Metabolomic Analysis of Follicular Fluid in Normal-Weight Patients with Polycystic Ovary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Follicular Fluid Collection
2.3. Fertilization and Embryo Quality Assessment
2.4. Sample Preparation
2.5. LC-MS Analysis and Data Acquisition
2.6. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Multivariate Analysis of Metabolites
3.3. Analysis of Differential Metabolites
3.4. Pathway Enrichment Analysis and Correlation Analysis of Differential Metabolites
3.5. Analysis of Clinical Indicator Correlations
3.6. Establishment of a Diagnostic Model Based on Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J.; Int, P.N. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018, 33, 1602–1618. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.Y.; Li, S.; Cheng, X.Y.; Chen, Z.J.; Li, W.P.; Du, Y.Z. A candidate pathogenic gene, zinc finger gene 217 (ZNF217), may contribute to polycystic ovary syndrome through prostaglandin E2. Acta Obstet. Gynecol. Scand. 2020, 99, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Azziz, R.; Legro, R.; Dewailly, D.; Franks, S.; Tarlatzis, B.C.; Fauser, B.; Balen, A.; Bouchard, P.; Dahlgren, E.; et al. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar]
- Harada, M. Pathophysiology of polycystic ovary syndrome revisited: Current understanding and perspectives regarding future research. Reprod. Med. Biol. 2022, 21, e12487. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.F.; Qi, J.; Xue, X.L.; Li, X.Y.; Liao, Y.; Sun, Y.; Tao, Y.Z.; Yin, H.Y.; Liu, W.; Li, S.X.; et al. Follicular free fatty acid metabolic signatures and their effects on oocyte competence in non-obese PCOS patients. Reproduction 2022, 164, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Azziz, R. Polycystic Ovary Syndrome. Obstet. Gynecol. 2018, 132, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.M. Follicular fluid metabolome: A better alternative than serum metabolome for new insights on reproductive health? Fertil. Steril. 2022, 118, 980–981. [Google Scholar] [CrossRef] [PubMed]
- Ozyurt, R.; Karakus, C. Follicular fluid 25-hydroxyvitamin D levels determine fertility outcome in patients with polycystic ovary syndrome. Taiwan. J. Obstet. Gynecol. 2022, 61, 620–625. [Google Scholar] [CrossRef]
- Casalechi, M.; Dias, J.A.; Pinto, L.V.; Lobach, V.N.; Pereira, M.T.; Cavallo, I.K.; Reis, A.M.; Dela Cruz, C.; Reis, F.M. C-type natriuretic peptide signaling in human follicular environment and its relation with oocyte maturation. Mol. Cell. Endocrinol. 2019, 492, 7. [Google Scholar] [CrossRef]
- Battaglia, R.; Vento, M.E.; Borzì, P.; Ragusa, M.; Barbagallo, D.; Arena, D.; Purrello, M.; Di Pietro, C. Non-coding RNAs in the Ovarian Follicle. Front. Genet. 2017, 8, 11. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics-the link between genotypes and phenotypes. Plant Mol. Biol. 2002, 48, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Rajska, A.; Buszewska-Forajta, M.; Rachon, D.; Markuszewski, M.J. Metabolomic Insight into Polycystic Ovary Syndrome-An Overview. Int. J. Mol. Sci. 2020, 21, 4853. [Google Scholar] [CrossRef] [PubMed]
- Dumesic, D.A.; Oberfield, S.E.; Stener-Victorin, E.; Marshall, J.C.; Laven, J.S.; Legro, R.S. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr. Rev. 2015, 36, 487–525. [Google Scholar] [CrossRef] [PubMed]
