The Diagnosis and Treatment of Branch Retinal Vein Occlusions: An Update
Abstract
:1. Introduction
2. Epidemiology
3. Pathogenesis and Evolution
4. Diagnosis
4.1. Clinical Diagnosis
4.2. Paraclinical Diagnosis
5. Therapy
5.1. Medical Treatment
5.2. Isovolemic Hemodilution
5.3. Laser Therapy
5.4. Anti-VEGF Therapy
5.5. Intravitreal Corticosteroid Therapy
5.6. Surgical Intervention
5.7. Combined Therapy
6. Actualities
6.1. Gene Therapy
6.2. Peptide-Based Agents
6.3. Small-Molecule Inhibitors
7. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hayreh, S.S. Ocular Vascular Occlusive Disorders: Natural History of Visual Outcome. Prog. Retin. Eye Res. 2014, 41, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Lendzioszek, M.; Mrugacz, M.; Bryl, A.; Poppe, E.; Zorena, K. Prevention and Treatment of Retinal Vein Occlusion: The Role of Diet—A Review. Nutrients 2023, 15, 3237. [Google Scholar] [CrossRef] [PubMed]
- Dărăbuș, D.-M.; Pac, C.-P.; Munteanu, M. Retinal Vein Occlusions Associated or Complicated with Glaucoma: Aspects of Prediction and Paths of Progression. Rom. J. Ophthalmol. 2023, 67, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.; Bajimaya, S.; Paudyal, G.; Khanal, S.; Tan, S.; Thapa, S.S.; Van Rens, G. Prevalence, Pattern and Risk Factors of Retinal Vein Occlusion in an Elderly Population in Nepal: The Bhaktapur Retina Study. BMC Ophthalmol. 2017, 17, 162. [Google Scholar] [CrossRef]
- Rogers, S.; McIntosh, R.L.; Cheung, N.; Lim, L.; Wang, J.J.; Mitchell, P.; Kowalski, J.W.; Nguyen, H.; Wong, T.Y.; International Eye Disease Consortium. The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia. Ophthalmology 2010, 117, 313–319. [Google Scholar] [CrossRef]
- Lendzioszek, M.; Bryl, A.; Poppe, E.; Zorena, K.; Mrugacz, M. Retinal Vein Occlusion–Background Knowledge and Foreground Knowledge Prospects—A Review. J. Clin. Med. 2024, 13, 3950. [Google Scholar] [CrossRef]
- Teruyo, K. Mystery of Retinal Vein Occlusion: Vasoactivity of the Vein and Possible Involvement of Endothelin-1. BioMed Res. Int. 2017, 2017, 4816527. [Google Scholar] [CrossRef]
- Cugati, S.; Wang, J.J.; Rochtchina, E.; Mitchell, P. Ten-Year Incidence of Retinal Vein Occlusion in an Older Population: The Blue Mountains Eye Study. Arch. Ophthalmol. 2006, 124, 726–732. [Google Scholar] [CrossRef]
- Rogers, S.L.; McIntosh, R.L.; Lim, L.; Mitchell, P.; Cheung, N.; Kowalski, J.W.; Nguyen, H.P.; Wang, J.J.; Wong, T.Y. Natural History of Branch Retinal Vein Occlusion: An Evidence-Based Systematic Review. Ophthalmology 2010, 117, 1094–1101.e5. [Google Scholar] [CrossRef]
- Li, J.; Paulus, Y.M.; Shuai, Y.; Fang, W.; Liu, Q.; Yuan, S. New Developments in the Classification, Pathogenesis, Risk Factors, Natural History, and Treatment of Branch Retinal Vein Occlusion. J. Ophthalmol. 2017, 2017, 4936924. [Google Scholar] [CrossRef]
- Fuma, S.; Nishinaka, A.; Inoue, Y.; Tsuruma, K.; Shimazawa, M.; Kondo, M.; Hara, H. A Pharmacological Approach in Newly Established Retinal Vein Occlusion Model. Sci. Rep. 2017, 7, 43509. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, K.; Ogino, N.; Fukami, M.; Furukawa, M. Vitrectomy for Macular Edema Due to Retinal Vein Occlusion. Clin. Ophthalmol. 2019, 13, 969–984. [Google Scholar] [CrossRef] [PubMed]
- Sheyman, A.; Fawzi, A.A. (Eds.) Retinal Vascular Disease; Springer: Singapore, 2020; pp. 1–156. [Google Scholar]
- Kolar, P. Definition and Classification of Retinal Vein Occlusion. Int. J. Ophthalmic Res. 2016, 2, 124–129. [Google Scholar] [CrossRef]
- Coscas, G.; Loewenstein, A.; Augustin, A.; Bandello, F.; Parodi, M.B.; Lanzetta, P.; Monés, J.; de Smet, M.; Soubrane, G.; Staurenghi, G. Management of Retinal Vein Occlusion—Consensus Document. Ophthalmologica 2011, 226, 4–28. [Google Scholar] [CrossRef]
- Hayreh, S.S.; Podhajsky, P.A.; Zimmerman, M.B. Natural History of Visual Outcome in Central Retinal Vein Occlusion. Ophthalmology 2011, 118, 119–133. [Google Scholar] [CrossRef]
- McIntosh, R.L.; Rogers, S.L.; Lim, L.; Cheung, N.; Wang, J.J.; Mitchell, P.; Kowalski, J.W.; Nguyen, H.P.; Wong, T.Y. Natural History of Central Retinal Vein Occlusion: An Evidence-Based Systematic Review. Ophthalmology 2010, 117, 1113–1123. [Google Scholar] [CrossRef]
- Cehofski, L.J.; Kruse, A.; Kirkeby, S.; Alsing, A.N.; Ellegaard, N.J.; Kojima, K.; Honoré, B.; Vorum, H. IL-18 and S100A12 Are Upregulated in Experimental Central Retinal Vein Occlusion. Int. J. Mol. Sci. 2018, 19, 3328. [Google Scholar] [CrossRef]
- Tang, Y.; Cheng, Y.; Wang, S.; Wang, Y.; Liu, P.; Wu, H. Review: The Development of Risk Factors and Cytokines in Retinal Vein Occlusion. Front. Med. 2022, 9, 910600. [Google Scholar] [CrossRef]
