Differences in the Interleukin Profiles in Inattentive ADHD Prepubertal Children Are Probably Related to Conduct Disorder Comorbidity
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Assessment
2.3. Treatment
2.4. Measurements
2.5. Analytical Method
2.6. Statistics
3. Results
3.1. Pro-Inflammatory Cytokines
3.1.1. Interleukin-1beta (IL-1beta)
3.1.2. Interleukin-5 (IL-5)
3.1.3. Interleukin-6 (IL-6)
3.1.4. Tumor Necrosis Factor-Alpha (TNF-α)
3.2. Anti-Inflammatory Cytokines
3.2.1. Interleukin-4 (IL-4)
3.2.2. Interleukin-10 (IL-10)
3.2.3. Interleukin-13 (IL-13)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faraone, S.V.; Asherson, P.; Banaschewski, T.; Biederman, J.; Buitelaar, J.K.; Ramos-Quiroga, J.A.; Rohde, L.A.; Sonuga-Barke, E.J.; Tannock, R.; Franke, B. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Primers 2015, 1, 15020. [Google Scholar] [CrossRef]
- Wolraich, M.L.; Hagan, J.F., Jr.; Allan, C.; Chan, E.; Davison, D.; Earls, M.; Evans, S.W.; Flinn, S.K.; Froehlich, T.; Frost, J.; et al. Clinical Practice Guideline for the Diagnosis, Evaluation, and Treatment of Attention-Deficit/Hyperactivity Disorder in Children and Adolescents. Pediatrics 2019, 144, e20192528. [Google Scholar] [CrossRef] [PubMed]
- Sayal, K.; Prasad, V.; Daley, D.; Ford, T.; Coghill, D. ADHD in children and young people: Prevalence, care pathways, and service provision. Lancet Psychiatry 2018, 5, 175–186. [Google Scholar] [CrossRef]
- de la Peña, I.C.; Pan, M.C.; Thai, C.G.; Alisso, T. Attention-Deficit/Hyperactivity Disorder Predominantly Inattentive Subtype/Presentation: Research Progress and Translational Studies. Brain Sci. 2020, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Cortese, S.; Song, M.; Farhat, L.C.; Yon, D.K.; Lee, S.W.; Kim, M.S.; Park, S.; Oh, J.W.; Lee, S.; Cheon, K.A.; et al. Incidence, prevalence, and global burden of ADHD from 1990 to 2019 across 204 countries: Data, with critical re-analysis, from the Global Burden of Disease study. Mol. Psychiatry 2023, 28, 4823–4830. [Google Scholar] [CrossRef] [PubMed]
- APA. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; text revision; American Psychiatric Association: Washington, DC, USA, 2022. [Google Scholar]
- Posner, J.; Polanczyk, G.V.; Sonuga-Barke, E. Attention-deficit hyperactivity disorder. Lancet 2020, 395, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Schiweck, C.; Arteaga-Henriquez, G.; Aichholzer, M.; Edwin Thanarajah, S.; Vargas-Cáceres, S.; Matura, S.; Grimm, O.; Haavik, J.; Kittel-Schneider, S.; Ramos-Quiroga, J.A.; et al. Comorbidity of ADHD and adult bipolar disorder: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2021, 124, 100–123. [Google Scholar] [CrossRef]
- Newcorn, J.H.; Halperin, J.M.; Jensen, P.S.; Abikoff, H.B.; Arnold, L.E.; Cantwell, D.P.; Conners, C.K.; Elliott, G.R.; Epstein, J.N.; Greenhill, L.L.; et al. Symptom profiles in children with ADHD: Effects of comorbidity and gender. J. Am. Acad. Child Adolesc. Psychiatry 2001, 40, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Nourredine, M.; Gering, A.; Fourneret, P.; Rolland, B.; Falissard, B.; Cucherat, M.; Geoffray, M.M.; Jurek, L. Association of Attention-Deficit/Hyperactivity Disorder in Childhood and Adolescence With the Risk of Subsequent Psychotic Disorder: A Systematic Review and Meta-analysis. JAMA Psychiatry 2021, 78, 519–529. [Google Scholar] [CrossRef]
