The Diagnosis and Treatment of Branch Retinal Vein Occlusions: An Update
Abstract
1. Introduction
2. Epidemiology
3. Pathogenesis and Evolution
4. Diagnosis
4.1. Clinical Diagnosis
4.2. Paraclinical Diagnosis
5. Therapy
5.1. Medical Treatment
5.2. Isovolemic Hemodilution
5.3. Laser Therapy
5.4. Anti-VEGF Therapy
5.5. Intravitreal Corticosteroid Therapy
5.6. Surgical Intervention
5.7. Combined Therapy
6. Actualities
6.1. Gene Therapy
6.2. Peptide-Based Agents
6.3. Small-Molecule Inhibitors
7. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hayreh, S.S. Ocular Vascular Occlusive Disorders: Natural History of Visual Outcome. Prog. Retin. Eye Res. 2014, 41, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Lendzioszek, M.; Mrugacz, M.; Bryl, A.; Poppe, E.; Zorena, K. Prevention and Treatment of Retinal Vein Occlusion: The Role of Diet—A Review. Nutrients 2023, 15, 3237. [Google Scholar] [CrossRef] [PubMed]
- Dărăbuș, D.-M.; Pac, C.-P.; Munteanu, M. Retinal Vein Occlusions Associated or Complicated with Glaucoma: Aspects of Prediction and Paths of Progression. Rom. J. Ophthalmol. 2023, 67, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.; Bajimaya, S.; Paudyal, G.; Khanal, S.; Tan, S.; Thapa, S.S.; Van Rens, G. Prevalence, Pattern and Risk Factors of Retinal Vein Occlusion in an Elderly Population in Nepal: The Bhaktapur Retina Study. BMC Ophthalmol. 2017, 17, 162. [Google Scholar] [CrossRef]
- Rogers, S.; McIntosh, R.L.; Cheung, N.; Lim, L.; Wang, J.J.; Mitchell, P.; Kowalski, J.W.; Nguyen, H.; Wong, T.Y.; International Eye Disease Consortium. The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia. Ophthalmology 2010, 117, 313–319. [Google Scholar] [CrossRef]
- Lendzioszek, M.; Bryl, A.; Poppe, E.; Zorena, K.; Mrugacz, M. Retinal Vein Occlusion–Background Knowledge and Foreground Knowledge Prospects—A Review. J. Clin. Med. 2024, 13, 3950. [Google Scholar] [CrossRef]
- Teruyo, K. Mystery of Retinal Vein Occlusion: Vasoactivity of the Vein and Possible Involvement of Endothelin-1. BioMed Res. Int. 2017, 2017, 4816527. [Google Scholar] [CrossRef]
- Cugati, S.; Wang, J.J.; Rochtchina, E.; Mitchell, P. Ten-Year Incidence of Retinal Vein Occlusion in an Older Population: The Blue Mountains Eye Study. Arch. Ophthalmol. 2006, 124, 726–732. [Google Scholar] [CrossRef]
- Rogers, S.L.; McIntosh, R.L.; Lim, L.; Mitchell, P.; Cheung, N.; Kowalski, J.W.; Nguyen, H.P.; Wang, J.J.; Wong, T.Y. Natural History of Branch Retinal Vein Occlusion: An Evidence-Based Systematic Review. Ophthalmology 2010, 117, 1094–1101.e5. [Google Scholar] [CrossRef]
- Li, J.; Paulus, Y.M.; Shuai, Y.; Fang, W.; Liu, Q.; Yuan, S. New Developments in the Classification, Pathogenesis, Risk Factors, Natural History, and Treatment of Branch Retinal Vein Occlusion. J. Ophthalmol. 2017, 2017, 4936924. [Google Scholar] [CrossRef]
- Fuma, S.; Nishinaka, A.; Inoue, Y.; Tsuruma, K.; Shimazawa, M.; Kondo, M.; Hara, H. A Pharmacological Approach in Newly Established Retinal Vein Occlusion Model. Sci. Rep. 2017, 7, 43509. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, K.; Ogino, N.; Fukami, M.; Furukawa, M. Vitrectomy for Macular Edema Due to Retinal Vein Occlusion. Clin. Ophthalmol. 2019, 13, 969–984. [Google Scholar] [CrossRef] [PubMed]
- Sheyman, A.; Fawzi, A.A. (Eds.) Retinal Vascular Disease; Springer: Singapore, 2020; pp. 1–156. [Google Scholar]
- Kolar, P. Definition and Classification of Retinal Vein Occlusion. Int. J. Ophthalmic Res. 2016, 2, 124–129. [Google Scholar] [CrossRef]
- Coscas, G.; Loewenstein, A.; Augustin, A.; Bandello, F.; Parodi, M.B.; Lanzetta, P.; Monés, J.; de Smet, M.; Soubrane, G.; Staurenghi, G. Management of Retinal Vein Occlusion—Consensus Document. Ophthalmologica 2011, 226, 4–28. [Google Scholar] [CrossRef]
- Hayreh, S.S.; Podhajsky, P.A.; Zimmerman, M.B. Natural History of Visual Outcome in Central Retinal Vein Occlusion. Ophthalmology 2011, 118, 119–133. [Google Scholar] [CrossRef]
- McIntosh, R.L.; Rogers, S.L.; Lim, L.; Cheung, N.; Wang, J.J.; Mitchell, P.; Kowalski, J.W.; Nguyen, H.P.; Wong, T.Y. Natural History of Central Retinal Vein Occlusion: An Evidence-Based Systematic Review. Ophthalmology 2010, 117, 1113–1123. [Google Scholar] [CrossRef]
- Cehofski, L.J.; Kruse, A.; Kirkeby, S.; Alsing, A.N.; Ellegaard, N.J.; Kojima, K.; Honoré, B.; Vorum, H. IL-18 and S100A12 Are Upregulated in Experimental Central Retinal Vein Occlusion. Int. J. Mol. Sci. 2018, 19, 3328. [Google Scholar] [CrossRef]
- Tang, Y.; Cheng, Y.; Wang, S.; Wang, Y.; Liu, P.; Wu, H. Review: The Development of Risk Factors and Cytokines in Retinal Vein Occlusion. Front. Med. 2022, 9, 910600. [Google Scholar] [CrossRef]