- Lashay, A.; Riazi-Esfahani, H.; Mirghorbani, M.; Yaseri, M. Intravitreal Medications for Retinal Vein Occlusion: Systematic Review and Meta-Analysis. J. Ophthalmic Vis. Res. 2019, 14, 336–366. [Google Scholar] [CrossRef]
- Klein, R.; Moss, S.E.; Meuer, S.M.; Klein, B.E. The 15-Year Cumulative Incidence of Retinal Vein Occlusion: The Beaver Dam Eye Study. Arch. Ophthalmol. 2008, 126, 513–518. [Google Scholar] [CrossRef]
- Bradshaw, S.E.; Gala, S.; Nanavaty, M.; Shah, A.; Mwamburi, M.; Kefalas, P. Systematic Literature Review of Treatments for Management of Complications of Ischemic Central Retinal Vein Occlusion. BMC Ophthalmol. 2016, 16, 104. [Google Scholar] [CrossRef] [PubMed]
- Thapa, S.S.; Rana, P.P.; Twyana, S.N.; Shrestha, M.K.; Paudel, I.; Paudyal, G.; Gurung, R.; Ruit, S.; Hewitt, A.W.; Craig, J.E.; et al. Rational, Methods and Baseline Demographics of the Bhaktapur Glaucoma Study. Clin. Exp. Ophthalmol. 2011, 39, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.; Klein, B.E.; Moss, S.E.; Meuer, S.M. The Epidemiology of Retinal Vein Occlusion: The Beaver Dam Eye Study. Trans. Am. Ophthalmol. Soc. 2000, 98, 133–141. [Google Scholar]
- Shin, Y.U.; Cho, H.; Kim, J.M.; Bae, K.; ho Kang, M.; Shin, J.P.; Nam, E.; Kang, S.W. Prevalence and Associated Factors of Retinal Vein Occlusion in the Korean National Health and Nutritional Examination Survey, 2008–2012: A Cross-Sectional Observational Study. Medicine 2016, 95, e5185. [Google Scholar] [CrossRef]
- Song, P.; Xu, Y.; Zha, M.; Zhang, Y.; Rudan, I. Global Epidemiology of Retinal Vein Occlusion: A Systematic Review and Meta-Analysis of Prevalence, Incidence, and Risk Factors. J. Glob. Health 2019, 9, 010427. [Google Scholar] [CrossRef]
- Ang, J.L.; Ah-Moye, S.; Kim, L.N.; Nguyen, V.; Hunt, A.; Barthelmes, D.; Gillies, M.C.; Mehta, H. A Systematic Review of Real-World Evidence of the Management of Macular Oedema Secondary to Branch Retinal Vein Occlusion. Eye 2020, 34, 1770–1796. [Google Scholar] [CrossRef]
- Garnavou-Xirou, C.; Bontzos, G.; Smoustopoulos, G.; Velissaris, S.; Papadopoulos, A.; Georgopoulos, E.; Stavrakas, P.; Georgakopoulos, C.; Xirou, T.; Kozobolis, V. Systemic Risk Factors in Branch Retinal Vein Occlusion: A Comprehensive Review. Maedica 2024, 19, 380–387. [Google Scholar] [CrossRef]
- Kolar, P. Risk Factors for Central and Branch Retinal Vein Occlusion: A Meta-Analysis of Published Clinical Data. J. Ophthalmol. 2014, 2014, 724780. [Google Scholar] [CrossRef]
- Noh, S.Y.; Lee, J.H.; Jeong, W.J. Branch Retinal Vein Occlusion with Arteriovenous Crossing. J. Retin. 2023, 8, 36–41. [Google Scholar] [CrossRef]
- Kumagai, K.; Tsujikawa, A.; Muraoka, Y.; Akagi-Kurashige, Y.; Murakami, T.; Miyamoto, K.; Yamada, R.; Yoshimura, N. Three-Dimensional Optical Coherence Tomography Evaluation of Vascular Changes at Arteriovenous Crossings. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1867–1875. [Google Scholar] [CrossRef]
- Zhao, J.S.S.; Sperduto, R.D.; Chew, E.Y.; Remaley, N.A. Arteriovenous Crossing Patterns in Branch Retinal Vein Occlusion. Ophthalmology 1993, 100, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Christoffersen, N.L.; Larsen, M. Pathophysiology and Hemodynamics of Branch Retinal Vein Occlusion. Ophthalmology 1999, 106, 2054–2062. [Google Scholar] [CrossRef] [PubMed]
- Saroj, S.C.; Singh, S.; Siddiqui, R.A.; Singh, S.; Yadav, A. Systemic Risk Factors and Clinical Profile of Retinal Vein Occlusion in a Tertiary Eye Care Hospital in Northern Uttar Pradesh—A Case Control Study. IJFMR 2023, 5, 1–8. [Google Scholar] [CrossRef]
- Marcinkowska, A.; Cisiecki, S.; Rozalski, M. Platelet and Thrombophilia-Related Risk Factors of Retinal Vein Occlusion. J. Clin. Med. 2021, 10, 3080. [Google Scholar] [CrossRef]
- Avrutsky, M.I.; Ortiz, C.C.; Johnson, K.V.; Potenski, A.M.; Chen, C.W.; Lawson, J.M.; White, A.J.; Yuen, S.K.; Morales, F.N.; Canepa, E.; et al. Endothelial Activation of Caspase-9 Promotes Neurovascular Injury in Retinal Vein Occlusion. Nat. Commun. 2020, 11, 3173. [Google Scholar] [CrossRef]
- Chen, G.; Chen, P.; Chen, X.; Wang, J.; Peng, X. The Laser Combined with Intravitreal Injection of Ranibizumab for Treatment of Macular Edema Secondary to Branch Retinal Vein Occlusion: A Protocol for Systematic Review and Meta-Analysis. Medicine 2021, 100, e23675. [Google Scholar] [CrossRef]
- Daruich, A.; Matet, A.; Moulin, A.; Kowalczuk, L.; Nicolas, M.; Sellam, A.; Rothschild, P.R.; Omri, S.; Gélizé, E.; Jonet, L.; et al. Mechanisms of Macular Edema: Beyond the Surface. Prog. Retin. Eye Res. 2018, 63, 20–68. [Google Scholar] [CrossRef]
- Iijima, H. Mechanisms of Vision Loss in Eyes with Macular Edema Associated with Retinal Vein Occlusion. Jpn. J. Ophthalmol. 2018, 62, 265–273. [Google Scholar] [CrossRef]