- Li, S.X.; Chu, Q.Q.; Ma, J.; Sun, Y.; Tao, T.; Huang, R.; Liao, Y.; Yue, J.; Zheng, J.; Wang, L.H.; et al. Discovery of Novel Lipid Profiles in PCOS: Do Insulin and Androgen Oppositely Regulate Bioactive Lipid Production? J. Clin. Endocrinol. Metab. 2017, 102, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Ozegowska, K.; Plewa, S.; Mantaj, U.; Pawelczyk, L.; Matysiak, J. Serum Metabolomics in PCOS Women with Different Body Mass Index. J. Clin. Med. 2021, 10, 2811. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.F. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults—Study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed. Environ. Sci. 2002, 15, 83–96. [Google Scholar] [PubMed]
- Li, J.A.; Zhang, Z.R.; Wei, Y.Q.; Zhu, P.J.; Yin, T.L.; Wan, Q.Q. Metabonomic analysis of follicular fluid in patients with diminished ovarian reserve. Front. Endocrinol. 2023, 14, 12. [Google Scholar] [CrossRef]
- Lazzarino, G.; Pallisco, R.; Bilotta, G.; Listorti, I.; Mangione, R.; Saab, M.W.; Caruso, G.; Amorini, A.M.; Brundo, M.V.; Lazzarino, G.; et al. Altered Follicular Fluid Metabolic Pattern Correlates with Female Infertility and Outcome Measures of In Vitro Fertilization. Int. J. Mol. Sci. 2021, 22, 8735. [Google Scholar] [CrossRef]
- Shen, H.F.; Wang, L.Y.; Gao, M.; Wei, L.F.; Liu, A.; Wang, B.; Wang, L.R.; Zhang, L.L.; Jia, T.Y.; Wang, Y.Q.; et al. The follicular fluid metabolome in infertile individuals between polycystic ovary syndrome and diminished ovarian reserve. Arch. Biochem. Biophys. 2022, 732, 8. [Google Scholar] [CrossRef]
- Brinca, A.T.; Peiró, A.M.; Evangelio, P.M.; Eleno, I.; Oliani, A.H.; Silva, V.; Vicente, L.F.; Ramalhinho, A.C.; Gallardo, E. Follicular Fluid and Blood Monitorization of Infertility Biomarkers in Women with Endometriosis. Int. J. Mol. Sci. 2024, 25, 7177. [Google Scholar] [CrossRef]
- Morelli, M.A.C.; Iuliano, A.; Schettini, S.C.A.; Petruzzi, D.; Ferri, A.; Colucci, P.; Viggiani, L.; Cuviello, F.; Ostuni, A. NMR metabolomics study of follicular fluid in women with cancer resorting to fertility preservation. J. Assist. Reprod. Genet. 2018, 35, 2063–2070. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.Y.; Xia, Q.C.; Sun, Z.A.; Song, J.Y. Efficacy of Acupoint Application on In Vitro Fertilization Outcome in Patients with Polycystic Ovary Syndrome: A UHPLC-MS-Based Metabolomic Study. Evid.-Based Complement Altern. Med. 2022, 2022, 9568417. [Google Scholar] [CrossRef] [PubMed]
- Budani, M.C.; Tiboni, G.M. Effects of Supplementation with Natural Antioxidants on Oocytes and Preimplantation Embryos. Antioxidants 2020, 9, 612. [Google Scholar] [CrossRef]
- Siddiqui, A.; Ceppi, P. A non-proliferative role of pyrimidine metabolism in cancer. Mol. Metab. 2020, 35, 12. [Google Scholar] [CrossRef]
- Tu, M.X.; Wu, Y.Q.; Wang, F.X.; Huang, Y.; Qian, Y.L.; Li, J.Y.; Lv, P.P.; Ying, Y.Y.; Liu, J.; Liu, Y.F.; et al. Effect of lncRNA MALAT1 on the Granulosa Cell Proliferation and Pregnancy Outcome in Patients with PCOS. Front. Endocrinol. 2022, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.X.; Zhao, M.X.; Shu, X.D.; Xiong, X.Q.; Wang, J.J.; Gao, X.Y.; Chen, Q.; Li, Y.H.; Kang, Y.M.; Zhu, G.Q. β-aminoisobutyric acid attenuates hepatic endoplasmic reticulum stress and glucose/lipid metabolic disturbance in mice with type 2 diabetes. Sci. Rep. 2016, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.J.; Yang, Y.; Li, T.; Li, M.H.; Yao, T.T.; Hu, G.X.; Wan, G.M.; Chang, B. Signaling metabolite β-aminoisobutyric acid as a metabolic regulator, biomarker, and potential exercise pill. Front. Endocrinol. 