The Role of Diastolic Stress Echo and Myocardial Work in Early Detection of Cardiac Dysfunction in Women with Breast Cancer Undergoing Chemotherapy
Abstract
1. Introduction
2. Methodology
2.1. Study Design and Participants
2.2. Echocardiography
2.3. Blood Assays
2.4. Statistical Analysis
3. Results
3.1. Baseline Participant Characteristics
3.2. Follow-Up
3.2.1. Follow-Up of Echocardiography Indices
3.2.2. Follow-Up of Biomarkers
3.2.3. Follow-Up and DSTE Results
3.2.4. Subgroup Analysis Excluding Baseline Comorbidities
3.3. Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE | Angiotensin-Converting Enzyme |
AUC | Area Under the Curve |
BMI | Body Mass Index |
BP | Blood Pressure |
CAD | Coronary Artery Disease |
CG | Control Group |
CI | Confidence Interval |
CTRCD | Cancer Therapy–Related Cardiac Dysfunction |
DBP | Diastolic Blood Pressure |
DSTE | Diastolic Stress Test Echocardiography |
E/A | Early to Late Ventricular Filling Velocity Ratio |
E/E′ | Ratio of Early Mitral Inflow Velocity to Early Diastolic Mitral Annular Velocity |
ESC | European Society of Cardiology |
ESE | Exercise Stress Echocardiography |
GCW | Global Constructive Work |
GLS | Global Longitudinal Strain |
GWE | Global Work Efficiency |
GWI | Global Work Index |
GWW | Global Wasted Work |
HFpEF | Heart Failure with Preserved Ejection Fraction |
HFA | Heart Failure Association |
HFA-PEFF | Heart Failure Association–Preserved Ejection Fraction |
hs-cTnI | High-Sensitivity Cardiac Troponin I |
IC-OS | International Cardio-Oncology Society |
LVEF | Left Ventricular Ejection Fraction |
MW | Myocardial Work |
NT-proBNP | N-terminal pro–B-type Natriuretic Peptide |
ROC | Receiver Operating Characteristic |
RVS | Right Ventricular Systolic Velocity |
SBP | Systolic Blood Pressure |
SPSS | Statistical Package for the Social Sciences |
STA | Speckle Tracking Analysis |
TAPSE | Tricuspid Annular Plane Systolic Excursion |
TRVmax | Maximal Tricuspid Regurgitation Velocity |
References
- Fahad Ullah, M. Breast Cancer: Current Perspectives on the Disease Status. Adv. Exp. Med. Biol. 2019, 1152, 51–64. [Google Scholar] [CrossRef]
- Li, H.; Wang, M.; Huang, Y. Anthracycline-Induced Cardiotoxicity: An Overview from Cellular Structural Perspective. Biomed. Pharmacother. 2024, 179, 117312. [Google Scholar] [CrossRef]
- Huang, J.; Wu, R.; Chen, L.; Yang, Z.; Yan, D.; Li, M. Understanding Anthracycline Cardiotoxicity From Mitochondrial Aspect. Front. Pharmacol. 2022, 13, 811406. [Google Scholar] [CrossRef]
- Eaton, H.; Timm, K.N. Mechanisms of Trastuzumab Induced Cardiotoxicity—Is Exercise a Potential Treatment? Cardio-Oncol. 2023, 9, 22. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Bawa-Khalfe, T.; Lu, L.-S.; Lyu, Y.L.; Liu, L.F.; Yeh, E.T.H. Identification of the Molecular Basis of Doxorubicin-Induced Cardiotoxicity. Nat. Med. 2012, 18, 1639–1642. [Google Scholar] [CrossRef] [PubMed]