- Arrigo, A.; Aragona, E.; Lattanzio, R.; Scalia, G.; Bandello, F.; Parodi, M.B. Collateral Vessel Development in Central and Branch Retinal Vein Occlusions Are Associated with Worse Visual and Anatomic Outcomes. Investig. Ophthalmol. Vis. Sci. 2021, 62, 1. [Google Scholar] [CrossRef]
- Hayreh, S.S.; Zimmerman, M.B. Fundus Changes in Central Retinal Vein Occlusion. Retina 2015, 35, 29–42. [Google Scholar] [CrossRef]
- Alshahrani, S.T.; Alshahrani, S.T.; Arevalo, J.F. Epiretinal Membrane After Branch Retinal Vein Occlusion: Separation After Dexamethasone Implant Injection. Am. J. Ophthalmol. Case Rep. 2022, 25, 101252. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Lee, J.H.; Park, Y.G. Changes in Neurodegeneration and Visual Prognosis in Branch Retinal Vein Occlusion after Resolution of Macular Edema. J. Clin. Med. 2024, 13, 812. [Google Scholar] [CrossRef] [PubMed]
- Alshareef, R.A.; Barteselli, G.; You, Q.; Goud, A.; Jabeen, A.; Rao, H.L.; Jabeen, A.; Chhablani, J. In Vivo Evaluation of Retinal Ganglion Cells Degeneration in Eyes with Branch Retinal Vein Occlusion. Br. J. Ophthalmol. 2016, 100, 1506–1510. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, L.; Talks, S.J.; Amoaku, W.; Talks, K.; Sivaprasad, S. Retinal Vein Occlusion (RVO) Guideline: Executive Summary. Eye 2022, 36, 909–912. [Google Scholar] [CrossRef] [PubMed]
- Flaxel, C.J.; Adelman, R.A.; Bailey, S.T.; Fawzi, A.; Lim, J.I.; Vemulakonda, G.A.; Ying, G.-S. Retinal Vein Occlusions Preferred Practice Pattern. Ophthalmology 2019, 127, P288–P320. [Google Scholar] [CrossRef]
- Yin, S.; Cui, Y.; Jiao, W.; Zhao, B. Potential Prognostic Indicators for Patients with Retinal Vein Occlusion. Front. Med. 2022, 9, 839082. [Google Scholar] [CrossRef]
- Hayreh, S.S.; Zimmerman, M.B. Branch Retinal Vein Occlusion: Natural History of Visual Outcome. JAMA Ophthalmol. 2014, 132, 13–22. [Google Scholar] [CrossRef]
- O’Mahoney, P.R.; Wong, D.T.; Ray, J.G. Retinal Vein Occlusion and Traditional Risk Factors for Atherosclerosis. Arch. Ophthalmol. 2008, 126, 692–699. [Google Scholar] [CrossRef]
- Jabbehdari, S.; Yazdanpanah, G.; Cantor, L.B.; Hajrasouliha, A.R. A Narrative Review on the Association of High Intraocular Pressure and Glaucoma in Patients with Retinal Vein Occlusion. Ann. Transl. Med. 2022, 10, 1072. [Google Scholar] [CrossRef]
- Schmidt-Erfurth, U.; Garcia-Arumi, J.; Gerendas, B.S.; Midena, E.; Sivaprasad, S.; Tadayoni, R.; Wolf, S.; Loewenstein, A. Guidelines for the Management of Retinal Vein Occlusion by the European Society of Retina Specialists (EURETINA). Ophthalmologica 2019, 242, 123–162. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Zhang, S.; Liu, J.; Bi, X. Impact of Anti-VEGF Therapy on Distinctive Retina Layers in Patients with Macular Edema Secondary to Branch Retinal Vein Occlusion. BMC Ophthalmol. 2023, 23, 235. [Google Scholar] [CrossRef] [PubMed]
- Dărăbuș, D.M.; Pac, C.P.; Roșca, C.; Munteanu, M. Macular Dynamics and Visual Acuity Prognosis in Retinal Vein Occlusions—Ways to Connect. Rom. J. Ophthalmol. 2023, 67, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.S.; Li, K.Z.; Sadda, S.R. Wide-Field Angiography in Retinal Vein Occlusions. Int. J. Retin. Vitr. 2019, 5 (Suppl. S1), 18. [Google Scholar] [CrossRef]
- Tsai, G.; Banaee, T.; Conti, F.F.; Singh, R.P. Optical Coherence Tomography Angiography in Eyes with Retinal Vein Occlusion. J. Ophthalmic Vis. Res. 2018, 13, 315–332. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Li, Y.; Henry, J.; Zhang, W.; Wang, X.; Paulus, Y.M. High Resolution Multimodal Photoacoustic Microscopy and Optical Coherence Tomography Visualization of Choroidal Vascular Occlusion. Int. J. Mol. Sci. 2020, 21, 6508. [Google Scholar] [CrossRef]
- Dadkhah, A.; Jiao, S. Integrating Photoacoustic Microscopy, Optical Coherence Tomography, OCT Angiography, and Fluorescence Microscopy for Multimodal Imaging. Exp. Biol. Med. 2020, 245, 342–347. [Google Scholar] [CrossRef]
- Hosseinaee, Z.; Abbasi, N.; Pellegrino, N.; Khalili, L.; Mukhangaliyeva, L.; Haji Reza, P. Functional and Structural Ophthalmic Imaging Using Noncontact Multimodal Photoacoustic Remote Sensing Microscopy and Optical Coherence Tomography. Sci. Rep. 2021, 11, 11466. [Google Scholar] [CrossRef]
- Ong, C.J.T.; Wong, M.Y.Z.; Cheong, K.X.; Zhao, J.; Teo, K.Y.C.; Tan, T.-E. Optical Coherence Tomography Angiography in Retinal Vascular Disorders. Diagnostics 2023, 13, 1620. [Google Scholar] [CrossRef]
- Coscas, F.; Glacet-Bernard, A.; Miere, A.; Caillaux, V.; Uzzan, J.; Lupidi, M.; Coscas, G.; Souied, E.H. Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa. Am. J. Ophthalmol. 2016, 161, 160–171.e7. [Google Scholar] [CrossRef]