- Lashay, A.; Riazi-Esfahani, H.; Mirghorbani, M.; Yaseri, M. Intravitreal Medications for Retinal Vein Occlusion: Systematic Review and Meta-Analysis. J. Ophthalmic Vis. Res. 2019, 14, 336–366. [Google Scholar] [CrossRef]
- Klein, R.; Moss, S.E.; Meuer, S.M.; Klein, B.E. The 15-Year Cumulative Incidence of Retinal Vein Occlusion: The Beaver Dam Eye Study. Arch. Ophthalmol. 2008, 126, 513–518. [Google Scholar] [CrossRef]
- Bradshaw, S.E.; Gala, S.; Nanavaty, M.; Shah, A.; Mwamburi, M.; Kefalas, P. Systematic Literature Review of Treatments for Management of Complications of Ischemic Central Retinal Vein Occlusion. BMC Ophthalmol. 2016, 16, 104. [Google Scholar] [CrossRef] [PubMed]
- Thapa, S.S.; Rana, P.P.; Twyana, S.N.; Shrestha, M.K.; Paudel, I.; Paudyal, G.; Gurung, R.; Ruit, S.; Hewitt, A.W.; Craig, J.E.; et al. Rational, Methods and Baseline Demographics of the Bhaktapur Glaucoma Study. Clin. Exp. Ophthalmol. 2011, 39, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.; Klein, B.E.; Moss, S.E.; Meuer, S.M. The Epidemiology of Retinal Vein Occlusion: The Beaver Dam Eye Study. Trans. Am. Ophthalmol. Soc. 2000, 98, 133–141. [Google Scholar]
- Shin, Y.U.; Cho, H.; Kim, J.M.; Bae, K.; ho Kang, M.; Shin, J.P.; Nam, E.; Kang, S.W. Prevalence and Associated Factors of Retinal Vein Occlusion in the Korean National Health and Nutritional Examination Survey, 2008–2012: A Cross-Sectional Observational Study. Medicine 2016, 95, e5185. [Google Scholar] [CrossRef]
- Song, P.; Xu, Y.; Zha, M.; Zhang, Y.; Rudan, I. Global Epidemiology of Retinal Vein Occlusion: A Systematic Review and Meta-Analysis of Prevalence, Incidence, and Risk Factors. J. Glob. Health 2019, 9, 010427. [Google Scholar] [CrossRef]
- Ang, J.L.; Ah-Moye, S.; Kim, L.N.; Nguyen, V.; Hunt, A.; Barthelmes, D.; Gillies, M.C.; Mehta, H. A Systematic Review of Real-World Evidence of the Management of Macular Oedema Secondary to Branch Retinal Vein Occlusion. Eye 2020, 34, 1770–1796. [Google Scholar] [CrossRef]
- Garnavou-Xirou, C.; Bontzos, G.; Smoustopoulos, G.; Velissaris, S.; Papadopoulos, A.; Georgopoulos, E.; Stavrakas, P.; Georgakopoulos, C.; Xirou, T.; Kozobolis, V. Systemic Risk Factors in Branch Retinal Vein Occlusion: A Comprehensive Review. Maedica 2024, 19, 380–387. [Google Scholar] [CrossRef]
- Kolar, P. Risk Factors for Central and Branch Retinal Vein Occlusion: A Meta-Analysis of Published Clinical Data. J. Ophthalmol. 2014, 2014, 724780. [Google Scholar] [CrossRef]
- Noh, S.Y.; Lee, J.H.; Jeong, W.J. Branch Retinal Vein Occlusion with Arteriovenous Crossing. J. Retin. 2023, 8, 36–41. [Google Scholar] [CrossRef]
- Kumagai, K.; Tsujikawa, A.; Muraoka, Y.; Akagi-Kurashige, Y.; Murakami, T.; Miyamoto, K.; Yamada, R.; Yoshimura, N. Three-Dimensional Optical Coherence Tomography Evaluation of Vascular Changes at Arteriovenous Crossings. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1867–1875. [Google Scholar] [CrossRef]
- Zhao, J.S.S.; Sperduto, R.D.; Chew, E.Y.; Remaley, N.A. Arteriovenous Crossing Patterns in Branch Retinal Vein Occlusion. Ophthalmology 1993, 100, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Christoffersen, N.L.; Larsen, M. Pathophysiology and Hemodynamics of Branch Retinal Vein Occlusion. Ophthalmology 1999, 106, 2054–2062. [Google Scholar] [CrossRef] [PubMed]
- Saroj, S.C.; Singh, S.; Siddiqui, R.A.; Singh, S.; Yadav, A. Systemic Risk Factors and Clinical Profile of Retinal Vein Occlusion in a Tertiary Eye Care Hospital in Northern Uttar Pradesh—A Case Control Study. IJFMR 2023, 5, 1–8. [Google Scholar] [CrossRef]
- Marcinkowska, A.; Cisiecki, S.; Rozalski, M. Platelet and Thrombophilia-Related Risk Factors of Retinal Vein Occlusion. J. Clin. Med. 2021, 10, 3080. [Google Scholar] [CrossRef]
- Avrutsky, M.I.; Ortiz, C.C.; Johnson, K.V.; Potenski, A.M.; Chen, C.W.; Lawson, J.M.; White, A.J.; Yuen, S.K.; Morales, F.N.; Canepa, E.; et al. Endothelial Activation of Caspase-9 Promotes Neurovascular Injury in Retinal Vein Occlusion. Nat. Commun. 2020, 11, 3173. [Google Scholar] [CrossRef]
- Chen, G.; Chen, P.; Chen, X.; Wang, J.; Peng, X. The Laser Combined with Intravitreal Injection of Ranibizumab for Treatment of Macular Edema Secondary to Branch Retinal Vein Occlusion: A Protocol for Systematic Review and Meta-Analysis. Medicine 2021, 100, e23675. [Google Scholar] [CrossRef]
- Daruich, A.; Matet, A.; Moulin, A.; Kowalczuk, L.; Nicolas, M.; Sellam, A.; Rothschild, P.R.; Omri, S.; Gélizé, E.; Jonet, L.; et al. Mechanisms of Macular Edema: Beyond the Surface. Prog. Retin. Eye Res. 2018, 63, 20–68. [Google Scholar] [CrossRef]
- Iijima, H. Mechanisms of Vision Loss in Eyes with Macular Edema Associated with Retinal Vein Occlusion. Jpn. J. Ophthalmol. 2018, 62, 265–273. [Google Scholar] [CrossRef]