2023, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Bai, S.; Zheng, S.X.; Zhu, X.Y.; Zhang, Y.; Xu, B.; Zhao, W.D. Identification of the Metabolomics Signature of Human Follicular Fluid from PCOS Women with Insulin Resistance. Dis. Markers 2022, 2022, 10. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.L.; Cong, L.P.; Wang, Y.J.; Luo, X.Y.; Li, H.; Wang, H.; Zhu, J.; Dai, S.J.; Jin, H.X.; Yao, G.D.; et al. Increasing ovarian NAD+ levels improve mitochondrial functions and reverse ovarian aging. Free Radic. Biol. Med. 2022, 179, 433–434. [Google Scholar] [CrossRef]
- Wang, Y.J.; Yang, Q.L.; Wang, H.; Zhu, J.; Cong, L.P.; Li, H.; Sun, Y.P. NAD+ deficiency and mitochondrial dysfunction in granulosa cells of women with polycystic ovary syndrome. Biol. Reprod. 2021, 105, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.C.; Zhao, Y.; Li, T.J.; Li, M.; Li, J.S.; Li, R.; Liu, P.; Yu, Y.; Qiao, J. Metabolism alteration in follicular niche: The nexus among intermediary metabolism, mitochondrial function, and classic polycystic ovary syndrome. Free Radic. Biol. Med. 2015, 86, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.L.; Li, H.; Wang, H.; Chen, W.H.; Zeng, X.X.; Luo, X.Y.; Xu, J.M.; Sun, Y.P. Deletion of enzymes for de novo NAD+ biosynthesis accelerated ovarian aging. Aging Cell 2023, 22, 15. [Google Scholar] [CrossRef]
- Guo, N.; Liu, P.; Ding, J.; Zheng, S.J.; Yuan, B.F.; Feng, Y.Q. Stable isotope labeling—Liquid chromatography/mass spectrometry for quantitative analysis of androgenic and progestagenic steroids. Anal. Chim. Acta 2016, 905, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Homer, M.V.; Toloubeydokhti, T.; Lawson, M.A.; Garzo, G.; Duleba, A.J.; Chang, R.J. Individual 17-Hydroxyprogesterone Responses to hCG Are Not Correlated With Follicle Size in Polycystic Ovary Syndrome. J. Endocr. Soc. 2019, 3, 687–698. [Google Scholar] [CrossRef]
- Pasquali, R.; Patton, L.; Pocognoli, P.; Cognigni, G.E.; Gambineri, A. 17-hydroxyprogesterone responses to gonadotropin-releasing hormone disclose distinct phenotypes of functional ovarian hyperandrogenism and Polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2007, 92, 4208–4217. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Zhu, F.F.; Zhu, Y.J.; Hu, Y.J.; Chen, X. Effects of IL-18 on the proliferation and steroidogenesis of bovine theca cells: Possible roles in the pathogenesis of polycystic ovary syndrome. J. Cell. Mol. Med. 2021, 25, 1128–1139. [Google Scholar] [CrossRef] [PubMed]
- Ueland, G.A.; Dahl, S.R.; Methlie, P.; Hessen, S.; Husebye, E.S.; Thorsby, P.M. Adrenal steroid profiling as a diagnostic tool to differentiate polycystic ovary syndrome from nonclassic congenital adrenal hyperplasia: Pinpointing easy screening possibilities and normal cutoff levels using liquid chromatography tandem mass spectrometry. Fertil. Steril. 2022, 118, 384–391. [Google Scholar] [CrossRef]
- Yi, W.W.; Zhang, M.Y.; Yuan, X.Y.; Shi, L.S.; Yuan, X.; Sun, M.; Liu, J.; Cai, H.D.; Lv, Z.W. A Model Combining Testosterone, Androstenedione and Free Testosterone Index Improved the Diagnostic Efficiency of Polycystic. Endocr. Pract. 2023, 29, 629–636. [Google Scholar] [CrossRef]