- Stoodley, P.W.; Richards, D.A.B.; Hui, R.; Boyd, A.; Harnett, P.R.; Meikle, S.R.; Clarke, J.; Thomas, L. Two-Dimensional Myocardial Strain Imaging Detects Changes in Left Ventricular Systolic Function Immediately after Anthracycline Chemotherapy. Eur. J. Echocardiogr. 2011, 12, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Goulas, K.; Farmakis, D.; Constantinidou, A.; Kadoglou, N.P.E. Cardioprotective Agents for the Primary Prevention of Trastuzumab-Associated Cardiotoxicity: A Systematic Review and Meta-Analysis. Pharmaceuticals 2023, 16, 983. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Abbasi, H.Q.; Yakkali, S.; Khan, A.M.; Tariq, M.D.; Sohail, A.H.; Khan, R. Left Atrial Strain as a Predictor of Early Anthracycline-Induced Chemotherapy-Related Cardiac Dysfunction: A Pilot Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 3904. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Wang, S. The Role of Stress Echocardiography in Identifying Cardiotoxicity: An in-Depth Exploration. Front. Cardiovasc. Med. 2024, 11, 1236966. [Google Scholar] [CrossRef]
- Laufer-Perl, M.; Arnold, J.H.; Mor, L.; Amrami, N.; Derakhshesh, M.; Moshkovits, Y.; Sadeh, B.; Arbel, Y.; Topilsky, Y.; Rozenbaum, Z. The Association of Reduced Global Longitudinal Strain with Cancer Therapy-Related Cardiac Dysfunction among Patients Receiving Cancer Therapy. Clin. Res. Cardiol. 2020, 109, 255–262. [Google Scholar] [CrossRef]
- Amanai, S.; Harada, T.; Kagami, K.; Yoshida, K.; Kato, T.; Wada, N.; Obokata, M. The H2FPEF and HFA-PEFF Algorithms for Predicting Exercise Intolerance and Abnormal Hemodynamics in Heart Failure with Preserved Ejection Fraction. Sci. Rep. 2022, 12, 13. [Google Scholar] [CrossRef] [PubMed]
- Poterucha, J.T.; Kutty, S.; Lindquist, R.K.; Li, L.; Eidem, B.W. Changes in Left Ventricular Longitudinal Strain with Anthracycline Chemotherapy in Adolescents Precede Subsequent Decreased Left Ventricular Ejection Fraction. J. Am. Soc. Echocardiogr. 2012, 25, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on Cardio-Oncology Developed in Collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS): Developed by the Task Force on Cardio-Oncology of the European Society of Cardiology (ESC). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef] [PubMed]
- Negishi, K.; Negishi, T.; Hare, J.L.; Haluska, B.A.; Plana, J.C.; Marwick, T.H. Independent and Incremental Value of Deformation Indices for Prediction of Trastuzumab-Induced Cardiotoxicity. J. Am. Soc. Echocardiogr. 2013, 26, 493–498. [Google Scholar] [CrossRef]
- Narayan, H.K.; French, B.; Khan, A.M.; Plappert, T.; Hyman, D.; Bajulaiye, A.; Domchek, S.; DeMichele, A.; Clark, A.; Matro, J.; et al. Noninvasive Measures of Ventricular-Arterial Coupling and Circumferential Strain Predict Cancer Therapeutics-Related Cardiac Dysfunction. JACC Cardiovasc. Imaging 2016, 9, 1131–1141. [Google Scholar] [CrossRef]
- Chen, P.; Aurich, M.; Greiner, S.; Maliandi, G.; Müller-Hennessen, M.; Giannitsis, E.; Meder, B.; Frey, N.; Pleger, S.; Mereles, D. Prognostic Relevance of Global Work Index and Global Constructive Work in Patients with Non-Ischemic Dilated Cardiomyopathy. Int. J. Cardiovasc. Imaging 2024, 40, 1575–1584. [Google Scholar] [CrossRef]
- Moya, A.; Buytaert, D.; Penicka, M.; Bartunek, J.; Vanderheyden, M. State-of-the-Art: Noninvasive Assessment of Left Ventricular Function Through Myocardial Work. J. Am. Soc. Echocardiogr. 2023, 36, 1027–1042. [Google Scholar] [CrossRef]
- Myocardial Work in Echocardiography. Circulation: Cardiovascular Imaging. Available online: https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.122.014419 (accessed on 23 April 2025).