- Arrigo, A.; Aragona, E.; Lattanzio, R.; Scalia, G.; Bandello, F.; Parodi, M.B. Collateral Vessel Development in Central and Branch Retinal Vein Occlusions Are Associated with Worse Visual and Anatomic Outcomes. Investig. Ophthalmol. Vis. Sci. 2021, 62, 1. [Google Scholar] [CrossRef]
- Hayreh, S.S.; Zimmerman, M.B. Fundus Changes in Central Retinal Vein Occlusion. Retina 2015, 35, 29–42. [Google Scholar] [CrossRef]
- Alshahrani, S.T.; Alshahrani, S.T.; Arevalo, J.F. Epiretinal Membrane After Branch Retinal Vein Occlusion: Separation After Dexamethasone Implant Injection. Am. J. Ophthalmol. Case Rep. 2022, 25, 101252. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Lee, J.H.; Park, Y.G. Changes in Neurodegeneration and Visual Prognosis in Branch Retinal Vein Occlusion after Resolution of Macular Edema. J. Clin. Med. 2024, 13, 812. [Google Scholar] [CrossRef] [PubMed]
- Alshareef, R.A.; Barteselli, G.; You, Q.; Goud, A.; Jabeen, A.; Rao, H.L.; Jabeen, A.; Chhablani, J. In Vivo Evaluation of Retinal Ganglion Cells Degeneration in Eyes with Branch Retinal Vein Occlusion. Br. J. Ophthalmol. 2016, 100, 1506–1510. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, L.; Talks, S.J.; Amoaku, W.; Talks, K.; Sivaprasad, S. Retinal Vein Occlusion (RVO) Guideline: Executive Summary. Eye 2022, 36, 909–912. [Google Scholar] [CrossRef] [PubMed]
- Flaxel, C.J.; Adelman, R.A.; Bailey, S.T.; Fawzi, A.; Lim, J.I.; Vemulakonda, G.A.; Ying, G.-S. Retinal Vein Occlusions Preferred Practice Pattern. Ophthalmology 2019, 127, P288–P320. [Google Scholar] [CrossRef]
- Yin, S.; Cui, Y.; Jiao, W.; Zhao, B. Potential Prognostic Indicators for Patients with Retinal Vein Occlusion. Front. Med. 2022, 9, 839082. [Google Scholar] [CrossRef]
- Hayreh, S.S.; Zimmerman, M.B. Branch Retinal Vein Occlusion: Natural History of Visual Outcome. JAMA Ophthalmol. 2014, 132, 13–22. [Google Scholar] [CrossRef]
- O’Mahoney, P.R.; Wong, D.T.; Ray, J.G. Retinal Vein Occlusion and Traditional Risk Factors for Atherosclerosis. Arch. Ophthalmol. 2008, 126, 692–699. [Google Scholar] [CrossRef]
- Jabbehdari, S.; Yazdanpanah, G.; Cantor, L.B.; Hajrasouliha, A.R. A Narrative Review on the Association of High Intraocular Pressure and Glaucoma in Patients with Retinal Vein Occlusion. Ann. Transl. Med. 2022, 10, 1072. [Google Scholar] [CrossRef]
- Schmidt-Erfurth, U.; Garcia-Arumi, J.; Gerendas, B.S.; Midena, E.; Sivaprasad, S.; Tadayoni, R.; Wolf, S.; Loewenstein, A. Guidelines for the Management of Retinal Vein Occlusion by the European Society of Retina Specialists (EURETINA). Ophthalmologica 2019, 242, 123–162. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Zhang, S.; Liu, J.; Bi, X. Impact of Anti-VEGF Therapy on Distinctive Retina Layers in Patients with Macular Edema Secondary to Branch Retinal Vein Occlusion. BMC Ophthalmol. 2023, 23, 235. [Google Scholar] [CrossRef] [PubMed]
- Dărăbuș, D.M.; Pac, C.P.; Roșca, C.; Munteanu, M. Macular Dynamics and Visual Acuity Prognosis in Retinal Vein Occlusions—Ways to Connect. Rom. J. Ophthalmol. 2023, 67, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.S.; Li, K.Z.; Sadda, S.R. Wide-Field Angiography in Retinal Vein Occlusions. Int. J. Retin. Vitr. 2019, 5 (Suppl. S1), 18. [Google Scholar] [CrossRef]
- Tsai, G.; Banaee, T.; Conti, F.F.; Singh, R.P. Optical Coherence Tomography Angiography in Eyes with Retinal Vein Occlusion. J. Ophthalmic Vis. Res. 2018, 13, 315–332. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Li, Y.; Henry, J.; Zhang, W.; Wang, X.; Paulus, Y.M. High Resolution Multimodal Photoacoustic Microscopy and Optical Coherence Tomography Visualization of Choroidal Vascular Occlusion. Int. J. Mol. Sci. 2020, 21, 6508. [Google Scholar] [CrossRef]
- Dadkhah, A.; Jiao, S. Integrating Photoacoustic Microscopy, Optical Coherence Tomography, OCT Angiography, and Fluorescence Microscopy for Multimodal Imaging. Exp. Biol. Med. 2020, 245, 342–347. [Google Scholar] [CrossRef]
- Hosseinaee, Z.; Abbasi, N.; Pellegrino, N.; Khalili, L.; Mukhangaliyeva, L.; Haji Reza, P. Functional and Structural Ophthalmic Imaging Using Noncontact Multimodal Photoacoustic Remote Sensing Microscopy and Optical Coherence Tomography. Sci. Rep. 2021, 11, 11466. [Google Scholar] [CrossRef]
- Ong, C.J.T.; Wong, M.Y.Z.; Cheong, K.X.; Zhao, J.; Teo, K.Y.C.; Tan, T.-E. Optical Coherence Tomography Angiography in Retinal Vascular Disorders. Diagnostics 2023, 13, 1620. [Google Scholar] [CrossRef]
- Coscas, F.; Glacet-Bernard, A.; Miere, A.; Caillaux, V.; Uzzan, J.; Lupidi, M.; Coscas, G.; Souied, E.H. Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa. Am. J. Ophthalmol. 2016, 161, 160–171.e7. [Google Scholar] [CrossRef]