- Riva, V.; Battaglia, M.; Nobile, M.; Cattaneo, F.; Lazazzera, C.; Mascheretti, S.; Giorda, R.; Merette, C.; Emond, C.; Maziade, M.; et al. GRIN2B predicts attention problems among disadvantaged children. Eur. Child. Adolesc. Psychiatry 2015, 24, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V.; Larsson, H. Genetics of attention deficit hyperactivity disorder. Mol. Psychiatry 2019, 24, 562–575. [Google Scholar] [CrossRef]
- Michels, N.; Clarke, G.; Olavarria-Ramírez, L.; Gómez-Martínez, S.; Diaz, L.E.; Marcos, A.; Widhalm, K.; Carvalho, L.A. Psychosocial stress and inflammation driving tryptophan breakdown in children and adolescents: A cross-sectional analysis of two cohorts. Psychoneuroendocrinology 2018, 94, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Notarangelo, F.M.; Pocivavsek, A. Elevated kynurenine pathway metabolism during neurodevelopment: Implications for brain and behavior. Neuropharmacology 2017, 112, 275–285. [Google Scholar] [CrossRef]
- Badawy, A.A. Tryptophan availability for kynurenine pathway metabolism across the life span: Control mechanisms and focus on aging, exercise, diet and nutritional supplements. Neuropharmacology 2017, 112, 248–263. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Arellano, L.; González-García, N.; Salazar-García, M.; Corona, J.C. Antioxidants as a Potential Target against Inflammation and Oxidative Stress in Attention-Deficit/Hyperactivity Disorder. Antioxidants 2020, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G.A.; Nigg, J.T.; Sullivan, E.L. Neuroinflammation as a risk factor for attention deficit hyperactivity disorder. Pharmacol. Biochem. Behav. 2019, 182, 22–34. [Google Scholar] [CrossRef]
- Gilhus, N.E.; Deuschl, G. Neuroinflammation—A common thread in neurological disorders. Nat. Rev. Neurol. 2019, 15, 429–430. [Google Scholar] [CrossRef] [PubMed]
- Ratnayake, U.; Quinn, T.; Walker, D.W.; Dickinson, H. Cytokines and the neurodevelopmental basis of mental illness. Front. Neurosci. 2013, 7, 180. [Google Scholar] [CrossRef] [PubMed]
- Feghali, C.A.; Wright, T.M. Cytokines in acute and chronic inflammation. Front. Biosci. 1997, 2, d12–d26. [Google Scholar] [CrossRef]
- Tavernier, J.; Cornelis, S.; Devos, R.; Guisez, Y.; Plaetinck, G.; Van der Heyden, J. Structure/function analysis of human interleukin 5 and its receptor. Agents Actions Suppl. 1995, 46, 23–34. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef] [PubMed]
- Petersen, A.M.; Pedersen, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Chomarat, P.; Banchereau, J. Interleukin-4 and interleukin-13: Their similarities and discrepancies. Int. Rev. Immunol. 1998, 17, 1–52. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-González, D.; Carreón-Trujillo, S.; Alvarez-Arellano, L.; Abarca-Merlin, D.M.; Domínguez-López, P.; Salazar-García, M.; Corona, J.C. A Potential Role for Neuroinflammation in ADHD. Adv. Exp. Med. Biol. 2023, 1411, 327–356. [Google Scholar] [CrossRef] [PubMed]
- Abdel Samei, A.M.; Mahmoud, D.A.M.; Salem Boshra, B.; Abd El Moneam, M.H.E. The Interplay Between Blood Inflammatory Markers, Symptom Domains, and Severity of ADHD Disorder in Children. J. Atten. Disord. 2024, 28, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Schnorr, I.; Siegl, A.; Luckhardt, S.; Wenz, S.; Friedrichsen, H.; El Jomaa, H.; Steinmann, A.; Kilencz, T.; Arteaga-Henríquez, G.; Ramos-Sayalero, C.; et al. Inflammatory biotype of ADHD is linked to chronic stress: A data-driven analysis of the inflammatory proteome. Transl. Psychiatry 2024, 14, 37. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, A.; Wojtacha, P.; Równiak, M.; Kolenkiewicz, M.; Huang, A.C.W. ADHD pathogenesis in the immune, endocrine and nervous systems of juvenile and maturating SHR and WKY rats. Psychopharmacology 2019, 236, 2937–2958. [Google Scholar] [CrossRef]