- Camilli, M.; Ferdinandy, P.; Salvatorelli, E.; Menna, P.; Minotti, G. Anthracyclines, Diastolic Dysfunction and the Road to Heart Failure in Cancer Survivors: An Untold Story. Prog. Cardiovasc. Dis. 2024, 86, 38–47. [Google Scholar] [CrossRef]
- Huang, F.; Rankin, K.; Sooriyakanthan, M.; Signorile, M.; Steve Fan, C.-P.; Thampinathan, B.; Marwick, T.H.; Osataphan, N.; Yu, C.; Koch, C.A.; et al. Phenotypes of Myocardial Dysfunction on Serial Echocardiography and CMR in Women With Early-Stage Breast Cancer. JACC Cardiovasc. Imaging 2025. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F.; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef]
- Pieske, B.; Tschöpe, C.; de Boer, R.A.; Fraser, A.G.; Anker, S.D.; Donal, E.; Edelmann, F.; Fu, M.; Guazzi, M.; Lam, C.S.P.; et al. How to Diagnose Heart Failure with Preserved Ejection Fraction: The HFA–PEFF Diagnostic Algorithm: A Consensus Recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. Heart J. 2019, 40, 3297–3317. [Google Scholar] [CrossRef]
- Fujita, K.; Matsumoto, K.; Kishi, A.; Kawasaki, S. Diastolic Heart Failure Is a New Clinical Entity of Trastuzumab-Induced Cardiotoxicity: A Case Report. Eur. Heart J. Case Rep. 2023, 7, ytac470. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, X.; Li, S.; Liu, Y.; Cui, Y.; Deng, X. Advances in Biomarkers for Detecting Early Cancer Treatment-Related Cardiac Dysfunction. Front. Cardiovasc. Med. 2021, 8, 753313. [Google Scholar] [CrossRef] [PubMed]
- Perpinia, A.S.; Kadoglou, N.; Vardaka, M.; Gkortzolidis, G.; Karavidas, A.; Marinakis, T.; Papachrysostomou, C.; Makaronis, P.; Vlachou, C.; Mantzourani, M.; et al. Pharmaceutical Prevention and Management of Cardiotoxicity in Hematological Malignancies. Pharmaceuticals 2022, 15, 1007. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Papadopoulos, C.H.; Papadopoulos, K.G.; Karagiannis, S.; Karabinos, I.; Loizos, S.; Theodosis-Georgilas, A.; Aggeli, K.; Keramida, K.; Klettas, D.; et al. Updated Knowledge and Practical Implementations of Stress Echocardiography in Ischemic and Non-Ischemic Cardiac Diseases: An Expert Consensus of the Working Group of Echocardiography of the Hellenic Society of Cardiology. Hell. J. Cardiol. 2022, 64, 30–57. [Google Scholar] [CrossRef]
- Curigliano, G.; Lenihan, D.; Fradley, M.; Ganatra, S.; Barac, A.; Blaes, A.; Herrmann, J.; Porter, C.; Lyon, A.R.; Lancellotti, P.; et al. Management of Cardiac Disease in Cancer Patients throughout Oncological Treatment: ESMO Consensus Recommendations. Ann. Oncol. 2020, 31, 171–190. [Google Scholar] [CrossRef]