- Javed, A.; Khanna, A.; Palmer, E.; Wilde, C.; Zaman, A.; Orr, G.; Kumudhan, D.; Lakshmanan, A.; Panos, G.D. Optical Coherence Tomography Angiography: A Review of the Current Literature. J. Int. Med. Res. 2023, 51, 03000605231187933. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Li, Y.; Qian, W.; Ma, J.; Yao, J. Contrast Agent Enhanced Multimodal Photoacoustic Microscopy and Optical Coherence Tomography for Imaging of Rabbit Choroidal and Retinal Vessels In Vivo. Sci. Rep. 2019, 9, 5945. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Bae, S.H.; Park, S.M.; Shin, M.C.; Park, I.W.; Kim, H.K.; Kwon, S. Comparison of Systemic Conditions at Diagnosis between Central Retinal Vein Occlusion and Branch Retinal Vein Occlusion. PLoS ONE 2019, 14, e0220880. [Google Scholar] [CrossRef] [PubMed]
- Glacet-Bernard, A.; Zourdani, A.; Milhoub, M.; Coscas, G.; Soubrane, G.; Coscas, F. Effect of Isovolemic Hemodilution in Central Retinal Vein Occlusion. Graefe’s Arch. Clin. Exp. Ophthalmol. 2001, 239, 909–914. [Google Scholar] [CrossRef]
- Parodi, M.B.; Bandello, F. Branch Retinal Vein Occlusion: Classification and Treatment. Ophthalmologica 2009, 223, 298–305. [Google Scholar] [CrossRef]
- Murakami, T.; Okamoto, F.; Iida, M.; Okamoto, Y.; Hiraoka, T.; Oshika, T. Relationship Between Metamorphopsia and Foveal Microstructure in Patients with Branch Retinal Vein Occlusion and Cystoid Macular Edema. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 2191–2196. [Google Scholar] [CrossRef]
- Nonaka, R.; Noma, H.; Yasuda, K.; Sasaki, S.; Goto, H.; Shimura, M. Visual Acuity and Retinal Thickness and Sensitivity after Intravitreal Ranibizumab Injection for Macular Edema in Branch Retinal Vein Occlusion. J. Clin. Med. 2024, 13, 2490. [Google Scholar] [CrossRef]
- Rehak, J.; Dusek, L.; Chrapek, O.; Fric, E.; Rehak, M. Initial Visual Acuity Is an Important Prognostic Factor in Patients with Branch Retinal Vein Occlusion. Ophthalmic Res. 2011, 45, 204–209. [Google Scholar] [CrossRef]
- Sasajima, H.; Zako, M.; Murotani, K.; Ishida, H.; Ueta, Y.; Tachi, N.; Suzuki, T.; Watanabe, Y.; Hashimoto, Y. Visual Prognostic Factors in Eyes with Subretinal Fluid Associated with Branch Retinal Vein Occlusion. J. Clin. Med. 2023, 12, 2909. [Google Scholar] [CrossRef]
- Venkatesh, R.; Pereira, A.; Sangai, S.; Thomas, S.; Yadav, N.K. Prognostic Value of Hyperreflective Material on Visual Acuity in Treatment-Naïve BRVO. Ophthalmic Surg. Lasers Imaging Retin. 2020, 51, 320–327. [Google Scholar] [CrossRef]
- Johari, M.; Attar, A.; Eghtedari, D.; Razavizadegan, S.A. Characteristics of Macular Edema Associated with Retinal Vein Occlusion Showing Poor Anatomic Response to Three Loading Anti-Vascular Endothelial Growth Factor Injections: An Optical Coherence Tomography Analysis. BMC Ophthalmol. 2024, 24, 30. [Google Scholar] [CrossRef]
- Scott, I.U.; Campochiaro, P.A.; Newman, N.J.; Biousse, V. Retinal Vascular Occlusions. Lancet 2020, 396, 1927–1940. [Google Scholar] [CrossRef] [PubMed]
- Groneberg, T.; Trattnig, J.S.; Feucht, N.; Lohmann, C.P.; Maier, M. Morphologic Patterns on Spectral-Domain Optical Coherence Tomography (SD-OCT) as a Prognostic Indicator in Treatment of Macular Edema Due to Retinal Vein Occlusion. Klin. Monbl. Augenheilkd. 2016, 233, 1056–1062. [Google Scholar] [CrossRef] [PubMed]
- Yiu, G.; Welch, R.J.; Wang, Y.; Wang, Z.; Wang, P.-W.; Haskova, Z. Spectral-Domain OCT Predictors of Visual Outcomes after Ranibizumab Treatment for Macular Edema Resulting from Retinal Vein Occlusion. Ophthalmology 2020, 127, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.W.; Lee, H.; Chung, H.; Kim, H.C. Correlation Between Optical Coherence Tomographic Hyperreflective Foci and Visual Outcomes after Intravitreal Bevacizumab for Macular Edema in Branch Retinal Vein Occlusion. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 252, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Powers, J.H.; Thomas, A.S.; Mir, T.A.; Kim, J.S.; Birnbaum, F.A.; Yoon, S.P.; Khan, K.; Gomez-Caraballo, M.; Fekrat, S. Impact and Implication of Fovea-Involving Intraretinal Hemorrhage after Acute Branch Retinal Vein Occlusion. Ophthalmology 2019, 126, 1338–1341. [Google Scholar] [CrossRef]
- Hirabayashi, K.; Hoshiyama, K.; Imai, A.; Iesato, Y.; Hirano, T.; Murata, T. Relationship between Central Retinal Sensitivity, Thickness, Perfusion Density and Visual Acuity in Patients with Branch Retinal Vein Occlusion. Acta Ophthalmol. 2022, 100, e610–e611. [Google Scholar] [CrossRef]