- Javed, A.; Khanna, A.; Palmer, E.; Wilde, C.; Zaman, A.; Orr, G.; Kumudhan, D.; Lakshmanan, A.; Panos, G.D. Optical Coherence Tomography Angiography: A Review of the Current Literature. J. Int. Med. Res. 2023, 51, 03000605231187933. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Li, Y.; Qian, W.; Ma, J.; Yao, J. Contrast Agent Enhanced Multimodal Photoacoustic Microscopy and Optical Coherence Tomography for Imaging of Rabbit Choroidal and Retinal Vessels In Vivo. Sci. Rep. 2019, 9, 5945. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Bae, S.H.; Park, S.M.; Shin, M.C.; Park, I.W.; Kim, H.K.; Kwon, S. Comparison of Systemic Conditions at Diagnosis between Central Retinal Vein Occlusion and Branch Retinal Vein Occlusion. PLoS ONE 2019, 14, e0220880. [Google Scholar] [CrossRef] [PubMed]
- Glacet-Bernard, A.; Zourdani, A.; Milhoub, M.; Coscas, G.; Soubrane, G.; Coscas, F. Effect of Isovolemic Hemodilution in Central Retinal Vein Occlusion. Graefe’s Arch. Clin. Exp. Ophthalmol. 2001, 239, 909–914. [Google Scholar] [CrossRef]
- Parodi, M.B.; Bandello, F. Branch Retinal Vein Occlusion: Classification and Treatment. Ophthalmologica 2009, 223, 298–305. [Google Scholar] [CrossRef]
- Murakami, T.; Okamoto, F.; Iida, M.; Okamoto, Y.; Hiraoka, T.; Oshika, T. Relationship Between Metamorphopsia and Foveal Microstructure in Patients with Branch Retinal Vein Occlusion and Cystoid Macular Edema. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 2191–2196. [Google Scholar] [CrossRef]
- Nonaka, R.; Noma, H.; Yasuda, K.; Sasaki, S.; Goto, H.; Shimura, M. Visual Acuity and Retinal Thickness and Sensitivity after Intravitreal Ranibizumab Injection for Macular Edema in Branch Retinal Vein Occlusion. J. Clin. Med. 2024, 13, 2490. [Google Scholar] [CrossRef]
- Rehak, J.; Dusek, L.; Chrapek, O.; Fric, E.; Rehak, M. Initial Visual Acuity Is an Important Prognostic Factor in Patients with Branch Retinal Vein Occlusion. Ophthalmic Res. 2011, 45, 204–209. [Google Scholar] [CrossRef]
- Sasajima, H.; Zako, M.; Murotani, K.; Ishida, H.; Ueta, Y.; Tachi, N.; Suzuki, T.; Watanabe, Y.; Hashimoto, Y. Visual Prognostic Factors in Eyes with Subretinal Fluid Associated with Branch Retinal Vein Occlusion. J. Clin. Med. 2023, 12, 2909. [Google Scholar] [CrossRef]
- Venkatesh, R.; Pereira, A.; Sangai, S.; Thomas, S.; Yadav, N.K. Prognostic Value of Hyperreflective Material on Visual Acuity in Treatment-Naïve BRVO. Ophthalmic Surg. Lasers Imaging Retin. 2020, 51, 320–327. [Google Scholar] [CrossRef]
- Johari, M.; Attar, A.; Eghtedari, D.; Razavizadegan, S.A. Characteristics of Macular Edema Associated with Retinal Vein Occlusion Showing Poor Anatomic Response to Three Loading Anti-Vascular Endothelial Growth Factor Injections: An Optical Coherence Tomography Analysis. BMC Ophthalmol. 2024, 24, 30. [Google Scholar] [CrossRef]
- Scott, I.U.; Campochiaro, P.A.; Newman, N.J.; Biousse, V. Retinal Vascular Occlusions. Lancet 2020, 396, 1927–1940. [Google Scholar] [CrossRef] [PubMed]
- Groneberg, T.; Trattnig, J.S.; Feucht, N.; Lohmann, C.P.; Maier, M. Morphologic Patterns on Spectral-Domain Optical Coherence Tomography (SD-OCT) as a Prognostic Indicator in Treatment of Macular Edema Due to Retinal Vein Occlusion. Klin. Monbl. Augenheilkd. 2016, 233, 1056–1062. [Google Scholar] [CrossRef] [PubMed]
- Yiu, G.; Welch, R.J.; Wang, Y.; Wang, Z.; Wang, P.-W.; Haskova, Z. Spectral-Domain OCT Predictors of Visual Outcomes after Ranibizumab Treatment for Macular Edema Resulting from Retinal Vein Occlusion. Ophthalmology 2020, 127, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.W.; Lee, H.; Chung, H.; Kim, H.C. Correlation Between Optical Coherence Tomographic Hyperreflective Foci and Visual Outcomes after Intravitreal Bevacizumab for Macular Edema in Branch Retinal Vein Occlusion. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 252, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Powers, J.H.; Thomas, A.S.; Mir, T.A.; Kim, J.S.; Birnbaum, F.A.; Yoon, S.P.; Khan, K.; Gomez-Caraballo, M.; Fekrat, S. Impact and Implication of Fovea-Involving Intraretinal Hemorrhage after Acute Branch Retinal Vein Occlusion. Ophthalmology 2019, 126, 1338–1341. [Google Scholar] [CrossRef]
- Hirabayashi, K.; Hoshiyama, K.; Imai, A.; Iesato, Y.; Hirano, T.; Murata, T. Relationship between Central Retinal Sensitivity, Thickness, Perfusion Density and Visual Acuity in Patients with Branch Retinal Vein Occlusion. Acta Ophthalmol. 2022, 100, e610–e611. [Google Scholar] [CrossRef]