- Contaldi, C.; D’Aniello, C.; Panico, D.; Zito, A.; Calabrò, P.; Di Lorenzo, E.; Golino, P.; Montesarchio, V. Cancer-Therapy-Related Cardiac Dysfunction: Latest Advances in Prevention and Treatment. Life 2025, 15, 471. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Dimopoulou, A.; Tsappa, I.; Pilavaki, P.; Constantinidou, A. The Impact of Chemotherapy on Arterial Stiffness and Ventricular-Arterial Coupling in Women with Breast Cancer. Pharmaceuticals 2024, 17, 1115. [Google Scholar] [CrossRef] [PubMed]
- Sławiński, G.; Hawryszko, M.; Liżewska-Springer, A.; Nabiałek-Trojanowska, I.; Lewicka, E. Global Longitudinal Strain in Cardio-Oncology: A Review. Cancers 2023, 15, 986. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Van den Eynde, J.; Cordrey, K.; Long, R.; Danford, D.A.; Hays, A.G.; Barnes, B.T.; Kutty, S. Deterioration in Myocardial Work Indices Precedes Changes in Global Longitudinal Strain Following Anthracycline Chemotherapy. Int. J. Cardiol. 2022, 363, 171–178. [Google Scholar] [CrossRef]
- Calvillo-Argüelles, O.; Thampinathan, B.; Somerset, E.; Shalmon, T.; Amir, E.; Steve Fan, C.-P.; Moon, S.; Abdel-Qadir, H.; Thevakumaran, Y.; Day, J.; et al. Diagnostic and Prognostic Value of Myocardial Work Indices for Identification of Cancer Therapy-Related Cardiotoxicity. JACC Cardiovasc. Imaging 2022, 15, 1361–1376. [Google Scholar] [CrossRef]
- Seropian, I.M.; Fontana Estevez, F.S.; Villaverde, A.; Cacciagiú, L.; Bustos, R.; Touceda, V.; Penas, F.; Selser, C.; Morales, C.; Miksztowicz, V.; et al. Galectin-3 Contributes to Acute Cardiac Dysfunction and Toxicity by Increasing Oxidative Stress and Fibrosis in Doxorubicin-Treated Mice. Int. J. Cardiol. 2023, 393, 131386. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Dong, G.; Liu, J.; Shuang, X.; Liu, C.; Yang, C.; Qing, W.; Qiao, W. Clinical Implications of Plasma Galectin-3 in Heart Failure With Preserved Ejection Fraction: A Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 854501. [Google Scholar] [CrossRef] [PubMed]
- Kadoglou, N.P.E.; Parissis, J.; Karavidas, A.; Kanonidis, I.; Trivella, M. Assessment of Acute Heart Failure Prognosis: The Promising Role of Prognostic Models and Biomarkers. Heart Fail. Rev. 2022, 27, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Rashid, H.; Rashid, A.; Mattoo, A.; Guru, F.R.; Mehvish, S.; Kakroo, S.A.; Lone, A.A.; Aslam, K.; Hafeez, I.; Rather, H. Left Ventricular Diastolic Function and Cardiotoxic Chemotherapy. Egypt. Heart J. 2024, 76, 45. [Google Scholar] [CrossRef]
- Obokata, M.; Reddy, Y.N.V.; Borlaug, B.A. Diastolic Dysfunction and Heart Failure with Preserved Ejection Fraction. JACC Cardiovasc. Imaging 2020, 13, 245–257. [Google Scholar] [CrossRef]
- Kane, G.C.; Oh, J.K. Diastolic Stress Test for the Evaluation of Exertional Dyspnea. Curr. Cardiol. Rep. 2012, 14, 359–365. [Google Scholar] [CrossRef]
