22 (33.3%) GG = 39 (59.1%) | 0.30 |
rs11743438 | CC = 0 CT = 2 (25%) TT = 6 (75%) | CC = 10 (17.2%) CT = 29 (50.0%) TT = 19 (32.8%) | CC = 10 (15.1%) CT = 31 (47.0%) TT = 25 (37.9%) | 0.06 |
rs11743735 | CC = 1 (14.3%) CA = 1 (14.3%) AA = 5 (71.4%) | CC = 19 (33.9%) CA = 25 (44.6%) AA = 12 (21.4%) | CC = 20 (31.7%) CA = 26 (41.3%) AA = 17 (27.0%) | 0.02 |
rs3026321 | AA = 8 (100%) AT = 0 TT = 0 | AA = 51 (83.6%) AT = 10 (16.4%) TT = 0 | AA = 59 (85.5%) AT = 10 (14.5%) TT = 0 | 0.59 |
rs4778080 | GG = 2 (25%) GT = 6 (75%) TT = 0 | GG = 10 (16.7%) GT = 26 (43.3%) TT = 24 (40%) | GG = 12 (17.6%) GT = 32 (47.1%) TT = 24 (35.3%) | 0.08 |
rs1738074 | TT = 3 (37.5%) TC = 3 (37.5%) CC = 2 (25%) | TT = 14 (24.1%) TC = 29 (50%) CC = 15 (25.9%) | TT = 17 (25.8%) TC = 32 (48.4%) CC = 17 (25.8%) | 0.70 |
rs782637 | TT = 2 (28.6%) TC = 3 (42.8%) CC = 2 (28.6%) | TT = 9 (15%) TC = 33 (55%) CC = 18 (30%) | TT = 11 (16.4%) TC = 36 (53.7%) CC = 20 (29.9%) | 0.64 |
rs2062059 | AA = 2 (66.7%) AG = 1 (33.3%) GG = 0 | AA = 30 (66.7%) AG = 8 (17.8%) GG = 7 (15.6%) | AA = 32 (66.6%) AG = 9 (18.8%) GG = 7 (14.6%) | 0.66 |
rs2301756 | AA = 6 (85.7%) AG = 1 (14.3%) GG = 0 | AA = 52 (85.2%) AG = 9 (14.8%) GG = 0 | AA = 58 (85.3%) AG = 10 (14.7%) GG = 0 | 1.00 |
rs359975 | CC = 7 (100%) CG = 0 GG = 0 | CC = 46 (76.7%) CG = 12 (20%) GG = 2 (3.3%) | CC = 53 (79.1%) CG = 12 (17.9%) GG = 2 (3.0%) | 0.36 |
rs3762513 | CC = 3 (37.5%) CT = 3 (37.5%) TT = 2 (25%) | CC = 10 (16.9%) CT = 32 (54.2%) TT = 17 (28.9%) | CC = 13 (19.4%) CT = 35 (52.2%) TT = 19 (28.4%) | 0.38 |
rs55733913 | TT = 2 (33.3%) TC = 3 (50%) CC = 1 (16.7%) | TT = 44 (77.2%) TC = 12 (21.1%) CC = 1 (1.7%) | TT = 46 (73.0%) TC =15 (23.8%) CC = 2 (3.2%) | 0.03 |
rs66502444 | AA = 3 (50%) AT = 3 (50%) TT = 0 | AA = 49 (81.7%) AT = 10 (16.7%) TT = 1 (1.6%) | AA = 52 (78.8%) AT = 13 (19.7%) TT = 1 (1.5%) | 0.14 |
SNP (Gene) | Genotype Groups Compared | Hepatitis n (%) | OR (95% CI) | p-Value | |
---|---|---|---|---|---|
Yes | No | ||||
rs11743438 (GABRP) | v/v | 6 (75%) | 19 (32.8%) | 6.16 (1.13–33.43) | 0.046 |
wt/wt + wt/v | 2 (25%) | 39 (67.2%) | |||
rs11743735 (GABRP) | v/v | 5 (71.4%) | 12 (21.4%) | 9.17 (1.58–53.27) | 0.013 |
wt/wt + wt/v | 2 (28.6%) | 44 (78.6%) | |||
rs4778080 (RGMA) | v/v | 0 | 24 (40%) | - | 0.043 |
wt/wt + wt/v | 8 (100%) | 36 (60%) | |||
rs55733913 (PACRG) | v/v + wt/v wt/wt | 4 (66.7%) 2 (33.3%) | 13 (22.8%) 44 (77.2%) | 6.77 (1.11–41.22) | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Piñas, J.M.; Romero-Lorca, A.; Gaibar, M.; Novillo, A.; Rubio, M.; Malón, D.; Antón-Pascual, B.; Camacho, F.I.; Cavanagh, M.; Luján, D.R.; et al. Tumour SNPs Associated with Immune-Related Hepatitis in Patients with Melanoma Receiving Immune Checkpoint Inhibitors. Biomedicines 2025, 13, 2351. https://doi.org/10.3390/biomedicines13102351
Rodríguez-Piñas JM, Romero-Lorca A, Gaibar M, Novillo A, Rubio M, Malón D, Antón-Pascual B, Camacho FI, Cavanagh M, Luján DR, et al. Tumour SNPs Associated with Immune-Related Hepatitis in Patients with Melanoma Receiving Immune Checkpoint Inhibitors. Biomedicines. 2025; 13(10):2351. https://doi.org/10.3390/biomedicines13102351
Chicago/Turabian StyleRodríguez-Piñas, Jose María, Alicia Romero-Lorca, Maria Gaibar, Apolonia Novillo, Margarita Rubio, Diego Malón, Beatriz Antón-Pascual, Francisca Inmaculada Camacho, Mercedes Cavanagh, David Ricardo Luján, and et al. 2025. "Tumour SNPs Associated with Immune-Related Hepatitis in Patients with Melanoma Receiving Immune Checkpoint Inhibitors" Biomedicines 13, no. 10: 2351. https://doi.org/10.3390/biomedicines13102351
APA StyleRodríguez-Piñas, J. M., Romero-Lorca, A., Gaibar, M., Novillo, A., Rubio, M., Malón, D., Antón-Pascual, B., Camacho, F. I., Cavanagh, M., Luján, D. R., Martín, A. M., Khedaoui, R., Moreno, D., Pinedo, F., Boiza, M., García-Adrián, S., Gómez, P., Marrupe, D., & Fernández-Santander, A. (2025). Tumour SNPs Associated with Immune-Related Hepatitis in Patients with Melanoma Receiving Immune Checkpoint Inhibitors. Biomedicines, 13(10), 2351. https://doi.org/10.3390/biomedicines13102351