- Iesato, Y.; Imai, A.; Hirano, T.; Toriyama, Y.; Murata, T. Effect of Leaking Capillaries and Microaneurysms in the Perifoveal Capillary Network on Resolution of Macular Edema by Anti-Vascular Endothelial Growth Factor Treatment. Jpn. J. Ophthalmol. 2016, 60, 86–94. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, J.; Li, D. Functions and Diseases of the Retinal Pigment Epithelium. Front. Pharmacol. 2021, 12, 727870. [Google Scholar] [CrossRef]
- Abri Aghdam, K.; Reznicek, L.; Soltan Sanjari, M.; Seidensticker, F.; Klink, T.; Lohmann, C.P.; Maier, M. Peripheral Retinal Non-Perfusion and Treatment Response in Branch Retinal Vein Occlusion. Int. J. Ophthalmol. 2016, 9, 858–862. [Google Scholar] [CrossRef]
- Farinha, C.; Marques, J.P.; Almeida, E.; Lima, J.; Faria, J.; Almeida, R.; Silva, R.; Gomes, R. Treatment of Retinal Vein Occlusion with Ranibizumab in Clinical Practice: Longer-Term Results and Predictive Factors of Functional Outcome. Ophthalmic Res. 2015, 55, 10–18. [Google Scholar] [CrossRef]
- Kreminger, J.; Iby, J.; Rokitansky, S.; Stino, H.; Niederleithner, M.; Schlegl, T.; Drexler, W.; Schmoll, T.; Leitgeb, R.; Pollreisz, A.; et al. Association of Microaneurysms with Retinal Vascular Alterations in Patients with Retinal Vein Occlusion. Can. J. Ophthalmol. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.K.; Tian, C.W.; Li, M.H.; Wu, T.; Gong, M.; Wei, X.L.; Du, Y.R.; Hui, Y.N.; Du, H.J. Differential Analysis of Aqueous Humor Cytokine Levels in Patients with Macular Edema Secondary to Diabetic Retinopathy or Retinal Vein Occlusion. Int. J. Ophthalmol. 2023, 16, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Hayreh, S.S.; Podhajsky, P.A.; Zimmerman, M.B. Central and Hemicentral Retinal Vein Occlusion: Role of Anti-Platelet Aggregation Agents and Anticoagulants. Ophthalmology 2011, 118, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Michalska-Małecka, K.; Śpiewak, D.; Słowińska-Łożyńska, L.; Sierocka-Stępień, J. Influence of Hemorheological Factors on the Development of Retinal Vein Occlusion. Clin. Hemorheol. Microcirc. 2016, 63, 69–76. [Google Scholar] [CrossRef]
- Houtsmuller, A.J.; Vermeulen, J.A.; Klompe, M.; Zahn, K.J.; Henkes, H.E.; Baarsma, G.S.; Tijssen, J. The Influence of Ticlopidine on the Natural Course of Retinal Vein Occlusion. Agents Actions Suppl. 1984, 15, 219–229. [Google Scholar]
- Glacet-Bernard, A.; Coscas, G.; Chabanel, A.; Zourdani, A.; Lelong, F.; Samama, M.M. A Randomized, Double-Masked Study on the Treatment of Retinal Vein Occlusion with Troxerutin. Am. J. Ophthalmol. 1994, 118, 421–429. [Google Scholar] [CrossRef]
- Dragoni, F.; Kaarniranta, K. Individual Benefits of Enoxaparin Treatment in Branch Vein Occlusion. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 1031–1033. [Google Scholar] [CrossRef]
- Paciullo, F.; Valeriani, E.; Porfidia, A.; Di Nisio, M.; Donadini, M.P.; Marcucci, R.; Prisco, D.; Cagini, C.; Gresele, P.; Ageno, W. Antithrombotic Treatment of Retinal Vein Occlusion: A Position Statement from the Italian Society on Thrombosis and Haemostasis (SISET). Blood Transfus. 2022, 20, 341–347. [Google Scholar] [CrossRef]
- Valeriani, E.; Paciullo, F.; Porfidia, A.; Pignatelli, P.; Candeloro, M.; Di Nisio, M.; Donadini, M.P.; Mastroianni, C.M.; Pola, R.; Gresele, P.; et al. Antithrombotic Treatment for Retinal Vein Occlusion: A Systematic Review and Meta-Analysis. J. Thromb. Haemost. 2023, 21, 284–293. [Google Scholar] [CrossRef]
- Laurance, S.; Marin, M.; Colin, Y. Red Blood Cells: A Newly Described Partner in Central Retinal Vein Occlusion Pathophysiology? Int. J. Mol. Sci. 2023, 24, 1072. [Google Scholar] [CrossRef]
- Ong, J.; Selvam, A.; Maltsev, D.; Zhang, X.; Wu, L.; Chhablani, J. Subthreshold Laser Systems: A Narrative Review of the Current Status and Advancements for Retinal Diseases. Ann. Eye Sci. 2022, 7, 15. [Google Scholar] [CrossRef]
- Tadayoni, R.; Waldstein, S.M.; Boscia, F.; Gerding, H.; Pearce, I.; Priglinger, S.; Wenzel, A.; Barnes, E.; Gekkieva, M.; Pilz, S.; et al. Individualized Stabilization Criteria-Driven Ranibizumab Versus Laser in Branch Retinal Vein Occlusion: Six-Month Results of BRIGHTER. Ophthalmology 2016, 123, 1332–1344. [Google Scholar] [CrossRef] [PubMed]
- Clark, W.L.; Boyer, D.S.; Heier, J.S.; Brown, D.M.; Haller, J.A.; Vitti, R.; Kazmi, H.; Berliner, A.J.; Erickson, K.; Chu, K.W.; et al. Intravitreal Aflibercept for Macular Edema Following Branch Retinal Vein Occlusion: 52-Week Results of the VIBRANT Study. Ophthalmology 2016, 123, 330–336. [Google Scholar] [CrossRef]
- Glanville, J.; Patterson, J.; McCool, R.; Ferreira, A.; Gairy, K.; Pearce, I. Efficacy and Safety of Widely Used Treatments for Macular Oedema Secondary to Retinal Vein Occlusion: A Systematic Review. BMC Ophthalmol. 2014, 14, 17. [Google Scholar] [CrossRef]