- Garre-Morata, L.; Haro, T.d.; González-Villén, R.; Fernández-López, M.L.; Escames, G.; Molina-Carballo, A.; Acuña-Castroviejo, D. Changes in cortisol and in oxidative/nitrosative stress indicators after ADHD treatment. Antioxidants 2024, 13, 92. [Google Scholar] [CrossRef] [PubMed]
- Allred, E.N.; Dammann, O.; Fichorova, R.N.; Hooper, S.R.; Hunter, S.J.; Joseph, R.M.; Kuban, K.; Leviton, A.; O’Shea, T.M.; Scott, M.N. Systemic Inflammation during the First Postnatal Month and the Risk of Attention Deficit Hyperactivity Disorder Characteristics among 10 year-old Children Born Extremely Preterm. J. Neuroimmune Pharmacol. 2017, 12, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Elsadek, A.E.; Al-Shokary, A.H.; Abdelghani, W.E.; Kamal, N.M.; Ibrahim, A.O.; El-Shorbagy, H.H.; Suliman, H.A.; Barseem, N.F.; Abdel Maksoud, Y.H.; Azab, S.M.; et al. Serum Levels of Interleukin-6 and Tumor Necrosis Factor Alpha in Children With Attention-Deficit Hyperactivity Disorder. J. Pediatr. Neurosci. 2020, 15, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.P.-C.; Mondelli, V.; Satyanarayanan, S.K.; Chiang, Y.-J.; Chen, H.-T.; Su, K.-P.; Pariante, C.M. Cortisol, Inflammatory Biomarkers and Neurotrophins in Children and Adolescents with Attention Deficit Hyperactivity Disorder (ADHD) in Taiwan. Brain Behav. Immun. 2020, 88, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, M. Manual for the Children’s Depression Inventory; Multi-Health Systems: North Tonawanda, NY, USA, 1992. [Google Scholar]
- de Jong, S.; Newhouse, S.J.; Patel, H.; Lee, S.; Dempster, D.; Curtis, C.; Paya-Cano, J.; Murphy, D.; Wilson, C.E.; Horder, J.; et al. Immune signatures and disorder-specific patterns in a cross-disorder gene expression analysis. Br. J. Psychiatry 2016, 209, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Zayats, T.; Athanasiu, L.; Sonderby, I.; Djurovic, S.; Westlye, L.T.; Tamnes, C.K.; Fladby, T.; Aase, H.; Zeiner, P.; Reichborn-Kjennerud, T.; et al. Genome-wide analysis of attention deficit hyperactivity disorder in Norway. PLoS ONE 2015, 10, e0122501. [Google Scholar] [CrossRef] [PubMed]
- Hegvik, T.A.; Instanes, J.T.; Haavik, J.; Klungsøyr, K.; Engeland, A. Associations between attention-deficit/hyperactivity disorder and autoimmune diseases are modified by sex: A population-based cross-sectional study. Eur. Child. Adolesc. Psychiatry 2018, 27, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Instanes, J.T.; Halmøy, A.; Engeland, A.; Haavik, J.; Furu, K.; Klungsøyr, K. Attention-Deficit/Hyperactivity Disorder in Offspring of Mothers With Inflammatory and Immune System Diseases. Biol. Psychiatry 2017, 81, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Darwish, A.H.; Elgohary, T.M.; Nosair, N.A. Serum Interleukin-6 Level in Children With Attention-Deficit Hyperactivity Disorder (ADHD). J. Child. Neurol. 2019, 34, 61–67. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, T.M.; Joseph, R.M.; Kuban, K.C.; Allred, E.N.; Ware, J.; Coster, T.; Fichorova, R.N.; Dammann, O.; Leviton, A. Elevated blood levels of inflammation-related proteins are associated with an attention problem at age 24 mo in extremely preterm infants. Pediatr. Res. 2014, 75, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Corominas-Roso, M.; Armario, A.; Palomar, G.; Corrales, M.; Carrasco, J.; Richarte, V.; Ferrer, R.; Casas, M.; Ramos-Quiroga, J.A. IL-6 and TNF-alpha in unmedicated adults with ADHD: Relationship to cortisol awakening response. Psychoneuroendocrinology 2017, 79, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Perez, R.; Crespo, J.F.; Rodríguez, J.; Salcedo, G. Profilin is a relevant melon allergen susceptible to pepsin digestion in patients with oral allergy syndrome. J. Allergy Clin. Immunol. 2003, 111, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Neale, S.A.; Copeland, C.S.; Salt, T.E. Effect of VGLUT inhibitors on glutamatergic synaptic transmission in the rodent hippocampus and prefrontal cortex. Neurochem. Int. 2014, 73, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.P.; Su, K.P.; Mondelli, V.; Pariante, C.M. Cortisol and inflammatory biomarker levels in youths with attention deficit hyperactivity disorder (ADHD): Evidence from a systematic review with meta-analysis. Transl. Psychiatry 2021, 11, 430. [Google Scholar] [CrossRef] [PubMed]
- Misiak, B.; Wójta-Kempa, M.; Samochowiec, J.; Schiweck, C.; Aichholzer, M.; Reif, A.; Samochowiec, A.; Stańczykiewicz, B. Peripheral blood inflammatory markers in patients with attention deficit/hyperactivity disorder (ADHD): A systematic review and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2022, 118, 110581. [Google Scholar] [CrossRef] [PubMed]
- Caye, A.; Spadini, A.V.; Karam, R.G.; Grevet, E.H.; Rovaris, D.L.; Bau, C.H.; Rohde, L.A.; Kieling, C. Predictors of persistence of ADHD into adulthood: A systematic review of the literature and meta-analysis. Eur. Child. Adolesc. Psychiatry 2016, 25, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Ferencova, N.; Visnovcova, Z.; Ondrejka, I.; Hrtanek, I.; Bujnakova, I.; Kovacova, V.; Macejova, A.; Tonhajzerova, I. Peripheral Inflammatory Markers in Autism Spectrum Disorder and Attention Deficit/Hyperactivity Disorder at Adolescent Age. Int. J. Mol. Sci. 2023, 24, 11710. [Google Scholar] [CrossRef] [PubMed]
- Molina-Carballo, A.; Naranjo-Gómez, A.; Uberos, J.; Justicia-Martínez, F.; Ruiz-Ramos, M.J.; Cubero-Millán, I.; Contreras-Chova, F.; Augustin-Morales, M.D.; Khaldy-Belkadi, H.; Muñoz-Hoyos, A. Methylphenidate effects on blood serotonin and melatonin levels may help to synchronise biological rhythms in children with ADHD. J. Psychiatr. Res. 2013, 47, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Fernández-López, L.; Molina-Carballo, A.; Cubero-Millán, I.; Checa-Ros, A.; Machado-Casas, I.; Blanca-Jover, E.; Jerez-Calero, A.; Madrid-Fernández, Y.; Uberos, J.; Muñoz-Hoyos, A. Indole Tryptophan Metabolism and Cytokine S100B in Children with Attention-Deficit/Hyperactivity Disorder: Daily Fluctuations, Responses to Methylphenidate, and Interrelationship with Depressive Symptomatology. J. Child. Adolesc. Psychopharmacol. 2020, 30, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Cubero-Millán, I.; Molina-Carballo, A.; Machado-Casas, I.; Fernández-López, L.; Martínez-Serrano, S.; Tortosa-Pinto, P.; Ruiz-López, A.; Luna-del-Castillo, J.D.; Uberos, J.; Muñoz-Hoyos, A. Methylphenidate ameliorates depressive comorbidity in ADHD children without any modification on differences in serum melatonin concentration between ADHD subtypes. Int. J. Mol. Sci. 2014, 15, 17115–17129. [Google Scholar] [CrossRef] [PubMed]