- Cavalari, F.C.; da Rosa, L.A.; Escott, G.M.; Dourado, T.; de Castro, A.L.; Kohek, M.B.D.; Ribeiro, M.F.M.; Partata, W.A.; de Fraga, L.S.; Loss, E.D. Epitestosterone-and testosterone-replacement in immature castrated rats changes main testicular developmental characteristics. Mol. Cell. Endocrinol. 2018, 461, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, E.J.; Lee, D.H.; Lee, W.Y.; Chung, B.C.; Seo, H.S.; Choi, M.H. Liquid Chromatography-Mass Spectrometry-Based In Vitro Metabolic Profiling Reveals Altered Enzyme Expressions in Eicosanoid Metabolism. Ann. Lab. Med. 2016, 36, 342–352. [Google Scholar] [CrossRef]
- Fan, X.M.; Jiang, J.F.; Huang, Z.Q.; Gong, J.M.; Wang, Y.M.; Xue, W.; Deng, Y.; Wang, Y.F.; Zheng, T.P.; Sun, A.J.; et al. UPLC/Q-TOF-MS based plasma metabolomics and clinical characteristics of polycystic ovarian syndrome. Mol. Med. Rep. 2019, 19, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.Y.; Liu, Y.Y.; Guo, Y.H.; Shen, X.X.; Liu, Y.; Jin, H.X. Potential biomarkers for clinical outcomes of IVF cycles in women with/without PCOS: Searching with metabolomics. Front. Endocrinol. 2022, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Gongadashetti, K.; Gupta, P.; Dada, R.; Malhotra, N. Follicular fluid oxidative stress biomarkers and ART outcomes in PCOS women undergoing in vitro fertilization: A cross-sectional study. Int. J. Reprod. Biomed. 2021, 19, 449–456. [Google Scholar] [CrossRef]
- Li, S.X.; Qi, J.; Tao, Y.Z.; Zhu, Q.L.; Huang, R.; Liao, Y.; Yue, J.; Liu, W.; Zhao, H.T.; Yin, H.Y.; et al. Elevated levels of arachidonic acid metabolites in follicular fluid of PCOS patients. Reproduction 2020, 159, 159–169. [Google Scholar] [CrossRef]
- Duffy, D.M. Novel contraceptive targets to inhibit ovulation: The prostaglandin E2 pathway. Hum. Reprod. Update 2015, 21, 652–670. [Google Scholar] [CrossRef] [PubMed]
- Nuttinck, F.; Gall, L.; Ruffini, S.; Laffont, L.; Clement, L.; Reinaud, P.; Adenot, P.; Grimard, B.; Charpigny, G.; Marquant-Le Guienne, B. PTGS2-Related PGE2 Affects Oocyte MAPK Phosphorylation and Meiosis Progression in Cattle: Late Effects on Early Embryonic Development. Biol. Reprod. 2011, 84, 1248–1257. [Google Scholar] [CrossRef]
- Bai, R.L.; Kusama, K.; Matsuno, Y.; Bai, H.A.K.; Sakurai, T.; Kimura, K.; Imakawa, K. Expression of NFIL3 and CEBPA regulated by IFNT induced-PGE2 in bovine endometrial stromal cells during the pre-implantation period. Front. Endocrinol. 2023, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Di, F.F.; Liu, J.S.; Li, S.; Yao, G.X.; Hong, Y.; Chen, Z.J.; Li, W.P.; Du, Y.Z. ATF4 Contributes to Ovulation via Regulating COX2/PGE2 Expression: A Potential Role of ATF4 in PCOS. Front. Endocrinol. 2018, 9, 12. [Google Scholar] [CrossRef]
- Hao, T.T.; Fang, W.; Xu, D.; Chen, Q.; Liu, Q.D.; Cui, K.; Cao, X.F.; Li, Y.R.; Mai, K.S.; Ai, Q.H. Phosphatidylethanolamine alleviates OX-LDL-induced macrophage inflammation by upregulating autophagy and inhibiting NLRP1 inflammasome activation. Free Radic. Biol. Med. 2023, 208, 402–417. [Google Scholar] [CrossRef]
- Ban, Y.N.; Ran, H.Y.; Chen, Y.; Ma, L. Lipidomics analysis of human follicular fluid form normal-weight patients with polycystic ovary syndrome: A pilot study. J. Ovarian Res. 2021, 14, 10. [Google Scholar] [CrossRef]