- Narayanan, R.; Panchal, B.; Das, T.; Chhablani, J.; Jalali, S.; Ali, M.H. A Randomised, Double-Masked, Controlled Study of the Efficacy and Safety of Intravitreal Bevacizumab Versus Ranibizumab in the Treatment of Macular Oedema Due to Branch Retinal Vein Occlusion: MARVEL Report No. 1. Br. J. Ophthalmol. 2015, 99, 954–959. [Google Scholar] [CrossRef]
- Rezar, S.; Eibenberger, K.; Buhl, W.; Georgopoulos, M.; Schmidt-Erfurth, U.; Sacu, S. Anti-VEGF Treatment in Branch Retinal Vein Occlusion: A Real-World Experience Over 4 Years. Acta Ophthalmol. 2015, 93, 719–725. [Google Scholar] [CrossRef]
- Unsal, E.; Eltutar, K.; Sultan, P.; Gungel, H. Efficacy and Safety of Pro Re Nata Regimen without Loading Dose Ranibizumab Injections in Retinal Vein Occlusion. Pak. J. Med. Sci. 2015, 31, 510–515. [Google Scholar] [CrossRef]
- Ito, Y.; Saishin, Y.; Sawada, O.; Kakinoki, M.; Miyake, T.; Sawada, T.; Kawamura, H.; Ohji, M. Comparison of Single Injection and Three Monthly Injections of Intravitreal Bevacizumab for Macular Edema Associated with Branch Retinal Vein Occlusion. Clin. Ophthalmol. 2015, 9, 175–180. [Google Scholar] [CrossRef]
- Sakanishi, Y.; Lee, A.; Usui-Ouchi, A.; Ito, R.; Ebihara, N. Twelve-Month Outcomes in Patients with Retinal Vein Occlusion Treated with Low-Frequency Intravitreal Ranibizumab. Clin. Ophthalmol. 2016, 10, 1161–1165. [Google Scholar] [CrossRef]
- Rush, R.B.; Simunovic, M.P.; Aragon, A.V., 2nd; Ysasaga, J.E. Treat-and-Extend Intravitreal Bevacizumab for Branch Retinal Vein Occlusion. Ophthalmic Surg. Lasers Imaging Retin. 2014, 45, 212–216. [Google Scholar] [CrossRef]
- Peto, T.; Vader, M.J.; Verbraak, F.D.; Dijkman, G.; Hooymans, J.M.; Los, L.I.; Zwinderman, A.H.; Hoyng, C.B.; van Leeuwenhoek, R.; Vingerling, J.R.; et al. Comparing the Efficacy of Bevacizumab and Ranibizumab in Patients with Retinal Vein Occlusion: The Bevacizumab to Ranibizumab in Retinal Vein Occlusions (BRVO) Study, a Randomized Trial. Ophthalmol. Retin. 2020, 4, 576–587. [Google Scholar] [CrossRef]
- Goel, S.; Kumar, A.; Ravani, R.D.; Chandra, P.; Chandra, M.; Kumar, V. Comparison of Ranibizumab Alone Versus Ranibizumab with Targeted Retinal Laser for Branch Retinal Vein Occlusion with Macular Edema. Indian J. Ophthalmol. 2019, 67, 1105–1108. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, M.; Hirano, Y.; Yasuda, Y.; Kawamura, M.; Suzuki, N.; Yasukawa, T.; Ogura, Y. Twenty-Four Month Results of Intravitreal Ranibizumab for Macular Edema after Branch Retinal Vein Occlusion: Visual Outcomes and Resolution of Macular Edema. Semin. Ophthalmol. 2021, 36, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Weisberger, A.; Zhu, L.; Cheng, Y.; Liu, C. Efficacy and Safety of Ranibizumab in Asian Patients with Branch Retinal Vein Occlusion: Results from the Randomized BLOSSOM Study. Ophthalmol. Retin. 2020, 4, 57–66. [Google Scholar] [CrossRef]
- Arai, Y.; Takahashi, H.; Inoda, S.; Sakamoto, S.; Tan, X.; Inoue, Y.; Tominaga, S.; Kawashima, H.; Yanagi, Y. Efficacy of Modified Treat-and-Extend Regimen of Aflibercept for Macular Edema from Branch Retinal Vein Occlusion: 2-Year Prospective Study Outcomes. J. Clin. Med. 2021, 10, 3162. [Google Scholar] [CrossRef]
- Anguita, R.; Tasiopoulou, A.; Shahid, S.; Roth, J.; Sim, S.Y.; Patel, P.J. A Review of Aflibercept Treatment for Macular Disease. Ophthalmol. Ther. 2021, 10, 413–428. [Google Scholar] [CrossRef]
- Panigrahi, P.K. Off Label Intravitreal Brolucizumab in Treatment of Recurrent Macular Edema Due to Branch Retinal Vein Occlusion: A Case Report. Photodiagn. Photodyn. Ther. 2022, 37, 102694. [Google Scholar] [CrossRef]
- Chakraborty, D.; Mondal, S.; Boral, S.; Das, A. Intravitreal Injection of Brolucizumab for Recalcitrant Macular Edema due to Central Retinal Vein Occlusion: A Small Case Series. Case Rep. Ophthalmol. 2022, 13, 921–928. [Google Scholar] [CrossRef]
- Tadayoni, R.; Paris, L.P.; Danzig, C.J.; Abreu, F.; Khanani, A.M.; Brittain, C.; Lai, T.Y.Y.; Haskova, Z.; Sakamoto, T.; Kotecha, A.; et al. Efficacy and Safety of Faricimab for Macular Edema due to Retinal Vein Occlusion: 24-Week Results from the BALATON and COMINO Trials. Ophthalmology 2024, 131, 950–960. [Google Scholar] [CrossRef]
- Shirley, M. Faricimab: First Approval. Drugs 2022, 82, 825–830. [Google Scholar] [CrossRef]