- Iesato, Y.; Imai, A.; Hirano, T.; Toriyama, Y.; Murata, T. Effect of Leaking Capillaries and Microaneurysms in the Perifoveal Capillary Network on Resolution of Macular Edema by Anti-Vascular Endothelial Growth Factor Treatment. Jpn. J. Ophthalmol. 2016, 60, 86–94. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, J.; Li, D. Functions and Diseases of the Retinal Pigment Epithelium. Front. Pharmacol. 2021, 12, 727870. [Google Scholar] [CrossRef]
- Abri Aghdam, K.; Reznicek, L.; Soltan Sanjari, M.; Seidensticker, F.; Klink, T.; Lohmann, C.P.; Maier, M. Peripheral Retinal Non-Perfusion and Treatment Response in Branch Retinal Vein Occlusion. Int. J. Ophthalmol. 2016, 9, 858–862. [Google Scholar] [CrossRef]
- Farinha, C.; Marques, J.P.; Almeida, E.; Lima, J.; Faria, J.; Almeida, R.; Silva, R.; Gomes, R. Treatment of Retinal Vein Occlusion with Ranibizumab in Clinical Practice: Longer-Term Results and Predictive Factors of Functional Outcome. Ophthalmic Res. 2015, 55, 10–18. [Google Scholar] [CrossRef]
- Kreminger, J.; Iby, J.; Rokitansky, S.; Stino, H.; Niederleithner, M.; Schlegl, T.; Drexler, W.; Schmoll, T.; Leitgeb, R.; Pollreisz, A.; et al. Association of Microaneurysms with Retinal Vascular Alterations in Patients with Retinal Vein Occlusion. Can. J. Ophthalmol. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.K.; Tian, C.W.; Li, M.H.; Wu, T.; Gong, M.; Wei, X.L.; Du, Y.R.; Hui, Y.N.; Du, H.J. Differential Analysis of Aqueous Humor Cytokine Levels in Patients with Macular Edema Secondary to Diabetic Retinopathy or Retinal Vein Occlusion. Int. J. Ophthalmol. 2023, 16, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Hayreh, S.S.; Podhajsky, P.A.; Zimmerman, M.B. Central and Hemicentral Retinal Vein Occlusion: Role of Anti-Platelet Aggregation Agents and Anticoagulants. Ophthalmology 2011, 118, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Michalska-Małecka, K.; Śpiewak, D.; Słowińska-Łożyńska, L.; Sierocka-Stępień, J. Influence of Hemorheological Factors on the Development of Retinal Vein Occlusion. Clin. Hemorheol. Microcirc. 2016, 63, 69–76. [Google Scholar] [CrossRef]
- Houtsmuller, A.J.; Vermeulen, J.A.; Klompe, M.; Zahn, K.J.; Henkes, H.E.; Baarsma, G.S.; Tijssen, J. The Influence of Ticlopidine on the Natural Course of Retinal Vein Occlusion. Agents Actions Suppl. 1984, 15, 219–229. [Google Scholar]
- Glacet-Bernard, A.; Coscas, G.; Chabanel, A.; Zourdani, A.; Lelong, F.; Samama, M.M. A Randomized, Double-Masked Study on the Treatment of Retinal Vein Occlusion with Troxerutin. Am. J. Ophthalmol. 1994, 118, 421–429. [Google Scholar] [CrossRef]
- Dragoni, F.; Kaarniranta, K. Individual Benefits of Enoxaparin Treatment in Branch Vein Occlusion. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 1031–1033. [Google Scholar] [CrossRef]
- Paciullo, F.; Valeriani, E.; Porfidia, A.; Di Nisio, M.; Donadini, M.P.; Marcucci, R.; Prisco, D.; Cagini, C.; Gresele, P.; Ageno, W. Antithrombotic Treatment of Retinal Vein Occlusion: A Position Statement from the Italian Society on Thrombosis and Haemostasis (SISET). Blood Transfus. 2022, 20, 341–347. [Google Scholar] [CrossRef]
- Valeriani, E.; Paciullo, F.; Porfidia, A.; Pignatelli, P.; Candeloro, M.; Di Nisio, M.; Donadini, M.P.; Mastroianni, C.M.; Pola, R.; Gresele, P.; et al. Antithrombotic Treatment for Retinal Vein Occlusion: A Systematic Review and Meta-Analysis. J. Thromb. Haemost. 2023, 21, 284–293. [Google Scholar] [CrossRef]
- Laurance, S.; Marin, M.; Colin, Y. Red Blood Cells: A Newly Described Partner in Central Retinal Vein Occlusion Pathophysiology? Int. J. Mol. Sci. 2023, 24, 1072. [Google Scholar] [CrossRef]
- Ong, J.; Selvam, A.; Maltsev, D.; Zhang, X.; Wu, L.; Chhablani, J. Subthreshold Laser Systems: A Narrative Review of the Current Status and Advancements for Retinal Diseases. Ann. Eye Sci. 2022, 7, 15. [Google Scholar] [CrossRef]
- Tadayoni, R.; Waldstein, S.M.; Boscia, F.; Gerding, H.; Pearce, I.; Priglinger, S.; Wenzel, A.; Barnes, E.; Gekkieva, M.; Pilz, S.; et al. Individualized Stabilization Criteria-Driven Ranibizumab Versus Laser in Branch Retinal Vein Occlusion: Six-Month Results of BRIGHTER. Ophthalmology 2016, 123, 1332–1344. [Google Scholar] [CrossRef] [PubMed]
- Clark, W.L.; Boyer, D.S.; Heier, J.S.; Brown, D.M.; Haller, J.A.; Vitti, R.; Kazmi, H.; Berliner, A.J.; Erickson, K.; Chu, K.W.; et al. Intravitreal Aflibercept for Macular Edema Following Branch Retinal Vein Occlusion: 52-Week Results of the VIBRANT Study. Ophthalmology 2016, 123, 330–336. [Google Scholar] [CrossRef]
- Glanville, J.; Patterson, J.; McCool, R.; Ferreira, A.; Gairy, K.; Pearce, I. Efficacy and Safety of Widely Used Treatments for Macular Oedema Secondary to Retinal Vein Occlusion: A Systematic Review. BMC Ophthalmol. 2014, 14, 17. [Google Scholar] [CrossRef]