- Samuel, T.J.; Haykowsky, M.J.F.; Sarma, S.; Nelson, M.D. Diastolic Stress Testing. JACC Cardiovasc. Imaging 2019, 12, 2095–2097. [Google Scholar] [CrossRef]
- Deng, S.; Yan, T.; Jendrny, C.; Nemecek, A.; Vincetic, M.; Gödtel-Armbrust, U.; Wojnowski, L. Dexrazoxane May Prevent Doxorubicin-Induced DNA Damage via Depleting Both Topoisomerase II Isoforms. BMC Cancer 2014, 14, 842. [Google Scholar] [CrossRef]
- Mecinaj, A.; Vinje-Jakobsen, V.; Ngo, D.T.M.; Sverdlov, A.L.; Myhre, P.L. The SARAH Trial: More Evidence on the Role of Neurohormonal Blockers in Prevention of Anthracycline-Induced Cardiotoxicity. Heart Fail. Rev. 2025, 30, 627–631. [Google Scholar] [CrossRef]
- Jiang, R.; Lou, L.; Shi, W.; Chen, Y.; Fu, Z.; Liu, S.; Sok, T.; Li, Z.; Zhang, X.; Yang, J. Statins in Mitigating Anticancer Treatment-Related Cardiovascular Disease. Int. J. Mol. Sci. 2024, 25, 10177. [Google Scholar] [CrossRef]
- Liu, D.; Liu, J.; Xiao, R.; Deng, A.; Liu, W. Safety Evaluation of the Combination with Dexrazoxane and Anthracyclines: A Disproportionality Analysis Based on the Food and Drug Administration Adverse Event Reporting System Database. Pharmaceuticals 2024, 17, 1739. [Google Scholar] [CrossRef] [PubMed]
- Bottinor, W.J.; Shuey, M.M.; Manouchehri, A.; Farber-Eger, E.H.; Xu, M.; Nair, D.; Salem, J.-E.; Wang, T.J.; Brittain, E.L. Renin-Angiotensin-Aldosterone System Modulates Blood Pressure Response During Vascular Endothelial Growth Factor Receptor Inhibition. JACC Cardio Oncol. 2019, 1, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Zhao, L.; Guo, F.; Zhang, B.; Fang, L.; Zhan, G.; Xu, X.; Fang, Q.; Liang, Z.; Li, B. The Enhancement of Cardiotoxicity That Results from Inhibiton of CYP 3A4 Activity and hERG Channel by Berberine in Combination with Statins. Chem. Biol. Interact. 2018, 293, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Giraud, E.L.; Ferrier, K.R.M.; Lankheet, N.A.G.; Desar, I.M.E.; Steeghs, N.; Beukema, R.J.; van Erp, N.P.; Smolders, E.J. The QT Interval Prolongation Potential of Anticancer and Supportive Drugs: A Comprehensive Overview. Lancet Oncol. 2022, 23, e406–e415. [Google Scholar] [CrossRef]
Variable | Cancer Patients (n = 133) | Healthy Controls (n = 65) | p-Value |
---|---|---|---|
Age | 52.00 (12.00) | 51.00 (6.00) | 0.263 |
SBP (mmHg) | 133.00 (22.00) | 130.00 (12.00) | 0.216 |
DBP (mmHg) | 83.00 (10.00) | 82.00 (7.00) | 0.574 |
LVEF (%) | 66.00 (5.00) | 67.00 (7.00) | 0.761 |
E/E′ | 7.19 (2.17) | 7.06 (1.50) | 0.854 |
TAPSE (cm) | 2.50 (0.30) | 2.60 (0.40) | 0.816 |
RVS (cm/s) | 14.20 (0.40) | 14.70 (0.20) | 0.768 |
TRVmax (m/s) | 2.25 (0.23) | 2.58 (0.25) | 0.277 |
LAVI (mL/m2) | 30.39 (8.13) | 28.91 (6.16) | 0.327 |
GLS (%) | −21.16 (2.05) | −21.17 (1.57) | 0.991 |