- Patel, D.; Patel, S.N.; Chaudhary, V.; Garg, S.J. Complications of Intravitreal Injections: 2022. Curr. Opin. Ophthalmol. 2022, 33, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.S.; Xu, L.T.; Singuri, S.; Castillo Tafur, J.C.; Arepalli, S.; Ehlers, J.P.; Kaiser, P.K.; Singh, R.P.; Rachitskaya, A.V.; Srivastava, S.K.; et al. Patient-Reported Complications after Intravitreal Injection and Their Predictive Factors. Ophthalmol. Retin. 2021, 5, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.; Wilneff, M.A.; Yazji, A.; Petrinec, E.; Carbone, M.; Miller, C.; McCrossin, C.; Donkor, R.; Miller, D.G. Analysis of Urgent Follow-Up Visits and Complications after Intravitreal Injections: A Retrospective Cohort Study. Int. J. Retin. Vitr. 2022, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Gaballa, S.A.; Kompella, U.B.; Elgarhy, O.; Alqahtani, A.M.; Pierscionek, B.; Alany, R.G.; Abdelkader, H. Corticosteroids in Ophthalmology: Drug Delivery Innovations, Pharmacology, Clinical Applications, and Future Perspectives. Drug Deliv. Transl. Res. 2021, 11, 866–893. [Google Scholar] [CrossRef]
- Iovino, C.; Mastropasqua, R.; Lupidi, M.; Di Antonio, L.; Toto, L.; Carpineto, P.; Mastropasqua, L. Intravitreal Dexamethasone Implant as a Sustained Release Drug Delivery Device for the Treatment of Ocular Diseases: A Comprehensive Review of the Literature. Pharmaceutics 2020, 12, 703. [Google Scholar] [CrossRef]
- Ribeiro, F.; Falcão, M.S. Off-Label Use of 0.19 mg Fluocinolone Acetonide Intravitreal Implant: A Systematic Review. J. Ophthalmol. 2021, 2021, 6678364. [Google Scholar] [CrossRef]
- Shimura, M.; Nakazawa, T.; Yasuda, K.; Kunikata, H.; Shiono, T.; Nishida, K. Visual Prognosis and Vitreous Cytokine Levels after Arteriovenous Sheathotomy in Branch Retinal Vein Occlusion Associated with Macular Oedema. Acta Ophthalmol. 2008, 86, 377–384. [Google Scholar] [CrossRef]
- Oh, I.K.; Kim, S.; Oh, J.; Huh, K. Long-Term Visual Outcome of Arteriovenous Adventitial Sheathotomy on Branch Retinal Vein Occlusion Induced Macular Edema. Korean J. Ophthalmol. 2008, 22, 1–5. [Google Scholar] [CrossRef]
- Wakabayashi, T.; Patel, N.; Bough, M.; Nahar, A.; Sheng, Y.; Momenaei, B.; Salabati, M.; Mahmoudzadeh, R.; Kuriyan, A.E.; Spirn, M.J.; et al. Vitrectomy for Vitreous Hemorrhage Associated with Retinal Vein Occlusion: Visual Outcomes, Prognostic Factors, and Sequelae. Retina 2023, 43, 1506–1513. [Google Scholar] [CrossRef]
- Darabuş, D.M.; Munteanu, M.; Preda, M.A.; Karancsi, O.L.; Șuță, M.C. The Impact of Intraocular Treatment on Visual Acuity of Patients Diagnosed with Branch Retinal Vein Occlusions. Healthcare 2023, 11, 1414. [Google Scholar] [CrossRef]
- Chung, S.H.; Frick, S.L.; Yiu, G. Targeting Vascular Endothelial Growth Factor Using Retinal Gene Therapy. Ann. Transl. Med. 2021, 9, 1277. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, B.; Li, X.; Li, M.; Wang, Y.; Dan, H.; Zhou, J.; Wei, Y.; Ge, K.; Li, P.; et al. The Application and Progression of CRISPR/Cas9 Technology in Ophthalmological Diseases. Eye 2023, 37, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Wasnik, V.B.; Thool, A.R. Ocular Gene Therapy: A Literature Review with Focus on Current Clinical Trials. Cureus 2022, 14, e29533. [Google Scholar] [CrossRef] [PubMed]
- Maurya, R.; Vikal, A.; Narang, R.K.; Patel, P.; Kurmi, B.D. Recent Advancements and Applications of Ophthalmic Gene Therapy Strategies: A Breakthrough in Ocular Therapeutics. Exp. Eye Res. 2024, 245, 109983. [Google Scholar] [CrossRef]
- Nhàn, N.T.T.; Maidana, D.E.; Yamada, K.H. Ocular Delivery of Therapeutic Agents by Cell-Penetrating Peptides. Cells 2023, 12, 1071. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Heier, J.S.; Do, D.V.; Mirando, A.C.; Pandey, N.B.; Sheng, H.; Heah, T. The Tie2 Signaling Pathway in Retinal Vascular Diseases: A Novel Therapeutic Target in the Eye. Int. J. Retin. Vitr. 2020, 6, 48. [Google Scholar] [CrossRef]
- Guryanov, I.; Tennikova, T.; Urtti, A. Peptide Inhibitors of Vascular Endothelial Growth Factor A: Current Situation and Perspectives. Pharmaceutics 2021, 13, 1337. [Google Scholar] [CrossRef]
- Maetzel, A.; Feener, E.P. Plasma Kallikrein Inhibition in Diabetic Macular Edema: Targeting a Novel, VEGF-Independent Pathway of DME Could Preserve and Recover Vision. Retin. Physician 2020, 17, 26–28. [Google Scholar]
- Yang, S.; Wang, M.; Wang, T.; Sun, M.; Huang, H.; Shi, X.; Duan, S.; Wu, Y.; Zhu, J.; Liu, F. Self-Assembled Short Peptides: Recent Advances and Strategies for Potential Pharmaceutical Applications. Mater. Today Bio 2023, 20, 100644. [Google Scholar] [CrossRef]
- Jiang, D.; Xu, T.; Zhong, L.; Liang, Q.; Hu, Y.; Xiao, W.; Shi, J. Research Progress of VEGFR Small Molecule Inhibitors in Ocular Neovascular Diseases. Eur. J. Med. Chem. 2023, 257, 115535. [Google Scholar] [CrossRef]
- Gau, D.; Vignaud, L.; Francoeur, P.; Koes, D.; Guillonneau, X.; Roy, P. Inhibition of Ocular Neovascularization by Novel Anti-Angiogenic Compound. Exp. Eye Res. 2021, 213, 108861. [Google Scholar] [CrossRef] [PubMed]