- Liu, L.Y.; Yin, T.L.; Chen, Y.; Li, Y.H.; Yin, L.; Ding, J.L.; Yang, J.; Feng, H.L. Follicular dynamics of glycerophospholipid and sphingolipid metabolisms in polycystic ovary syndrome patients. J. Steroid Biochem. Mol. Biol. 2019, 185, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Y.; Peng, J.; Zhang, H.; Jiang, T.T.; Zhang, Z.K.; Yin, T.; Su, X.; Zhang, T.; Shen, L.C.; et al. Association between Exposure to Multiple Toxic Metals in Follicular Fluid and the Risk of PCOS among Infertile Women: The Mediating Effect of Metabolic Markers. Biol. Trace Elem. Res. 2024, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Ma, B.C.; Yang, S.; Zhang, M.J.; Wang, J.L.; Liu, M.L.; Chen, J.X. Role of autophagy in lysophosphatidylcholine-induced apoptosis in mouse Leydig cells. Environ. Toxicol. 2022, 37, 2756–2763. [Google Scholar] [CrossRef]
- He, Y.L.; Zhang, H.F.; Yang, Y.F.; Yu, X.H.; Zhang, X.; Xing, Q.L.; Zhang, G.L. Using Metabolomics in Diabetes Management with Traditional Chinese Medicine: A Review. Am. J. Chin. Med. 2021, 49, 1813–1837. [Google Scholar] [CrossRef]
- Yang, J.H.; Li, Y.B.; Li, S.Y.; Zhang, Y.; Feng, R.Z.; Huang, R.; Chen, M.J.; Qian, Y. Metabolic signatures in human follicular fluid identify lysophosphatidylcholine as a predictor of follicular development. Commun. Biol. 2022, 5, 11. [Google Scholar] [CrossRef]
- Zhang, X.X.; Wang, T.Q.; Song, J.Y.; Deng, J.F.; Sun, Z.G. Study on follicular fluid metabolomics components at different ages based on lipid metabolism. Reprod. Biol. Endocrinol. 2020, 18, 8. [Google Scholar] [CrossRef] [PubMed]
- Yea, K.; Kim, J.; Yoon, J.H.; Kwon, T.; Kim, J.H.; Lee, B.D.; Lee, H.J.; Lee, S.J.; Kim, J.I.; Lee, T.G.; et al. Lysophosphatidylcholine Activates Adipocyte Glucose Uptake and Lowers Blood Glucose Levels in Murine Models of Diabetes. J. Biol. Chem. 2009, 284, 33833–33840. [Google Scholar] [CrossRef] [PubMed]
- Arifin, S.A.; Falasca, M. Lysophosphatidylinositol Signalling and Metabolic Diseases. Metabolites 2016, 6, 6. [Google Scholar] [CrossRef]
- Mousa, A.; Huynh, K.; Ellery, S.J.; Strauss, B.J.; Joham, A.E.; De Courten, B.; Meikle, P.J.; Teede, H.J. Novel Lipidomic Signature Associated with Metabolic Risk in Women with and without Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2022, 107, E1987–E1999. [Google Scholar] [CrossRef]
- Bougarne, N.; Weyers, B.; Desmet, S.J.; Deckers, J.; Ray, D.W.; Staels, B.; De Bosscher, K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr. Rev. 2018, 39, 760–802. [Google Scholar] [CrossRef]
- Cerrato, S.; Brazis, P.; della Valle, M.F.; Miolo, A.; Puigdemont, A. Effects of palmitoylethanolamide on immunologically induced histamine, PGD2 and TNFalpha release from canine skin mast cells. Vet. Immunol. Immunopathol. 2010, 133, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Placidi, M.; Vergara, T.; Casoli, G.; Flati, I.; Capece, D.; Artini, P.G.; Virmani, A.; Zanatta, S.; D’Alessandro, A.M.; Tatone, C.; et al. Acyl-Carnitines Exert Positive Effects on Mitochondrial Activity under Oxidative Stress in Mouse Oocytes: A Potential Mechanism Underlying Carnitine Efficacy on PCOS. Biomedicines 2023, 11, 2474. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, Z.H.; Zhao, S.G.; Cheng, L.; Man, Y.Y.; Gao, X.Y.; Zhao, H. Oxidative stress markers in the follicular fluid of patients with polycystic ovary syndrome correlate with a decrease in embryo quality. J. Assist. Reprod. Genet. 2021, 38, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Di Emidio, G.; Rea, F.; Placidi, M.; Rossi, G.; Cocciolone, D.; Virmani, A.; Macchiarelli, G.; Palmerini, M.G.; D’Alessandro, A.M.; Artini, P.G.; et al. Regulatory Functions of L-Carnitine, Acetyl, and Propionyl L-Carnitine in a PCOS Mouse Model: Focus on Antioxidant/Antiglycative Molecular Pathways in the Ovarian Microenvironment. Antioxidants 2020, 9, 867. [Google Scholar] [CrossRef]
- Corteselli, E.M.; Gibbs-Flournoy, E.; Simmons, S.O.; Bromberg, P.; Gold, A.; Samet, J.M. Long chain lipid hydroperoxides increase the glutathione redox potential through glutathione peroxidase 4. Biochim. Biophys. Acta-Gen. Subj. 2019, 1863, 950–959. [Google Scholar] [CrossRef]
PCOS (n = 45) | CON (n = 36) | p Value | |
---|---|---|---|
Age (year) | 30.11 ± 2.41 | 30.86 ± 2.97 | 0.213 |
BMI (kg/m2) | 21.65 ± 1.55 | 21.2 ± 1.42 | 0.186 |
FBG (mmol/L) | 4.9 ± 0.62 | 4.91 ± 0.39 | 0.970 |
Duration of infertility(year) | 3.24 ± 2.27 | 3.28 ± 3.14 | 0.956 |
bFSH (mIU/mL) | 6.54 ± 1.37 | 7.62 ± 2.25 | 0.014 * |
bLH (mIU/mL) | 5.76 ± 3.43 | 4.12 ± 2.32 | 0.013 * |
LH/FSH | 0.87 ± 0.45 | 0.54 ± 0.24 | <0.001 ** |
bE2 (pg/mL) | 40.07 ± 12.48 | 36.69 ± 15.12 | 0.903 |
P (ng/mL) | 0.63 ± 0.35 | 0.85 ± 0.64 | 0.074 |
AMH (ng/mL) | 8.36 ± 4.11 | 3.95 ± 2.16 | <0.001 ** |
bAFC (n) | 29.24 ± 9.55 | 18.33 ± 7.26 | <0.001 ** |
Gn dosage (IU) | 1597.56 ± 705.1 | 1793.14 ± 465.4 | 0.138 |
Days of stimulation (days) | 10.47 ± 2.51 | 10 ± 1.94 | 0.362 |
Oocytes retrieved (n) | 18.13 ± 7.52 | 13.97 ± 6.98 | 0.013 * |
MII oocytes (n) | 12.13 ± 5.83 | 9.5 ± 4.94 | 0.034 * |
2PN fertilizations (n) | 9.51 ± 5.37 | 7.64 ± 4.37 | 0.095 |
2PN cleavages (n) | 9.31 ± 5.27 | 7.56 ± 4.4 | 0.112 |
High-quality embryos (n) | 4.64 ± 3.38 | 4.81 ± 3.62 | 0.837 |
MII oocytes rate (%) | 66.77 ± 3.38 | 70.06 ± 3.16 | 0.445 |
2PN fertilization rate (%) | 52.92 ± 3.33 | 57.01 ± 3.45 | 0.400 |
2PN cleavage rate (%) | 97.97 ± 0.78 | 98.93 ± 0.63 | 0.343 |
High-quality embryo rate (%) | 48.97 ± 3.89 | 61.87 ± 4.78 | 0.038 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Wei, Y.; Zhang, Z.; Chen, J.; Fu, R.; Ye, P.; Chen, S.; Yang, J. Metabolomic Analysis of Follicular Fluid in Normal-Weight Patients with Polycystic Ovary Syndrome. Biomedicines 2024, 12, 1810. https://doi.org/10.3390/biomedicines12081810
Yu J, Wei Y, Zhang Z, Chen J, Fu R, Ye P, Chen S, Yang J. Metabolomic Analysis of Follicular Fluid in Normal-Weight Patients with Polycystic Ovary Syndrome. Biomedicines. 2024; 12(8):1810. https://doi.org/10.3390/biomedicines12081810
Chicago/Turabian StyleYu, Jiayue, Yiqiu Wei, Zhourui Zhang, Jiao Chen, Rongrong Fu, Peng Ye, Suming Chen, and Jing Yang. 2024. "Metabolomic Analysis of Follicular Fluid in Normal-Weight Patients with Polycystic Ovary Syndrome" Biomedicines 12, no. 8: 1810. https://doi.org/10.3390/biomedicines12081810
APA StyleYu, J., Wei, Y., Zhang, Z., Chen, J., Fu, R., Ye, P., Chen, S., & Yang, J. (2024). Metabolomic Analysis of Follicular Fluid in Normal-Weight Patients with Polycystic Ovary Syndrome. Biomedicines, 12(8), 1810. https://doi.org/10.3390/biomedicines12081810