GWI (mmHg%) | 2223.31 (503.75) | 2134.79 (292.77) | 0.652 |
GWW (mmHg%) | 115.79 (50.89) | 109.47 (40.97) | 0.407 |
GCW (mmHg%) | 2505.94 (470.53) | 2383.12 (334.93) | 0.602 |
GWE (%) | 93.91 (3.78) | 94.62 (3.28) | 0.620 |
Troponin (ng/L) | 2.36 (1.49) | 2.13 (0.90) | 0.573 |
NT-proBNP (pg/mL) | 45.19 (16.41) | 43.93 (22.46) | 0.589 |
Galectin-3 (ng/mL) | 13.15 (6.32) | 12.49 (12.58) | 0.326 |
ESE E/E′ | 6.74 (1.23) | 6.18 (0.93) | 0.707 |
ESE TRVmax (m/s) | 2.30 (0.37) | 2.22 (0.34) | 0.801 |
Variables | CTRCD Group (n = 28) | CTRCD-Free Group (n = 105) | P1 | P2 | ||
---|---|---|---|---|---|---|
Baseline | End | Baseline | End | |||
Age | 54.00 (13.00) | 52.00 (11.00) | N/A | 0.223 | N/A | |
BMI (kg/m2) | 25.76 (5.31) | 25.11 (4.66) | 27.87 (7.18) | 26.98 (4.22) | 0.056 | 0.046 |
SBP (mmHg) | 136.00 (16.00) | 137.00 (17.00) | 132.00 (24.00) | 133.00 (23.00) | 0.106 | 0.148 |
DBP (mmHg) | 86.00 (10.00) | 85.00 (9.00) | 82.00 (10.00) | 83.00 (10.00) | 0.151 | 0.096 |
Diabetes (n) | 3 | 3 | 7 | 7 | 0.301 | 0.301 |
Hypertension (n) | 6 | 6 | 12 | 12 | 0.812 | 0.812 |
Dyslipidemia (n) | 5 | 5 | 15 | 15 | 0.222 | 0.222 |
Smoking (n) | 12 | 4 | 18 | 6 | 0.456 | 0.895 |
NT-proBNP (pg/mL) | 50.37 (20.02) | 200.06 (113.61) | 44.62 (16.71) | 61.49 (32.27) | 0.138 | <0.001 |
Troponin (ng/L) | 2.56 (1.21) | 12.42 (2.73) | 2.29 (1.55) | 3.95 (2.65) | 0.170 | <0.001 |
Galectin-3 (ng/mL) | 13.23 (4.50) | 13.27 (5.74) | 13.12 (6.83) | 12.56 (3.88) | 0.466 | 0.081 |
Variables | CTRCD Group (n = 28) | CTRCD-Free Group (n = 105) | P1 | P2 | ||
---|---|---|---|---|---|---|
Baseline | End | Baseline | End | |||
LVEF (%) | 61.00 (4.00) | 54.00 (5.00) | 63.00 (6.00) | 63.00 (7.00) | <0.001 | <0.001 |
GLS (%) | −21.22 (1.96) | −16.68 (1.55) | −21.14 (2.08) | −20.31 (1.82) | 0.759 | <0.001 |
GWI (mmHg%) | 2375.64 (477.00) | 1939.92 (415.01) | 2055.89 (600.84) | 2340.14 (364.35) | 0.012 | <0.001 |
GCW (mmHg%) | 2575.70 (422.00) | N/A | 2409.95 (580.23) | N/A | 0.163 | N/A |
GWW (mmHg%) | 138.50 (106.44) | 83.55 (59.15) | 134.25 (129.15) | 72.85 (31.53) | 0.881 | <0.091 |
GWE (%) | 94.30 (3.31) | 95.56 (2.40) | 93.80 (3.91) | 96.42 (1.22) | 0.574 | <0.001 |
TAPSE (cm) | 2.40 (0.40) | 2.30 (0.40) | 2.70 (0.40) | 2.40 (0.30) | 0.567 | 0.808 |
TV S′ (cm/s) | 12.40 (2.10) | 11.50 (1.60) | 12.70 (1.80) | 12.00 (2.50) | 0.775 | 0.552 |
E/E′ | 7.75 (3.14) | 6.89 (1.86) | 7.02 (1.77) | 7.66 (2.52) | 0.133 | 0.053 |
E/A | 0.99 (0.31) | 0.95 (0.22) | 1.00 (0.34) | 0.99 (0.30) | 0.973 | 0.527 |
DSTE TRVmax (m/s) | 2.33 (0.44) | 3.05 (0.46) | 2.20 (0.46) | 2.31 (0.44) | 0.801 | <0.001 |
Parameter | CTRCD Group (n = 28) | Suspected or Established HFpEF Group (n = 16) | p-Value |
---|---|---|---|