- Parikh, B.H.; Liu, Z.; Blakeley, P.; Lin, Q.; Singh, M.; Ong, J.Y.; Ho, K.H.; Lai, J.W.; Bogireddi, H.; Tran, K.C.; et al. A Bio-Functional Polymer That Prevents Retinal Scarring through Modulation of NRF2 Signalling Pathway. Nat. Commun. 2022, 13, 2796. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Cui, K.; Wu, P.; Hu, A.; Fan, M.; Lu, X.; Yang, F.; Lin, J.; Yu, S.; Xu, Y.; et al. Acrizanib as a Novel Therapeutic Agent for Fundus Neovascularization via Inhibitory Phosphorylation of VEGFR2. Transl. Vis. Sci. Technol. 2024, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, S.; Jalali, S.; Joshi, M.B.; Satyamoorthy, K.; Kaur, I. Metabolomics Applicable to Retinal Vascular Diseases. Methods Mol. Biol. 2019, 1996, 325–331. [Google Scholar] [CrossRef]
- Ham, Y.; Mehta, H.; Kang-Mieler, J.; Mieler, W.F.; Chang, A. Novel Drug Delivery Methods and Approaches for the Treatment of Retinal Diseases. Asia-Pac. J. Ophthalmol. 2023, 12, 402–413. [Google Scholar] [CrossRef]
- Fleissig, E.; Loewenstein, A. Complications of Intravitreal Injections. Incidence is Low, but Caution is Warranted. Retin. Physician 2022, 19, 27–29. [Google Scholar]
Method | Advantages | Limitations |
---|---|---|
Fundus photography |
|
|
Fluorescein angiography |
|
|
Optical coherence tomography |
|
|
OCT angiography |
|
|
Scanning laser ophthalmoscopy |
|
|
Multimodal OCT and photoacoustic microscopy |
|
|
Anti-VEGF Agent | Structure and Mechanism of Action | Treatment Interval | Efficacy | Associated Complications |
---|---|---|---|---|
Bevacizumab (Avastin) | Full-length monoclonal antibody; targets VEGF-A | Monthly or as-needed (PRN) | Effective for reducing macular edema and improving visual acuity; used off-label for BRVO | Risk of systemic complications, mild intraocular pressure, or inflammation |
Ranibizumab (Lucentis) | Monoclonal antibody fragment; targets VEGF-A | Monthly or treat-and-extend | Significant improvement in visual acuity and reduction in macular edema; FDA-approved for BRVO | Mild intraocular pressure or inflammation |
Aflibercept (Eylea) | Recombinant fusion protein of VEGF; targets VEGF-A and PlGF | Treat-and-extend approach after initial loading doses | Effective in reducing macular edema and improving visual acuity; allows for longer intervals between injections; FDA-approved for BRVO | Mild intraocular pressure or inflammation |
Brolucizumab (Beovu) | A single-chain variable fragment; targets VEGF-A | Every 6–8 weeks after initial loading doses | Newer agent with potential for fewer required injections; promising results in recent studies; used off-label for BRVO | Intraocular inflammation, retinal vasculitis, retinal artery occlusion |
Faricimab (Vabysmo) | Bispecific monoclonal antibody; targets VEGF-A and Ang-2 | Every 8 weeks or up to 16 weeks after initial doses | Demonstrated efficacy in reducing macular edema with extended dosing intervals; FDA-approved for BRVO | Mild intraocular inflammation, systemic thromboembolic events |
Complication | Complication Rates | Management |
---|---|---|
Increased IOP | Transient IOP spikes are common (10–50%), but long-term elevation occurs in about 2–5% | Regular monitoring and management with antiglaucoma medications if needed |
Subconjunctival hemorrhage | 10–40% | Typically resolves on its own |
Corneal damage | 0.01–0.1% | Typically resolved with minimal intervention |
Cataracts | More commonly associated with intravitreal corticosteroid injections than anti-VEGF agents (15–40%) | Surgical intervention |
Vitreous hemorrhage | 0.02–0.1%, more likely in patients with pre-existing conditions such as retinal neovascularization | May require surgery |
Infection (endophthalmitis) | 0.01–0.09% | Sterilization, prophylactic antibiotics |
Ocular ischemia | <0.01% | Monitoring and treatment |
Systemic effects | <1%, more likely in patients with pre-existing cardiovascular or cerebrovascular disease | Management of systemic reactions as they arise |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darabuş, D.-M.; Dărăbuş, R.G.; Munteanu, M. The Diagnosis and Treatment of Branch Retinal Vein Occlusions: An Update. Biomedicines 2025, 13, 105. https://doi.org/10.3390/biomedicines13010105
Darabuş D-M, Dărăbuş RG, Munteanu M. The Diagnosis and Treatment of Branch Retinal Vein Occlusions: An Update. Biomedicines. 2025; 13(1):105. https://doi.org/10.3390/biomedicines13010105
Chicago/Turabian StyleDarabuş, Diana-Maria, Rodica Georgiana Dărăbuş, and Mihnea Munteanu. 2025. "The Diagnosis and Treatment of Branch Retinal Vein Occlusions: An Update" Biomedicines 13, no. 1: 105. https://doi.org/10.3390/biomedicines13010105
APA StyleDarabuş, D.-M., Dărăbuş, R. G., & Munteanu, M. (2025). The Diagnosis and Treatment of Branch Retinal Vein Occlusions: An Update. Biomedicines, 13(1), 105. https://doi.org/10.3390/biomedicines13010105