- Narayanan, R.; Panchal, B.; Das, T.; Chhablani, J.; Jalali, S.; Ali, M.H. A Randomised, Double-Masked, Controlled Study of the Efficacy and Safety of Intravitreal Bevacizumab Versus Ranibizumab in the Treatment of Macular Oedema Due to Branch Retinal Vein Occlusion: MARVEL Report No. 1. Br. J. Ophthalmol. 2015, 99, 954–959. [Google Scholar] [CrossRef]
- Rezar, S.; Eibenberger, K.; Buhl, W.; Georgopoulos, M.; Schmidt-Erfurth, U.; Sacu, S. Anti-VEGF Treatment in Branch Retinal Vein Occlusion: A Real-World Experience Over 4 Years. Acta Ophthalmol. 2015, 93, 719–725. [Google Scholar] [CrossRef]
- Unsal, E.; Eltutar, K.; Sultan, P.; Gungel, H. Efficacy and Safety of Pro Re Nata Regimen without Loading Dose Ranibizumab Injections in Retinal Vein Occlusion. Pak. J. Med. Sci. 2015, 31, 510–515. [Google Scholar] [CrossRef]
- Ito, Y.; Saishin, Y.; Sawada, O.; Kakinoki, M.; Miyake, T.; Sawada, T.; Kawamura, H.; Ohji, M. Comparison of Single Injection and Three Monthly Injections of Intravitreal Bevacizumab for Macular Edema Associated with Branch Retinal Vein Occlusion. Clin. Ophthalmol. 2015, 9, 175–180. [Google Scholar] [CrossRef]
- Sakanishi, Y.; Lee, A.; Usui-Ouchi, A.; Ito, R.; Ebihara, N. Twelve-Month Outcomes in Patients with Retinal Vein Occlusion Treated with Low-Frequency Intravitreal Ranibizumab. Clin. Ophthalmol. 2016, 10, 1161–1165. [Google Scholar] [CrossRef]
- Rush, R.B.; Simunovic, M.P.; Aragon, A.V., 2nd; Ysasaga, J.E. Treat-and-Extend Intravitreal Bevacizumab for Branch Retinal Vein Occlusion. Ophthalmic Surg. Lasers Imaging Retin. 2014, 45, 212–216. [Google Scholar] [CrossRef]
- Peto, T.; Vader, M.J.; Verbraak, F.D.; Dijkman, G.; Hooymans, J.M.; Los, L.I.; Zwinderman, A.H.; Hoyng, C.B.; van Leeuwenhoek, R.; Vingerling, J.R.; et al. Comparing the Efficacy of Bevacizumab and Ranibizumab in Patients with Retinal Vein Occlusion: The Bevacizumab to Ranibizumab in Retinal Vein Occlusions (BRVO) Study, a Randomized Trial. Ophthalmol. Retin. 2020, 4, 576–587. [Google Scholar] [CrossRef]
- Goel, S.; Kumar, A.; Ravani, R.D.; Chandra, P.; Chandra, M.; Kumar, V. Comparison of Ranibizumab Alone Versus Ranibizumab with Targeted Retinal Laser for Branch Retinal Vein Occlusion with Macular Edema. Indian J. Ophthalmol. 2019, 67, 1105–1108. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, M.; Hirano, Y.; Yasuda, Y.; Kawamura, M.; Suzuki, N.; Yasukawa, T.; Ogura, Y. Twenty-Four Month Results of Intravitreal Ranibizumab for Macular Edema after Branch Retinal Vein Occlusion: Visual Outcomes and Resolution of Macular Edema. Semin. Ophthalmol. 2021, 36, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Weisberger, A.; Zhu, L.; Cheng, Y.; Liu, C. Efficacy and Safety of Ranibizumab in Asian Patients with Branch Retinal Vein Occlusion: Results from the Randomized BLOSSOM Study. Ophthalmol. Retin. 2020, 4, 57–66. [Google Scholar] [CrossRef]
- Arai, Y.; Takahashi, H.; Inoda, S.; Sakamoto, S.; Tan, X.; Inoue, Y.; Tominaga, S.; Kawashima, H.; Yanagi, Y. Efficacy of Modified Treat-and-Extend Regimen of Aflibercept for Macular Edema from Branch Retinal Vein Occlusion: 2-Year Prospective Study Outcomes. J. Clin. Med. 2021, 10, 3162. [Google Scholar] [CrossRef]
- Anguita, R.; Tasiopoulou, A.; Shahid, S.; Roth, J.; Sim, S.Y.; Patel, P.J. A Review of Aflibercept Treatment for Macular Disease. Ophthalmol. Ther. 2021, 10, 413–428. [Google Scholar] [CrossRef]
- Panigrahi, P.K. Off Label Intravitreal Brolucizumab in Treatment of Recurrent Macular Edema Due to Branch Retinal Vein Occlusion: A Case Report. Photodiagn. Photodyn. Ther. 2022, 37, 102694. [Google Scholar] [CrossRef]
- Chakraborty, D.; Mondal, S.; Boral, S.; Das, A. Intravitreal Injection of Brolucizumab for Recalcitrant Macular Edema due to Central Retinal Vein Occlusion: A Small Case Series. Case Rep. Ophthalmol. 2022, 13, 921–928. [Google Scholar] [CrossRef]
- Tadayoni, R.; Paris, L.P.; Danzig, C.J.; Abreu, F.; Khanani, A.M.; Brittain, C.; Lai, T.Y.Y.; Haskova, Z.; Sakamoto, T.; Kotecha, A.; et al. Efficacy and Safety of Faricimab for Macular Edema due to Retinal Vein Occlusion: 24-Week Results from the BALATON and COMINO Trials. Ophthalmology 2024, 131, 950–960. [Google Scholar] [CrossRef]
- Shirley, M. Faricimab: First Approval. Drugs 2022, 82, 825–830. [Google Scholar] [CrossRef]