- Oades, R.D.; Dauvermann, M.R.; Schimmelmann, B.G.; Schwarz, M.J.; Myint, A.M. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: S100B, cytokines and kynurenine metabolism–Effects of medication. Behav. Brain Funct. BBF 2010, 6, 29. [Google Scholar] [CrossRef] [PubMed]
- Aarsland, T.I.; Landaas, E.T.; Hegvik, T.A.; Ulvik, A.; Halmoy, A.; Ueland, P.M.; Haavik, J. Serum concentrations of kynurenines in adult patients with attention-deficit hyperactivity disorder (ADHD): A case-control study. Behav. Brain Funct. 2015, 11, 36. [Google Scholar] [CrossRef] [PubMed]
Baseline ADHD | Post-Treatment ADHD | Statistics | ||
---|---|---|---|---|
(n = 31) | (n = 31) | t | p | |
Age (years) | 7.65 ± 1.33 | 8.1 ± 1.5 | 1.24 | 0.21 |
Height (cm) | 130.31 ± 9.49 | 133.50 ± 8.03 | 1.43 | 0.16 |
Weight (kg) | 33.03 ± 8.08 | 35.9 ± 7.77 | 1.16 | 0.15 |
Body Mass Index (kg/m2) | 19.28 ± 4.42 | 19.90 ± 3.34 | 0.62 | 0.54 |
Attention Deficit (ADHD-AD) | 17.48 ± 4.42 | 5.38 ± 4.25 | 10.99 | 0.00001 *** |
Combined ADHD (ADHD-C) | 13.19 ± 8.92 | 3.59 ± 4.29 | 5.4 | 0.00001 *** |
OD Conduct Disorder (ODCD) | 10.55 ± 7.24 | 4.25 ± 6.16 | 3.69 | 0.0005 *** |
CDI total score (CDI) | 10.2 ± 5.63 | 7.69 ± 3.05 | 2.18 | 0.03 * |
Anxiety total score (SCAS) | 30.42 ± 15.49 | 16.93 ± 13.15 | 3.7 | 0.0005 *** |
KBIT total score | 101.23 ± 11.4 |
Interleukins | Inattentive ADHD (n = 13) | Combined ADHD (n = 18) | |||
---|---|---|---|---|---|
Baseline | Post-MPH | Baseline | Post-MPH | ||
Pro-inflammatory | IL-1beta | 2.26 ± 3.91 | 2.83 ± 4.17 | 1.55 ± 3.41 | 1.72 ± 3.35 |
IL-5 | 14.96 ±18.21 | 17.83 ± 26.32 | 17.36 ± 32.21 | 9.21 ± 14.65 | |
IL-6 | 35.75 ± 67.13 | 37.38 ± 89.61 | 15.41 ± 24.85 | 10.81 ± 19.96 | |
TNF-alpha | 4.39 ± 4.75 | 7.00 ± 10.19 | 4.03 ± 2.55 | 7.49 ± 8.24 | |
Anti-inflammatory | IL-4 | 14.25 ± 18.04 | 17.95 ± 29.13 | 7.29 ± 11.25 | 7.23± 10.48 |
IL-10 | 2.49 ± 2.95 | 2.27 ± 2.87 | 1.16 ± 1.63 | 1.77 ± 2.15 | |
IL-13 | 4.54 ± 7.04 | 2.89 ± 5.29 | 2.08 ± 4.52 | 3.49 ± 6.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Villén, R.; Fernández-López, M.L.; Checa-Ros, A.; Tortosa-Pinto, P.; Aguado-Rivas, R.; Garre-Morata, L.; Acuña-Castroviejo, D.; Molina-Carballo, A. Differences in the Interleukin Profiles in Inattentive ADHD Prepubertal Children Are Probably Related to Conduct Disorder Comorbidity. Biomedicines 2024, 12, 1818. https://doi.org/10.3390/biomedicines12081818
González-Villén R, Fernández-López ML, Checa-Ros A, Tortosa-Pinto P, Aguado-Rivas R, Garre-Morata L, Acuña-Castroviejo D, Molina-Carballo A. Differences in the Interleukin Profiles in Inattentive ADHD Prepubertal Children Are Probably Related to Conduct Disorder Comorbidity. Biomedicines. 2024; 12(8):1818. https://doi.org/10.3390/biomedicines12081818
Chicago/Turabian StyleGonzález-Villén, Raquel, María Luisa Fernández-López, Ana Checa-Ros, Pilar Tortosa-Pinto, Raquel Aguado-Rivas, Laura Garre-Morata, Darío Acuña-Castroviejo, and Antonio Molina-Carballo. 2024. "Differences in the Interleukin Profiles in Inattentive ADHD Prepubertal Children Are Probably Related to Conduct Disorder Comorbidity" Biomedicines 12, no. 8: 1818. https://doi.org/10.3390/biomedicines12081818
APA StyleGonzález-Villén, R., Fernández-López, M. L., Checa-Ros, A., Tortosa-Pinto, P., Aguado-Rivas, R., Garre-Morata, L., Acuña-Castroviejo, D., & Molina-Carballo, A. (2024). Differences in the Interleukin Profiles in Inattentive ADHD Prepubertal Children Are Probably Related to Conduct Disorder Comorbidity. Biomedicines, 12(8), 1818. https://doi.org/10.3390/biomedicines12081818