GLS (%) | −16.72 (1.61) | −19.10 (1.77) | <0.001 |
NT-proBNP (pg/mL) | 199.53 (118.05) | 113.13 (51.70) | <0.001 |
Troponin (ng/L) | 12.59 (2.77) | 7.10 (3.30) | <0.001 |
LVEF (%) | 53.00 (11.00) | 61.63 (5.58) | <0.001 |
TRVmax baseline (m/s) | 2.10 (0.19) | 2.36 (0.21) | 0.004 |
ESE-derived TRVmax (m/s) | 3.05 (0.27) | 3.18 (0.24) | 0.049 |
Variable | CTRCD Group (n = 19) | CTRCD-Free Group (n = 86) | p-Value |
---|---|---|---|
GLS (%) | −16.20 (2.10) | −20.40 (2.50) | <0.001 |
NT-proBNP (pg/mL) | 198.50 (110.30) | 59.70 (31.80) | <0.001 |
Troponin (ng/L) | 12.10 (2.80) | 3.90 (2.60) | 0.080 |
GCW (mmHg%) | 1650.00 (350.00) | 2150.00 (420.00) | 0.014 |
GWI (mmHg%) | 1670.00 (310.00) | 2280.00 (450.00) | 0.010 |
Variable | Wald χ2 | p-Value |
---|---|---|
ESE E/E′ | 0.215 | 0.643 |
ESE TRVmax | 17.590 | <0.001 |
ESE E/A ratio | 0.875 | 0.350 |
Troponin | 39.007 | <0.001 |
NT-proBNP | 40.050 | <0.001 |
LVEF | 5.365 | 0.021 |
GLS | 22.416 | <0.001 |
GWI | 10.970 | <0.001 |
GCW | 8.601 | 0.003 |
GWE | 1.515 | 0.218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokratous, S.; Kyriakou, M.; Khattab, E.; Alexandraki, A.; Fotiou, E.L.; Chrysanthou, N.; Papakyriakopoulou, P.; Korakianitis, I.; Constantinidou, A.; Kadoglou, N.P.E. The Role of Diastolic Stress Echo and Myocardial Work in Early Detection of Cardiac Dysfunction in Women with Breast Cancer Undergoing Chemotherapy. Biomedicines 2025, 13, 2341. https://doi.org/10.3390/biomedicines13102341
Sokratous S, Kyriakou M, Khattab E, Alexandraki A, Fotiou EL, Chrysanthou N, Papakyriakopoulou P, Korakianitis I, Constantinidou A, Kadoglou NPE. The Role of Diastolic Stress Echo and Myocardial Work in Early Detection of Cardiac Dysfunction in Women with Breast Cancer Undergoing Chemotherapy. Biomedicines. 2025; 13(10):2341. https://doi.org/10.3390/biomedicines13102341
Chicago/Turabian StyleSokratous, Stefanos, Michaelia Kyriakou, Elina Khattab, Alexia Alexandraki, Elisavet L. Fotiou, Nektaria Chrysanthou, Paraskevi Papakyriakopoulou, Ioannis Korakianitis, Anastasia Constantinidou, and Nikolaos P. E. Kadoglou. 2025. "The Role of Diastolic Stress Echo and Myocardial Work in Early Detection of Cardiac Dysfunction in Women with Breast Cancer Undergoing Chemotherapy" Biomedicines 13, no. 10: 2341. https://doi.org/10.3390/biomedicines13102341
APA StyleSokratous, S., Kyriakou, M., Khattab, E., Alexandraki, A., Fotiou, E. L., Chrysanthou, N., Papakyriakopoulou, P., Korakianitis, I., Constantinidou, A., & Kadoglou, N. P. E. (2025). The Role of Diastolic Stress Echo and Myocardial Work in Early Detection of Cardiac Dysfunction in Women with Breast Cancer Undergoing Chemotherapy. Biomedicines, 13(10), 2341. https://doi.org/10.3390/biomedicines13102341