- Patel, D.; Patel, S.N.; Chaudhary, V.; Garg, S.J. Complications of Intravitreal Injections: 2022. Curr. Opin. Ophthalmol. 2022, 33, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.S.; Xu, L.T.; Singuri, S.; Castillo Tafur, J.C.; Arepalli, S.; Ehlers, J.P.; Kaiser, P.K.; Singh, R.P.; Rachitskaya, A.V.; Srivastava, S.K.; et al. Patient-Reported Complications after Intravitreal Injection and Their Predictive Factors. Ophthalmol. Retin. 2021, 5, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.; Wilneff, M.A.; Yazji, A.; Petrinec, E.; Carbone, M.; Miller, C.; McCrossin, C.; Donkor, R.; Miller, D.G. Analysis of Urgent Follow-Up Visits and Complications after Intravitreal Injections: A Retrospective Cohort Study. Int. J. Retin. Vitr. 2022, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Gaballa, S.A.; Kompella, U.B.; Elgarhy, O.; Alqahtani, A.M.; Pierscionek, B.; Alany, R.G.; Abdelkader, H. Corticosteroids in Ophthalmology: Drug Delivery Innovations, Pharmacology, Clinical Applications, and Future Perspectives. Drug Deliv. Transl. Res. 2021, 11, 866–893. [Google Scholar] [CrossRef]
- Iovino, C.; Mastropasqua, R.; Lupidi, M.; Di Antonio, L.; Toto, L.; Carpineto, P.; Mastropasqua, L. Intravitreal Dexamethasone Implant as a Sustained Release Drug Delivery Device for the Treatment of Ocular Diseases: A Comprehensive Review of the Literature. Pharmaceutics 2020, 12, 703. [Google Scholar] [CrossRef]
- Ribeiro, F.; Falcão, M.S. Off-Label Use of 0.19 mg Fluocinolone Acetonide Intravitreal Implant: A Systematic Review. J. Ophthalmol. 2021, 2021, 6678364. [Google Scholar] [CrossRef]
- Shimura, M.; Nakazawa, T.; Yasuda, K.; Kunikata, H.; Shiono, T.; Nishida, K. Visual Prognosis and Vitreous Cytokine Levels after Arteriovenous Sheathotomy in Branch Retinal Vein Occlusion Associated with Macular Oedema. Acta Ophthalmol. 2008, 86, 377–384. [Google Scholar] [CrossRef]
- Oh, I.K.; Kim, S.; Oh, J.; Huh, K. Long-Term Visual Outcome of Arteriovenous Adventitial Sheathotomy on Branch Retinal Vein Occlusion Induced Macular Edema. Korean J. Ophthalmol. 2008, 22, 1–5. [Google Scholar] [CrossRef]
- Wakabayashi, T.; Patel, N.; Bough, M.; Nahar, A.; Sheng, Y.; Momenaei, B.; Salabati, M.; Mahmoudzadeh, R.; Kuriyan, A.E.; Spirn, M.J.; et al. Vitrectomy for Vitreous Hemorrhage Associated with Retinal Vein Occlusion: Visual Outcomes, Prognostic Factors, and Sequelae. Retina 2023, 43, 1506–1513. [Google Scholar] [CrossRef]
- Darabuş, D.M.; Munteanu, M.; Preda, M.A.; Karancsi, O.L.; Șuță, M.C. The Impact of Intraocular Treatment on Visual Acuity of Patients Diagnosed with Branch Retinal Vein Occlusions. Healthcare 2023, 11, 1414. [Google Scholar] [CrossRef]
- Chung, S.H.; Frick, S.L.; Yiu, G. Targeting Vascular Endothelial Growth Factor Using Retinal Gene Therapy. Ann. Transl. Med. 2021, 9, 1277. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, B.; Li, X.; Li, M.; Wang, Y.; Dan, H.; Zhou, J.; Wei, Y.; Ge, K.; Li, P.; et al. The Application and Progression of CRISPR/Cas9 Technology in Ophthalmological Diseases. Eye 2023, 37, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Wasnik, V.B.; Thool, A.R. Ocular Gene Therapy: A Literature Review with Focus on Current Clinical Trials. Cureus 2022, 14, e29533. [Google Scholar] [CrossRef] [PubMed]
- Maurya, R.; Vikal, A.; Narang, R.K.; Patel, P.; Kurmi, B.D. Recent Advancements and Applications of Ophthalmic Gene Therapy Strategies: A Breakthrough in Ocular Therapeutics. Exp. Eye Res. 2024, 245, 109983. [Google Scholar] [CrossRef]
- Nhàn, N.T.T.; Maidana, D.E.; Yamada, K.H. Ocular Delivery of Therapeutic Agents by Cell-Penetrating Peptides. Cells 2023, 12, 1071. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Heier, J.S.; Do, D.V.; Mirando, A.C.; Pandey, N.B.; Sheng, H.; Heah, T. The Tie2 Signaling Pathway in Retinal Vascular Diseases: A Novel Therapeutic Target in the Eye. Int. J. Retin. Vitr. 2020, 6, 48. [Google Scholar] [CrossRef]
- Guryanov, I.; Tennikova, T.; Urtti, A. Peptide Inhibitors of Vascular Endothelial Growth Factor A: Current Situation and Perspectives. Pharmaceutics 2021, 13, 1337. [Google Scholar] [CrossRef]
- Maetzel, A.; Feener, E.P. Plasma Kallikrein Inhibition in Diabetic Macular Edema: Targeting a Novel, VEGF-Independent Pathway of DME Could Preserve and Recover Vision. Retin. Physician 2020, 17, 26–28. [Google Scholar]
- Yang, S.; Wang, M.; Wang, T.; Sun, M.; Huang, H.; Shi, X.; Duan, S.; Wu, Y.; Zhu, J.; Liu, F. Self-Assembled Short Peptides: Recent Advances and Strategies for Potential Pharmaceutical Applications. Mater. Today Bio 2023, 20, 100644. [Google Scholar] [CrossRef]
- Jiang, D.; Xu, T.; Zhong, L.; Liang, Q.; Hu, Y.; Xiao, W.; Shi, J. Research Progress of VEGFR Small Molecule Inhibitors in Ocular Neovascular Diseases. Eur. J. Med. Chem. 2023, 257, 115535. [Google Scholar] [CrossRef]
- Gau, D.; Vignaud, L.; Francoeur, P.; Koes, D.; Guillonneau, X.; Roy, P. Inhibition of Ocular Neovascularization by Novel Anti-Angiogenic Compound. Exp. Eye Res. 2021, 213, 108861. [Google Scholar] [CrossRef] [PubMed]
- Parikh, B.H.; Liu, Z.; Blakeley, P.; Lin, Q.; Singh, M.; Ong, J.Y.; Ho, K.H.; Lai, J.W.; Bogireddi, H.; Tran, K.C.; et al. A Bio-Functional Polymer That Prevents Retinal Scarring through Modulation of NRF2 Signalling Pathway. Nat. Commun. 2022, 13, 2796. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Cui, K.; Wu, P.; Hu, A.; Fan, M.; Lu, X.; Yang, F.; Lin, J.; Yu, S.; Xu, Y.; et al. Acrizanib as a Novel Therapeutic Agent for Fundus Neovascularization via Inhibitory Phosphorylation of VEGFR2. Transl. Vis. Sci. Technol. 2024, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, S.; Jalali, S.; Joshi, M.B.; Satyamoorthy, K.; Kaur, I. Metabolomics Applicable to Retinal Vascular Diseases. Methods Mol. Biol. 2019, 1996, 325–331. [Google Scholar] [CrossRef]
- Ham, Y.; Mehta, H.; Kang-Mieler, J.; Mieler, W.F.; Chang, A. Novel Drug Delivery Methods and Approaches for the Treatment of Retinal Diseases. Asia-Pac. J. Ophthalmol. 2023, 12, 402–413. [Google Scholar] [CrossRef]
- Fleissig, E.; Loewenstein, A. Complications of Intravitreal Injections. Incidence is Low, but Caution is Warranted. Retin. Physician 2022, 19, 27–29. [Google Scholar]
Method | Advantages | Limitations |
---|---|---|
Fundus photography |
|
|
Fluorescein angiography |
|
|
Optical coherence tomography |
|
|
OCT angiography |
|
|
Scanning laser ophthalmoscopy |
|
|
Multimodal OCT and photoacoustic microscopy |
|
|
Anti-VEGF Agent | Structure and Mechanism of Action | Treatment Interval | Efficacy | Associated Complications |
---|---|---|---|---|
Bevacizumab (Avastin) | Full-length monoclonal antibody; targets VEGF-A | Monthly or as-needed (PRN) | Effective for reducing macular edema and improving visual acuity; used off-label for BRVO | Risk of systemic complications, mild intraocular pressure, or inflammation |
Ranibizumab (Lucentis) | Monoclonal antibody fragment; targets VEGF-A | Monthly or treat-and-extend | Significant improvement in visual acuity and reduction in macular edema; FDA-approved for BRVO | Mild intraocular pressure or inflammation |
Aflibercept (Eylea) | Recombinant fusion protein of VEGF; targets VEGF-A and PlGF | Treat-and-extend approach after initial loading doses | Effective in reducing macular edema and improving visual acuity; allows for longer intervals between injections; FDA-approved for BRVO | Mild intraocular pressure or inflammation |
Brolucizumab (Beovu) | A single-chain variable fragment; targets VEGF-A | Every 6–8 weeks after initial loading doses | Newer agent with potential for fewer required injections; promising results in recent studies; used off-label for BRVO | Intraocular inflammation, retinal vasculitis, retinal artery occlusion |
Faricimab (Vabysmo) | Bispecific monoclonal antibody; targets VEGF-A and Ang-2 | Every 8 weeks or up to 16 weeks after initial doses | Demonstrated efficacy in reducing macular edema with extended dosing intervals; FDA-approved for BRVO | Mild intraocular inflammation, systemic thromboembolic events |
Complication | Complication Rates | Management |
---|---|---|
Increased IOP | Transient IOP spikes are common (10–50%), but long-term elevation occurs in about 2–5% | Regular monitoring and management with antiglaucoma medications if needed |
Subconjunctival hemorrhage | 10–40% | Typically resolves on its own |
Corneal damage | 0.01–0.1% | Typically resolved with minimal intervention |
Cataracts | More commonly associated with intravitreal corticosteroid injections than anti-VEGF agents (15–40%) | Surgical intervention |
Vitreous hemorrhage | 0.02–0.1%, more likely in patients with pre-existing conditions such as retinal neovascularization | May require surgery |
Infection (endophthalmitis) | 0.01–0.09% | Sterilization, prophylactic antibiotics |
Ocular ischemia | <0.01% | Monitoring and treatment |
Systemic effects | <1%, more likely in patients with pre-existing cardiovascular or cerebrovascular disease | Management of systemic reactions as they arise |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darabuş, D.-M.; Dărăbuş, R.G.; Munteanu, M. The Diagnosis and Treatment of Branch Retinal Vein Occlusions: An Update. Biomedicines 2025, 13, 105. https://doi.org/10.3390/biomedicines13010105
Darabuş D-M, Dărăbuş RG, Munteanu M. The Diagnosis and Treatment of Branch Retinal Vein Occlusions: An Update. Biomedicines. 2025; 13(1):105. https://doi.org/10.3390/biomedicines13010105
Chicago/Turabian StyleDarabuş, Diana-Maria, Rodica Georgiana Dărăbuş, and Mihnea Munteanu. 2025. "The Diagnosis and Treatment of Branch Retinal Vein Occlusions: An Update" Biomedicines 13, no. 1: 105. https://doi.org/10.3390/biomedicines13010105
APA StyleDarabuş, D.-M., Dărăbuş, R. G., & Munteanu, M. (2025). The Diagnosis and Treatment of Branch Retinal Vein Occlusions: An Update. Biomedicines, 13(1), 105. https://doi.org/10.3390/biomedicines13010105